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Abstra
t. We show that the �rst-order theory of any Knuth-Bendix

order in the 
ase of the signatures 
onsisting of unary fun
tion symbols

and 
onstants is de
idable. Our de
ision pro
edure uses interpretation of

unary terms as trees and uses de
idability of the weak monadi
 se
ond-

order theory of binary trees. One area of appli
ations of our result is

automated dedu
tion, sin
e using the �rst-order theory of the Knuth-

Bendix orders we 
an de
ide an important 
lass of ordering 
onstraints.

1 Introdu
tion

Introdu
tion of ordering 
onstraints has been one of the main breakthroughs in

the saturation based theorem proving. Using solvability of ordering 
onstraints

we 
an dramati
ally redu
e the number of redundant inferen
es in a resolution-

based prover. As a 
onsequen
e, the problem of solving ordering 
onstraints for

the known simpli�
ation orders is one of the important problems in the area.

A simpli�
ation order is a total monotoni
 order on ground terms. Given su
h

an order we 
an 
onsider ordering 
onstraints whi
h are quanti�er-free formulas

in the language of the term algebra with equality and the order. Two kinds of

orders are mainly used in automated dedu
tion: the Knuth-Bendix orders [9℄ and

various versions of the re
ursive path orders [5℄. Be
ause of its importan
e, the

de
ision problem for ordering 
onstraints has been well-studied. For the re
ursive

path orders de
idability and 
omplexity issues were 
onsidered in [8, 2, 16, 17, 15,

14℄. For the Knuth-Bendix orders we have the following results: the de
idability

of 
onstraints [10℄, a nondeterministi
 polynomial-time algorithm for 
onstraint

solving [11℄, a polynomial-time algorithm for solving 
onstraints 
onsisting of a

single inequality [12℄.

In resolution-based theorem proving there are important simpli�
ations whi
h

allow us to remove 
lauses form the sear
h spa
e (for example subsumption). It

turns out that in order to express appli
ability 
onditions for these simpli�-


ations, we need to 
onsider 
onstraints whi
h involve �rst-order quanti�ers.

Unfortunately the �rst-order theory of the re
ursive path orders is unde
idable

[20, 4℄. Only re
ently the de
idability of the �rst-order theory of re
ursive path

orders in the 
ase of unary signatures has been proven [14℄. A signature is 
alled

unary if it 
onsists of unary fun
tion symbols and 
onstants.
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In this paper we prove the de
idability of the �rst-order theory of the Knuth-

Bendix orders in the 
ase of unary signatures. Our de
ision pro
edure uses in-

terpretation of unary terms as trees and uses de
idability of the weak monadi


se
ond-order theory of binary trees.

2 Preliminaries

A signature is a �nite set of fun
tion symbols with asso
iated arities. Constants

are fun
tion symbols of the arity 0. We assume that � 
ontains at least one 
on-

stant. We denote variables by x; y; z and terms by r; s; t. The set of all ground

terms of the signature � 
an be 
onsidered as the term algebra of this signa-

ture, TA(�), by de�ning the interpretation g

TA(�)

of any fun
tion symbol g by

g

TA(�)

(t

1

; : : : ; t

n

) = g(t

1

; : : : ; t

n

). For details see e.g. [7℄ or [13℄. It is easy to see

that in term algebras any ground term is interpreted by itself. The Knuth-Bendix

order is a family of orders parametrized by two parameters: a weight fun
tion

and a pre
eden
e relation.

Definition 1 (weight fun
tion) We 
all a weight fun
tion on � any fun
tion

w : � ! N su
h that (i) w(a) > 0 for every 
onstant a 2 �, (ii) there exist

at most one unary fun
tion symbol f 2 � su
h that w(f) = 0. Given a weight

fun
tion w, we 
all w(g) the weight of g. The weight of any ground term t,

denoted jtj, is de�ned as follows: for every 
onstant 
 we have j
j = w(
) and for

every fun
tion symbol g of a positive arity we have jg(t

1

; : : : ; t

n

)j = w(g)+ jt

1

j+

: : :+ jt

n

j.

These 
onditions on the weight fun
tion ensure that the Knuth-Bendix order

is a simpli�
ation order total on ground terms (see, e.g., [1℄). In this paper, f

will always denote a unary fun
tion symbol of weight 0.

Definition 2 (pre
eden
e relation) A pre
eden
e relation on � is any total or-

der � on �. A pre
eden
e relation � is said to be 
ompatible with a weight

fun
tion w if, whenever f is a unary fun
tion symbol f of weight zero, f is the

greatest element w.r.t. �.

In the sequel we assume a �xed weight fun
tion w on� and a �xed pre
eden
e

relation � on �, 
ompatible with w.

Definition 3 The Knuth-Bendix order on TA(�) is the binary relation � de-

�ned as follows. For any ground terms t = g(t

1

; : : : ; t

n

) and s = h(s

1

; : : : ; s

k

) we

have t � s if one of the following 
onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and

t

i

� s

i

.
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Note that the Knuth-Bendix order is a total monotoni
 well-founded order,

see, e.g., [1℄. Let TA

�

(�) denote the stru
ture of the term algebra over � with

the Knuth-Bendix order �.

In this paper we will only 
onsider signatures 
onsisting of unary fun
tion

symbols and 
onstants.

3 Interpretations

Interpretations play an important role in mathemati
al logi
, allowing us to

des
ribe the properties of a given stru
ture based on the properties of another

stru
ture.

We will use an interpretation of �rst-order stru
tures with the Knuth-Bendix

order, in the stru
ture of two su

essors 
onsidered in the weak monadi
 se
ond-

order language. The weak monadi
 se
ond-order language is a language 
losed

under _;^;:, whi
h extends �rst-order language with variables X;Y; : : : ranging

over �nite sets, in
ludes atomi
 formulas t 2 X where t is a �rst order term and

allows quanti�ers over the set variables.

Let us introdu
e a simple notion of interpretation whi
h we will use later

to show the de
idability of the �rst-order theory of the unary Knuth-Bendix

orders. For a more general theory of interpretations see, e.g., [7, 6, 18℄. In the

sequel we will use lower-
ase letters x; y; z; : : : to denote �rst-order variables and

upper-
ase letters X;Y; Z; : : : to denote se
ond-order variables.

Definition 4 Let A be a stru
ture in a �rst-order language L

A

and B be a

stru
ture in a weak monadi
 se
ond-order language L

B

. We say that the stru
-

ture A is interpretable in the stru
ture B if there exist a positive integer m and

the folling formulas:

1. �

domain

(

�

X), where

�

X is a tuple of se
ond-order variables of the length m

su
h that the set A

0

= f

�

S j B j= �

domain

(

�

S)g is non-empty;

2. �

g

(

�

X

1

; : : : ;

�

X

n

;

�

Y ) for ea
h fun
tion symbol g in the language L

A

, where the

arity of g is n and

�

X

1

; : : : ;

�

X

n

;

�

Y are tuples of se
ond-order variables of the

length m, and this formula de�nes a fun
tion, denoted by g

0

, on A

0

, i.e., we

have

g

0

(

�

S

1

; : : : ;

�

S

n

) =

�

T , B j= �

g

(

�

S

1

; : : : ;

�

S

n

;

�

T );

3. �

P

(

�

X

1

; : : : ;

�

X

n

) for ea
h predi
ate symbol P in L

A

, where the arity of P is

n and

�

X

1

; : : : ;

�

X

n

are tuples of se
ond-order variables of the length m, and

this formula de�nes a predi
ate on A

0

, denoted by P

0

, i.e., we have

P

0

(

�

S

1

; : : : ;

�

S

n

), B j= �

P

(

�

S

1

; : : : ;

�

S

n

);

su
h that the following 
ondition holds.

The stru
ture with the domain A

0

, in whi
h every fun
tion symbol f is inter-

preted by the fun
tion f

0

and every predi
ate symbol P is interpreted by P

0

, is

isomorphi
 to the stru
ture A.
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We will use the following fundamental property of interpretability.

Proposition 1. If a stru
ture A is interpretable in the stru
ture B and the

theory of B (in the language L

B

) is de
idable, then the theory of A (in the

language L

A

) is also de
idable.

The proof 
an be found, e.g. in [7, 6, 18℄.

4 Interpretation of the Knuth-Bendix order in WS2S

We will use interpretations to show the de
idability of the �rst-order theory of

the unary Knuth-Bendix orders. We show how to interpret Knuth-Bendix orders

in the stru
ture of two su

essors in the weak monadi
 language. Then, using

the result [19℄ on the de
idability of the weak monadi
 theory of two su

essors,

we 
on
lude that the �rst-order theory of the unary Knuth-Bendix orders is

de
idable.

Let us brie
y re
all the de�nition of the stru
ture of two su

essors (see, e.g.,

[3℄ for details). The domain 
onsists of �nite binary strings in
luding the empty

string �. There are two fun
tions 0(x) and 1(x) whi
h add 0 and 1 respe
tively

to the end of the string. For example 0(101) = 1010. Instead of 0(t) and 1(t) we

will write, respe
tively, t � 0 and t � 1. The atomi
 formulas are equalities t = s

between �rst-order terms, and t 2 X where t is a �rst-order term. Formulas

are built from atomi
 formulas using logi
al 
onne
tives ^;_;:, the �rst-order

quanti�ers 9x;8x and se
ond-order quanti�ers over �nite sets 9X;8X . We will

use the following standard shorthands: 9x 2 X�(x;X) for 9x(x 2 X ^ �(x;X))

and 8x 2 X�(x;X) for 8x(x 2 X � �(x;X)). Binary strings 
an be seen as

positions in binary trees, and in the sequel we sometimes will use the word

position instead of string.

Below we will use the following de�nable relations on sets with a straightfor-

ward meaning.

Emptiness:

X = ; $ 8x(x 62 X):

Interse
tion:

X \ Y = Z $ 8x(x 2 Z $ (x 2 X ^ x 2 Y )):

Union:

X [ Y = Z $ 8x(x 2 Z $ (x 2 X _ x 2 Y )):

Partition:

Partition(X;X

1

; : : : ; X

n

)$ X =

[

1�i�n

X

i

^

^

1�i<j�n

X

i

\X

j

= ;:
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Pre�xClosed:

Pre�xClosed(X)$ 8x((x � 0 2 X _ x � 1 2 X) � x 2 X):

Sets satisfying Pre�xClosed will be 
alled trees.

Pre�x order v:

x v y $ 8X((y 2 X ^ Pre�xClosed(X)) � x 2 X):

Likewise, we introdu
e

x � y $ x v y ^ x 6= y:

Lexi
ographi
 order �

lex

:

x �

lex

y $ x v y

_

9z(z � 0 v x ^ z � 1 v y):

Likewise, we introdu
e

x <

lex

y $ x �

lex

y ^ x 6= y:

Maximal pre�x: Informally,MaxPref (m;X) says thatm is a maximal element

in X w.r.t. the pre�x order.

MaxPref (m;X)$ m 2 X ^ 8z 2 X:(m � z):

Minimal pre�x: Informally, MinPref (m;X) says that m is a minimal element

in X w.r.t. the pre�x order.

MinPref (m;X)$ m 2 X ^ 8z 2 X:(z � m):

Maximal lexi
ographi
ally: Informally,MaxLex (m;X) says thatm is a max-

imal element in X w.r.t. the lexi
ographi
 order.

MaxLex (m;X)$ m 2 X ^ 8z 2 X:(m <

lex

z):

Assuming a �xed Knuth-Bendix order we will show how to interpret it in the

stru
ture of two su

essors using the weak monadi
 se
ond-order language.

Let us 
onsider a signature � = fg

1

; : : : ; g

s

g 
onsisting of unary fun
tion

symbols and 
onstants. From now on we assume that � is �xed and denote

by s the number of fun
tion symbols and 
onstants in it. We denote the set

of 
onstants in � by �




and the set of unary fun
tion symbols by �

g

. Let w

be a weight fun
tion on � and � be a pre
eden
e relation 
ompatible with

w. Also f will always denote the fun
tion symbol of weight zero. Denote the

Knuth-Bendix order indu
ed by this weight fun
tion and pre
eden
e relation by

�. Now we show how to interpret TA

�

(�) in the stru
ture of two su

essors

using the weak monadi
 language.

We de�ne the interpretation in three steps. First we map terms into labelled

trees and de�ne fun
tions and relations on them su
h that the obtained stru
-

ture will be isomorphi
 to TA

�

(�). Then we show how labelled trees 
an be

represented as s+ 1-tuples of �nite sets of binary strings. Finally we show how

to de�ne these representations, and 
orresponding fun
tions and relations on

them in the stru
ture of two su

essor using weak monadi
 se
ond{order logi
.
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Coding of terms.

The labelled trees are binary trees labelled with the fun
tion symbols. We

want tree representation of terms to satisfy the following properties

1. The fun
tions of TA

�

(�) 
an be de�ned in the monadi
 se
ond-order lan-

guage.

2. The fun
tion symbols of the term algebra are represented in su
h a way that

we 
an 
ompare weights of terms using the monadi
 se
ond-order language.

3. For the terms of equal weight we should be able to 
ompare their top fun
tion

symbols and then lexi
ographi
ally 
ompare their subterms.

Let us start with an example. Consider a signature ff(); g(); h(); 
g, and a

weight fun
tion w su
h that w(f) = 0; w(g) = 2; w(h) = w(
) = 1. Figure 1

shows how to 
onstru
t a labelled tree representing the term f(h(f(f(g(
))))).

The labelled tree is built by traversing the tree inside-out, for example, the root

of the labelled tree is labelled with the 
onstant 
. We would like the rightmost

bran
h of the tree to have the length equal to the weight of the term. To this end,

we repeat every fun
tion symbol of a positive weight the number of times equal

to its weight. Sin
e the fun
tion symbol f has the weight 0, it is not in
luded on

the rightmost bran
h. To represent this symbol, we make bran
hing to the left

at the 
orresponding points of the tree.

Before giving a formal de�nition of the representation of terms as labelled

trees, let us 
onsider trees as sets of binary strings. Any binary tree without

labels 
an be de�ned as a set of binary strings, namely the positions of the

nodes in the tree. For example, the tree of Figure 1 
ontains the binary strings

� labelled with 
, strings 1 and 11 labelled as g, string 111 labelled by h, and

strings 110, 1100, and 1110 labelled by f .

Formally, for ea
h term t we de�ne a labelled binary tree Tree

t

and two

positions Right

t

and Top

t

in this tree. The de�nition is by indu
tion on t.

1. If t is a 
onstant 
 of a weight w, then Tree

t


onsists of the strings �; 1; : : : ; 1

w�1

,

labelled by 
, and Right

t

= Top

t

= 1

w�1

.

2. If t = f(t

0

), then Tree

t

is obtained from Tree

t

0

by adding the string Top

t

0

� 0

labelled by f , and we have Top

t

= Top

t

0

� 0, Right

t

= Right

t

0

.

3. If t = g(t

0

), where g has a positive weight w, then Tree

t

is obtained from

Tree

t

0

by adding the strings Right

t

0

� 1; : : : ;Right

t

0

� 1

w

labelled by g, and we

have Top

t

= Right

t

= Top

t

0

� 1

w

.

The mapping t 7! Tree

t

de�nes the embedding of terms into labelled trees.

Now it is easy to de�ne the fun
tions of the term algebra TA

�

(�) on the

labelled trees. We de�ne the value of a fun
tion g on the labelled tree represen-

tation of a term t to be equal to the labelled tree representation of the term g(t).

Likewise, we 
an de�ne the Knuth-Bendix order on su
h trees. It is evident that

the obtained stru
ture on the labelled trees is isomorphi
 to TA

�

(�).

Now we will show how to represent labelled trees by s + 1-tuples. Let T be

a labelled tree whose set of positions is X . Then we represent T as the tuple
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g

g

f

f

h

f

Fig. 1. The labelled tree representation of fhffg
, w(f) = 0; w(g) = 2; w(h) =

w(
) = 1

hX;X

g

1

; : : : ; X

g

s

i, where ea
h set X

g

i

is the set of positions labelled by g

i

and

X is the set of all positions in this tree. If a term t is represented by a labelled

tree T , and T is represented by a tuple hX;X

g

1

; : : : ; X

g

s

i, we will also say that

the tuple hX;X

g

1

; : : : ; X

g

s

i represents the term t.

To 
omplete our 
onstru
tion, we have to show how to de�ne in the se
ond-

order monadi
 language the set of tuples whi
h represent the terms of TA

�

(�),

and then show that all fun
tions and predi
ates of TA

�

(�) are de�nable on the

representation.

To this end we introdu
e some auxiliary de�nable predi
ates on sets of strings.

OneSu

: Informally, OneSu

(X) says that the set of strings X 
onsists of

strings of 1's, 
ontains the empty string, and is pre�x 
losed.

OneSu

(X)$ � 2 X ^ (8x 2 X(x 6= � � 9y 2 X x = y � 1 )):

Spine: The set of strings on rightmost bran
h of a tree will be 
alled the spine

of this tree. Spine(X;Y ) says that X is a tree and Y is its spine.

Spine(X;Y )$ Pre�xClosed(X) ^OneSu

(Y ) ^ Y � X ^

8Y

0

((Y

0

� X ^OneSu

(Y

0

)) � Y

0

� Y ):

Comb: Informally, Comb(X) says that X is a tree and all right-bran
hing po-

sitions in it are in its spine.

Comb(X)$ Pre�xClosed (X)^

8x(x � 1 2 X � 9Y Spine(X;Y ) ^ x 2 Y ):

LabelledTree: Informally, LabelledTree(X;X

g

1

; : : : ; X

g

s

) says that hX;X

g

1

; : : : ; X

g

s

i

is a tuple whi
h is a labelled tree (not ne
essarily representing a term) ap-

propriately labelled in the following sense: all positions along its spine are

labelled with fun
tion symbols of positive weights and all other positions are
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labelled with the fun
tion symbol of the weight 0.

LabelledTree(X;X

g

1

; : : : ; X

g

s

)$ Partition(X;X

g

1

; : : : ; X

g

s

)

^ Comb(X)

^ Spine(X;[

g2�nffg

X

g

):

The labelled trees de�ned by LabelledTree(X;X

g

1

; : : : ; X

g

s

) are similar to

those representing terms, ex
ept that in our representation of terms ea
h o

ur-

ren
e of a fun
tion symbol of a positive weight should be repeated the number

of times equal to the weight. Let us express this restri
tion in the weak monadi


se
ond-order logi
.

A set 
onsisting of strings of 1's will be 
alled a 1-set. A 1-set whi
h is a

set of su

essive positions we be 
alled an interval. The length of an interval is

the number of elements in it. Consider a labelled tree hX;X

g

1

: : : ; X

g

s

i and a

fun
tion symbol g 2 �nffg. First we introdu
e notions of g-interval and maximal

g-interval. A g-interval is an interval whi
h is 
ontained in X

g

and 
ontains no

bran
hing positions with a possible ex
eption of the maximal position of this

interval.

g-interval: Let g 2 � n ffg. Informally Interval

g

(I;

�

X) says that

�

X is a labelled tree and I is a g-interval.

Interval

g

(I;

�

X)$ LabelledTree(

�

X) ^ I � X

g

^

9m

0

;m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)

^ 8y(m

0

v y v m

1

� y 2 I))

^8z 2 I( :MaxPref (z; I) � z � 0 62 X):

Maximal g-interval: is a g-interval that 
an not be properly extended.

MaxInterval

g

(I;

�

X)$ Interval

g

(I;

�

X) ^ 8J(Interval

g

(J;

�

X) � I 6� J):

Our next goal is to express that the length of every maximal g-interval is a

multiple of w(g). To this end we introdu
e a notion of n-interval, for ea
h positive

n. We say that a position x is the n-su

essor of a position y if x = y � 1

n

. An

n-interval is a 1-set whi
h 
onsists of a sequen
e of positions su
h that ea
h next

position is an n-su

essor of the previous. We always assume that an n-interval


ontains at least two elements. For example, the following set is a 2-interval

f1; 111; 11111g. Let us show that for a given n, the property of being an n-

interval is expressible in the monadi
 se
ond-order logi
.

1-set:

OneSet(X)$ 9Y X � Y ^OneSu

(Y ):

n-interval:

Interval

n

(X)$ OneSet(X) ^ 9m(MinPref (m;X) ^ 1

n

(m) 2 X)

^8y 2 X(MaxPref (y;X) _ (y � 1

n

2 X ^

V

1�i<n

y � 1

i

62 X)):
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Now, to say that the length of every maximal g-interval in a tree is a multiple

of w(g), it is enough to say that for every maximal g-interval in the tree, its

minimal point and the su

essor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(

�

X) says that

�

X is a labelled tree and the length

of every maximal g-interval in this tree is a multiple of w(g).

Preterm(

�

X)$ LabelledTree(

�

X)^

V

g2�nffg

8I(MaxInterval

g

(I;

�

X) �

9m

0

9m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)^

9Y Interval

w(g)

(Y ) ^m

0

2 Y ^m

1

� 1 2 Y )):

Finally, to de�ne terms we need to say that the root position of a term is a


onstant and there are no other o

urren
es of 
onstants.

Term:

Term(

�

X)$ Preterm(

�

X) ^ � 2

S

g2�




^

V

g2�




(X

g

6= ; � � 2 X

g

^MaxPref (1

(w(g)�1)

(�); X

g

)):

So, we have that Term(

�

X) de�nes the domain of our term algebra in the

stru
ture of two su

essors. Let us now show how to de�ne the fun
tions of the

term algebra and the Knuth-Bendix order on this domain. Ea
h 
onstant 
an be

easily de�ned as following.

Constants: For ea
h 
onstant 
 2 �




de�ne

�




(

�

X)$ Term(

�

X) ^X




= [

0�i<w(
)

f1

i

(�)g ^X = X




:

Now we 
onsider a fun
tion symbol g 2 �

g

n ffg. In order to say that

�

Y = g(

�

X) we need to say that the spine of

�

Y extends the spine of

�

X with g

repeated w(g) times.

Fun
tion symbols of positive weight: For ea
h fun
tion symbol g 2 �

g

n

ffg de�ne

�

g

(

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nfgg

X

h

= Y

h

^

9S9m(Spine(X;S) ^MaxLex (m;S)^

Y

g

= (X

g

[

S

1�i�w(g)

f1

i

(m)g)):

In order to say that

�

Y = f(

�

X) where f is the fun
tion symbol of zero weight

we need to say that

�

Y extends the greatest position in

�

X, w.r.t. lexi
ographi


order, with f .

Fun
tion symbol of zero weight: For the fun
tion symbol of zero weight de-

�ne

�

f

(

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nffg

X

h

= Y

h

^

9m(MaxLex (m;X) ^ Y

f

= (X

f

[ fm � 0g)):
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Finally, we will de�ne the Knuth-Bendix order. For this we need some aux-

iliary predi
ates.

Point of di�eren
e: Informally, PointOfDi�eren
e(x;

�

X;

�

Y ) says that

�

X;

�

Y rep-

resent terms and they di�er at the position x.

PointOfDi�eren
e(x;

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y )^

W

g2�

((x 2 X

g

^ x 62 Y

g

) _ (x 2 Y

g

^ x 62 X

g

)) :

Maximal point of di�eren
e: Informally,MaxPointOfDi�eren
e(x;

�

X;

�

Y ) says

that

�

X;

�

Y are terms, and x is the greatest point of di�eren
e w.r.t. the lexi-


ographi
 order.

MaxPointOfDi�eren
e(x;

�

X;

�

Y )$ PointOfDi�eren
e(x;

�

X;

�

Y )^

8y(PointOfDi�eren
e(y;

�

X;

�

Y ) � y �

lex

x):

Now we are ready to de�ne the Knuth-Bendix order. Indeed, to say that

�

X �

�

Y it is enough to say that

�

X;

�

Y are terms, the maximal point of their

di�eren
e is in X and the fun
tion symbol at this position in

�

X is greater in

the pre
eden
e relation� than the fun
tion symbol at this position in

�

Y , if this

position belongs to Y .

Knuth-Bendix order:

�

X �

�

Y $ 9x(MaxPointOfDi�eren
e(x;

�

X;

�

Y ) ^ x 2 X^

V

g2�

(x 2 X

g

� (x 62 Y _

W

h�g

x 2 Y

h

))):

Lemma 5 The formulas Term(

�

X);

�

X �

�

Y and �

g

(

�

X;

�

Y ) for g 2 �, de�ne an

interpretation of the term algebra with the Knuth-Bendix order in the stru
ture

of two su

essors.

Proof. The 
laim follows from the de�nition of the Knuth-Bendix order. 2

Using the de
idability of the weak monadi
 se
ond-order theory of two su
-


essors, this lemma and Proposition 1 we obtain the main result of this paper.

Theorem 6 The �rst-order theory of any Knuth-Bendix order in the 
ase of the

unary signatures is de
idable.

As an anonymous referee pointed out, our result 
an be easily extended to

the de
idability of term algebras with several Knuth-Bendix orders whi
h have

the same weight fun
tions and di�erent pre
eden
e relations. Indeed, in this 
ase

the interpretation of terms and term fun
tions is the same as above and we only

need to add formulas

�

X �

i

�

Y for ea
h Knuth-Bendix order �

i

.
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5 Open problems

Let us mention some open problems. The �rst problem is to investigate the


omplexity of �rst-order theories of Knuth-Bendix orders in the 
ase of unary

signatures. Our algorithm uses de
idability of the weak monadi
 se
ond-order

theory of two su

essors, whi
h is known to be reasonably eÆ
ient in pra
ti
e,

but the 
omplexity of this theory is non-elementary.

Another open problem is the de
idability of the �rst-order theory of Knuth-

Bendix orders in the 
ase of arbitrary signatures.
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