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Abstract. We show that the first-order theory of any Knuth-Bendix
order in the case of the signatures consisting of unary function symbols
and constants is decidable. Our decision procedure uses interpretation of
unary terms as trees and uses decidability of the weak monadic second-
order theory of binary trees. One area of applications of our result is
automated deduction, since using the first-order theory of the Knuth-
Bendix orders we can decide an important class of ordering constraints.

1 Introduction

Introduction of ordering constraints has been one of the main breakthroughs in
the saturation based theorem proving. Using solvability of ordering constraints
we can dramatically reduce the number of redundant inferences in a resolution-
based prover. As a consequence, the problem of solving ordering constraints for
the known simplification orders is one of the important problems in the area.
A simplification order is a total monotonic order on ground terms. Given such
an order we can consider ordering constraints which are quantifier-free formulas
in the language of the term algebra with equality and the order. Two kinds of
orders are mainly used in automated deduction: the Knuth-Bendix orders [9] and
various versions of the recursive path orders [5]. Because of its importance, the
decision problem for ordering constraints has been well-studied. For the recursive
path orders decidability and complexity issues were considered in [8,2,16,17,15,
14]. For the Knuth-Bendix orders we have the following results: the decidability
of constraints [10], a nondeterministic polynomial-time algorithm for constraint
solving [11], a polynomial-time algorithm for solving constraints consisting of a
single inequality [12].

In resolution-based theorem proving there are important simplifications which
allow us to remove clauses form the search space (for example subsumption). It
turns out that in order to express applicability conditions for these simplifi-
cations, we need to consider constraints which involve first-order quantifiers.
Unfortunately the first-order theory of the recursive path orders is undecidable
[20,4]. Only recently the decidability of the first-order theory of recursive path
orders in the case of unary signatures has been proven [14]. A signature is called
unary if it consists of unary function symbols and constants.
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In this paper we prove the decidability of the first-order theory of the Knuth-
Bendix orders in the case of unary signatures. Our decision procedure uses in-
terpretation of unary terms as trees and uses decidability of the weak monadic
second-order theory of binary trees.

2 Preliminaries

A signature is a finite set of function symbols with associated arities. Constants
are function symbols of the arity 0. We assume that X contains at least one con-
stant. We denote variables by x,y, 2z and terms by r,s,t. The set of all ground
terms of the signature X can be considered as the term algebra of this signa-
ture, TA(X), by defining the interpretation g™A(*) of any function symbol g by
g™ (.. t,) = g(t1, ..., t,). For details see e.g. [7] or [13]. It is easy to see
that in term algebras any ground term is interpreted by itself. The Knuth-Bendix
order is a family of orders parametrized by two parameters: a weight function
and a precedence relation.

DEFINITION 1 (weight function) We call a weight function on X any function
w : X — N such that (i) w(a) > 0 for every constant a € X, (ii) there exist
at most one unary function symbol f € X such that w(f) = 0. Given a weight
function w, we call w(g) the weight of g. The weight of any ground term ¢,
denoted [t], is defined as follows: for every constant ¢ we have |c¢| = w(c) and for
every function symbol g of a positive arity we have |g(t1,...,tn)| = w(g) +|t1] +
cot |t

These conditions on the weight function ensure that the Knuth-Bendix order
is a simplification order total on ground terms (see, e.g., [1]). In this paper, f
will always denote a unary function symbol of weight 0.

DEFINITION 2 (precedence relation) A precedence relation on X is any total or-
der > on Y. A precedence relation > is said to be compatible with a weight
function w if, whenever f is a unary function symbol f of weight zero, f is the
greatest element w.r.t. >.

In the sequel we assume a fixed weight function w on X and a fixed precedence
relation > on Y, compatible with w.

DEFINITION 3 The Knuth-Bendiz order on TA(Y) is the binary relation > de-
fined as follows. For any ground terms ¢ = g(¢1,...,t,) and s = h(sy,...,s;) we
have t > s if one of the following conditions holds:

Lt > |sl;
2. |t| = |s| and g > h;
3. |t| = |s|, g = h and for some 1 < i < n we have t; = s1,...,t;—1 = s;—1 and

t; > ;.
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Note that the Knuth-Bendix order is a total monotonic well-founded order,
see, e.g., [1]. Let TA, (X) denote the structure of the term algebra over X with
the Knuth-Bendix order .

In this paper we will only consider signatures consisting of unary function
symbols and constants.

3 Interpretations

Interpretations play an important role in mathematical logic, allowing us to
describe the properties of a given structure based on the properties of another
structure.

We will use an interpretation of first-order structures with the Knuth-Bendix
order, in the structure of two successors considered in the weak monadic second-
order language. The weak monadic second-order language is a language closed
under V, A, =, which extends first-order language with variables X,V ... ranging
over finite sets, includes atomic formulas ¢ € X where ¢ is a first order term and
allows quantifiers over the set variables.

Let us introduce a simple notion of interpretation which we will use later
to show the decidability of the first-order theory of the unary Knuth-Bendix
orders. For a more general theory of interpretations see, e.g., [7,6,18]. In the
sequel we will use lower-case letters x,y, z, - . . to denote first-order variables and
upper-case letters X,Y, Z, ... to denote second-order variables.

DEFINITION 4 Let A be a structure in a first-order language L4 and B be a
structure in a weak monadic second-order language Lp. We say that the struc-
ture A is interpretable in the structure B if there exist a positive integer m and
the folling formulas:

1. Gdomain(X), where X is a tuple of second-order variables of the length m
such that the set A" = {S'| B = ddomain(S)} is non-empty;
2. ¢g(Xq,..., X, Y) for each function symbol g in the language L 4, where the

arity of g is n and Xi,...,X,,Y are tuples of second-order variables of the
length m, and this formula defines a function, denoted by ¢’, on A', i.e., we
have

91(5'1,---,5%) :T<:>B |:¢g(5’1,...,§n,T);

3. ¢p(X1,7. .. ,Xn)ifor each predicate symbol P in L4, where the arity of P is
n and Xi,...,X,, are tuples of second-order variables of the length m, and
this formula defines a predicate on A’, denoted by P’, i.e., we have

P'(S’l,...,gn)@B ':¢p(51,...,sn);

such that the following condition holds.

The structure with the domain A’, in which every function symbol f is inter-
preted by the function f’ and every predicate symbol P is interpreted by P’, is
isomorphic to the structure A.
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We will use the following fundamental property of interpretability.

Proposition 1. If a structure A is interpretable in the structure B and the
theory of B (in the language Lg) is decidable, then the theory of A (in the
language L) is also decidable.

The proof can be found, e.g. in [7,6, 18].

4 Interpretation of the Knuth-Bendix order in WS2S

We will use interpretations to show the decidability of the first-order theory of
the unary Knuth-Bendix orders. We show how to interpret Knuth-Bendix orders
in the structure of two successors in the weak monadic language. Then, using
the result [19] on the decidability of the weak monadic theory of two successors,
we conclude that the first-order theory of the unary Knuth-Bendix orders is
decidable.

Let us briefly recall the definition of the structure of two successors (see, e.g.,
[3] for details). The domain consists of finite binary strings including the empty
string A. There are two functions 0(z) and 1(z) which add 0 and 1 respectively
to the end of the string. For example 0(101) = 1010. Instead of 0(¢) and 1(¢) we
will write, respectively, ¢ - 0 and ¢ - 1. The atomic formulas are equalities t = s
between first-order terms, and ¢ € X where ¢ is a first-order term. Formulas
are built from atomic formulas using logical connectives A, V, -, the first-order
quantifiers dz, Vo and second-order quantifiers over finite sets 3X,VX. We will
use the following standard shorthands: 3z € X¢(z, X) for Jz(z € X A ¢(z, X))
and Vz € X¢(z,X) for Ve(z € X D ¢(z,X)). Binary strings can be seen as
positions in binary trees, and in the sequel we sometimes will use the word
position instead of string.

Below we will use the following definable relations on sets with a straightfor-
ward meaning.

Emptiness:
X=0eVe(z ¢ X).
Intersection:
XNY=ZeVezeZe(zeXAze))).
Union:
XUY=ZeVezeZe(zeXVre))).
Partition:

Partition(X,X1,...,X,) ¢ X = (] Xin \ XinX;=0.

1<i<n 1<i<j<n
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PrefixClosed:
PrefizClosed(X) <> Vz((z-0€ XVz-1€ X) Dz e X).
Sets satisfying PrefizClosed will be called trees.
Prefix order LC:

xCy e VX((y € X A PrefixClosed(X)) D x € X).
Likewise, we introduce

rCy<ccCyAc#y.

Lexicographic order <j,:
wglemyHmEy\/EIz(z-OEa:/\z-lEy).
Likewise, we introduce

m<lea:y<_>x§lezzy/\x7éy'

Maximal prefix: Informally, MaxPref (m, X) says that m is a maximal element
in X w.r.t. the prefix order.

MazPref(m,X) <> m e X AVze X—(m C z).

Minimal prefix: Informally, MinPref (m, X ) says that m is a minimal element
in X w.r.t. the prefix order.

MinPref(m,X) <> m e X AVz € X—(z C m).

Maximal lexicographically: Informally, MaxzLez(m, X) says that m is a max-
imal element in X w.r.t. the lexicographic order.

MazLex(m,X) <> m € X AVz € X=(m <y 2).

Assuming a fixed Knuth-Bendix order we will show how to interpret it in the
structure of two successors using the weak monadic second-order language.

Let us consider a signature ¥ = {g1,...,9s} consisting of unary function
symbols and constants. From now on we assume that X is fixed and denote
by s the number of function symbols and constants in it. We denote the set
of constants in X' by Y. and the set of unary function symbols by X,. Let w
be a weight function on X' and > be a precedence relation compatible with
w. Also f will always denote the function symbol of weight zero. Denote the
Knuth-Bendix order induced by this weight function and precedence relation by
>. Now we show how to interpret TA, (¥) in the structure of two successors
using the weak monadic language.

We define the interpretation in three steps. First we map terms into labelled
trees and define functions and relations on them such that the obtained struc-
ture will be isomorphic to TA, (X). Then we show how labelled trees can be
represented as s 4+ 1-tuples of finite sets of binary strings. Finally we show how
to define these representations, and corresponding functions and relations on
them in the structure of two successor using weak monadic second—order logic.
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Coding of terms.

The labelled trees are binary trees labelled with the function symbols. We
want tree representation of terms to satisfy the following properties

1. The functions of TA. (X) can be defined in the monadic second-order lan-
guage.

2. The function symbols of the term algebra are represented in such a way that
we can compare weights of terms using the monadic second-order language.

3. For the terms of equal weight we should be able to compare their top function
symbols and then lexicographically compare their subterms.

Let us start with an example. Consider a signature {f(), g(),h(),c}, and a
weight function w such that w(f) = 0,w(g) = 2,w(h) = w(c) = 1. Figure 1
shows how to construct a labelled tree representing the term f(h(f(f(g(c))))).
The labelled tree is built by traversing the tree inside-out, for example, the root
of the labelled tree is labelled with the constant c. We would like the rightmost
branch of the tree to have the length equal to the weight of the term. To this end,
we repeat every function symbol of a positive weight the number of times equal
to its weight. Since the function symbol f has the weight 0, it is not included on
the rightmost branch. To represent this symbol, we make branching to the left
at the corresponding points of the tree.

Before giving a formal definition of the representation of terms as labelled
trees, let us consider trees as sets of binary strings. Any binary tree without
labels can be defined as a set of binary strings, namely the positions of the
nodes in the tree. For example, the tree of Figure 1 contains the binary strings
A labelled with ¢, strings 1 and 11 labelled as g, string 111 labelled by h, and
strings 110, 1100, and 1110 labelled by f.

Formally, for each term t we define a labelled binary tree Tree; and two
positions Right, and Top, in this tree. The definition is by induction on ¢.

1. If tis a constant c of a weight w, then Tree; consists of the strings X, 1,...,1¥ ™1,
labelled by ¢, and Right, = Top, = 1“1

2. If t = f(t'), then Tree; is obtained from Treey by adding the string Top,. -0
labelled by f, and we have Top, = Top, -0, Right, = Right, .

3. If t = g(t'), where g has a positive weight w, then Tree; is obtained from
Treey by adding the strings Right, -1,..., Right, - 1" labelled by g, and we
have Top, = Right, = Top, - 1v.

The mapping t — Tree; defines the embedding of terms into labelled trees.

Now it is easy to define the functions of the term algebra TA. (X) on the
labelled trees. We define the value of a function g on the labelled tree represen-
tation of a term ¢ to be equal to the labelled tree representation of the term g(¢).
Likewise, we can define the Knuth-Bendix order on such trees. It is evident that
the obtained structure on the labelled trees is isomorphic to TA. (X).

Now we will show how to represent labelled trees by s + 1-tuples. Let T" be
a labelled tree whose set of positions is X. Then we represent 7" as the tuple
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Fig. 1. The labelled tree representation of fhffge, w(f) = 0, w(g) = 2, w(h) =
w(c) =1

(X,Xg,,...,X,,), where each set X, is the set of positions labelled by g¢; and
X is the set of all positions in this tree. If a term ¢ is represented by a labelled
tree T, and T is represented by a tuple (X, X,,,...,X,,), we will also say that
the tuple (X, X,,,..., X,,) represents the term ¢.

To complete our construction, we have to show how to define in the second-
order monadic language the set of tuples which represent the terms of TA. (X)),
and then show that all functions and predicates of TA. (X') are definable on the
representation.

To this end we introduce some auxiliary definable predicates on sets of strings.

OneSucc: Informally, OneSucc(X) says that the set of strings X consists of
strings of 1’s, contains the empty string, and is prefix closed.

OneSucc(X) o Ae XAV eXz#ADIyeXaz=y-1)).

Spine: The set of strings on rightmost branch of a tree will be called the spine
of this tree. Spine(X,Y’) says that X is a tree and Y is its spine.

Spine(X,Y) + PrefixClosed(X) A OneSucc(Y)AY C X A
VY'((Y' C X A OneSuce(Y')) DY' CY).

Comb: Informally, Comb(X) says that X is a tree and all right-branching po-
sitions in it are in its spine.

Comb(X) <+ PrefizClosed (X)A
Ve(r-1e€ X D3IV Spine(X,Y)Az €Y).

LabelledTree: Informally, LabelledTree(X, X,,, ..., X,, ) says that (X, Xy,,...,Xg,)

is a tuple which is a labelled tree (not necessarily representing a term) ap-
propriately labelled in the following sense: all positions along its spine are
labelled with function symbols of positive weights and all other positions are
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labelled with the function symbol of the weight 0.

LabelledTree(X, X, , ..., X,,) <> Partition(X, X,,,...,X,,)
A Comb(X)
A Spine(X, UgeE\{f}Xg)-

The labelled trees defined by LabelledTree(X,Xy,,...,X,,) are similar to
those representing terms, except that in our representation of terms each occur-
rence of a function symbol of a positive weight should be repeated the number
of times equal to the weight. Let us express this restriction in the weak monadic
second-order logic.

A set consisting of strings of 1’s will be called a 1-set. A 1-set which is a
set of successive positions we be called an interval. The length of an interval is
the number of elements in it. Consider a labelled tree (X, X,, ..., X, ) and a
function symbol g € X'\ {f}. First we introduce notions of g-interval and maximal
g-interval. A g-interval is an interval which is contained in X, and contains no
branching positions with a possible exception of the maximal position of this
interval.

g-interval: Let g € X'\ {f}. Informally Interval,(I,X) says that
X is a labelled tree and I is a g-interval.

Interval,(I,X) « LabelledTree(X) AT C X A
dmg, my (MinPref (mo, I) A MazPref (mq,I)
AVy(moCyCmy Dy €l))
AVz € I( = MazPref(z,I) D z-0¢ X).

Maximal g-interval: is a g-interval that can not be properly extended.
MazInterval,(I, X) < Interval, (I, X) AVJ(Intervaly(J,X) D I ¢ J).

Our next goal is to express that the length of every maximal g-interval is a
multiple of w(g). To this end we introduce a notion of n-interval, for each positive
n. We say that a position z is the n-successor of a position y if x = y - 1. An
n-interval is a 1-set which consists of a sequence of positions such that each next
position is an n-successor of the previous. We always assume that an n-interval
contains at least two elements. For example, the following set is a 2-interval
{1,111,11111}. Let us show that for a given n, the property of being an n-
interval is expressible in the monadic second-order logic.

1-set:
OneSet(X) +» Y X CY A OneSuce(Y).
n-interval:

Interval,(X) < OneSet(X) A Im(MinPref(m, X) A1"(m) € X)
AVy € X (MazPref(y, X)V (y-1" € X AN\ ;¥ ' ¢ X)).
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Now, to say that the length of every maximal g-interval in a tree is a multiple
of w(g), it is enough to say that for every maximal g-interval in the tree, its
minimal point and the successor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(X) says that X is a labelled tree and the length
of every maximal g-interval in this tree is a multiple of w(g).

Preterm(X) < Labelled Tree(X)A
Ngesngpy VI(MazIntervaly (I, X) O
ImoImy (MinPref (mg,I) A MaxPref (mq, I)A
3Y Interval () (Y) Amo €Y Amy -1 €Y)).

Finally, to define terms we need to say that the root position of a term is a
constant and there are no other occurrences of constants.

Term:

Term(X) <> Preterm(X) AX € U ey, A
Nges (Xg ZDD A E Xy A MazPref (1(0@)=D()), X,)).

So, we have that Term(X) defines the domain of our term algebra in the
structure of two successors. Let us now show how to define the functions of the
term algebra and the Knuth-Bendix order on this domain. Each constant can be
easily defined as following.

Constants: For each constant ¢ € Y. define
¢e(X) & Term(X) A Xo = Up<icuw(o{1'(N)} A X = X..

Now we consider a function symbol g € X, \ {f}. In order to say that

Y = g(X) we need to say that the spine of ¥ extends the spine of X with ¢
repeated w(g) times.

Function symbols of positive weight: For each function symbol g € X, \
{f} define

$g(X,Y) < Term(X) A Term(Y') A AheZ\{g} X, = YA
353m(Spine(X, S) A MazLez(m, S)A
Yy = (Xg Ui <icu(g) {1(M)}))-

In order to say that Y = f(X) where f is the function symbol of zero weight
we need to say that Y extends the greatest position in X, w.r.t. lexicographic
order, with f.

Function symbol of zero weight: For the function symbol of zero weight de-
fine o _ _
¢ (X,Y) & Term(X) A Term(Y') A N\pesn 53 Xn = Yo/
Im(MazLex(m, X) ANY; = (X; U {m-0})).
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Finally, we will define the Knuth-Bendix order. For this we need some aux-
iliary predicates.

Point of difference: Informally, PointOfDifference(x, X,Y) says that X,Y rep-
resent terms and they differ at the position .

PointOfDifference(z, X,Y) <> Term(X) A Term(Y)A
\/gEE((m eXg/\wgyg)V(wE Yg/\mng))-

Maximal point of difference: Informally, MazPointOfDifference(z, X,Y) says
that X,Y are terms, and z is the greatest point of difference w.r.t. the lexi-
cographic order.

MazPointOfDifference(x, X,Y) < PointOfDifference(z, X, 7,)/\,
Vy(PointOfDifference(y, X,Y) D y <iex ).

Now we are ready to define the Knuth-Bendix order. Indeed, to say that
X > Y it is enough to say that X,Y are terms, the maximal point of their
difference is in X and the function symbol at this position in X is greater in
the precedence relation > than the function symbol at this position in Y, if this
position belongs to Y.

Knuth-Bendix order:

X =Y « 3x(MazPointOfDifference(x, X,Y) Ax € XA
Nyes(@ € Xy D (2 €Y VYV, v €YL))).

LEMMA 5 The formulas Term(X),X =Y and ¢,(X,Y) for g € X, define an
interpretation of the term algebra with the Knuth-Bendiz order in the structure
of two successors.

PRroOF. The claim follows from the definition of the Knuth-Bendix order. O

Using the decidability of the weak monadic second-order theory of two suc-
cessors, this lemma and Proposition 1 we obtain the main result of this paper.

THEOREM 6 The first-order theory of any Knuth-Bendiz order in the case of the
unary signatures is decidable.

As an anonymous referee pointed out, our result can be easily extended to
the decidability of term algebras with several Knuth-Bendix orders which have
the same weight functions and different precedence relations. Indeed, in this case
the interpretation of terms and term functions is the same as above and we only
need to add formulas X >; Y for each Knuth-Bendix order >;.
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Open problems

Let us mention some open problems. The first problem is to investigate the
complexity of first-order theories of Knuth-Bendix orders in the case of unary
signatures. Our algorithm uses decidability of the weak monadic second-order
theory of two successors, which is known to be reasonably efficient in practice,
but the complexity of this theory is non-elementary.

Another open problem is the decidability of the first-order theory of Knuth-

Bendix orders in the case of arbitrary signatures.
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