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Abstrat. We show that the �rst-order theory of any Knuth-Bendix

order in the ase of the signatures onsisting of unary funtion symbols

and onstants is deidable. Our deision proedure uses interpretation of

unary terms as trees and uses deidability of the weak monadi seond-

order theory of binary trees. One area of appliations of our result is

automated dedution, sine using the �rst-order theory of the Knuth-

Bendix orders we an deide an important lass of ordering onstraints.

1 Introdution

Introdution of ordering onstraints has been one of the main breakthroughs in

the saturation based theorem proving. Using solvability of ordering onstraints

we an dramatially redue the number of redundant inferenes in a resolution-

based prover. As a onsequene, the problem of solving ordering onstraints for

the known simpli�ation orders is one of the important problems in the area.

A simpli�ation order is a total monotoni order on ground terms. Given suh

an order we an onsider ordering onstraints whih are quanti�er-free formulas

in the language of the term algebra with equality and the order. Two kinds of

orders are mainly used in automated dedution: the Knuth-Bendix orders [9℄ and

various versions of the reursive path orders [5℄. Beause of its importane, the

deision problem for ordering onstraints has been well-studied. For the reursive

path orders deidability and omplexity issues were onsidered in [8, 2, 16, 17, 15,

14℄. For the Knuth-Bendix orders we have the following results: the deidability

of onstraints [10℄, a nondeterministi polynomial-time algorithm for onstraint

solving [11℄, a polynomial-time algorithm for solving onstraints onsisting of a

single inequality [12℄.

In resolution-based theorem proving there are important simpli�ations whih

allow us to remove lauses form the searh spae (for example subsumption). It

turns out that in order to express appliability onditions for these simpli�-

ations, we need to onsider onstraints whih involve �rst-order quanti�ers.

Unfortunately the �rst-order theory of the reursive path orders is undeidable

[20, 4℄. Only reently the deidability of the �rst-order theory of reursive path

orders in the ase of unary signatures has been proven [14℄. A signature is alled

unary if it onsists of unary funtion symbols and onstants.
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In this paper we prove the deidability of the �rst-order theory of the Knuth-

Bendix orders in the ase of unary signatures. Our deision proedure uses in-

terpretation of unary terms as trees and uses deidability of the weak monadi

seond-order theory of binary trees.

2 Preliminaries

A signature is a �nite set of funtion symbols with assoiated arities. Constants

are funtion symbols of the arity 0. We assume that � ontains at least one on-

stant. We denote variables by x; y; z and terms by r; s; t. The set of all ground

terms of the signature � an be onsidered as the term algebra of this signa-

ture, TA(�), by de�ning the interpretation g

TA(�)

of any funtion symbol g by

g

TA(�)

(t

1

; : : : ; t

n

) = g(t

1

; : : : ; t

n

). For details see e.g. [7℄ or [13℄. It is easy to see

that in term algebras any ground term is interpreted by itself. The Knuth-Bendix

order is a family of orders parametrized by two parameters: a weight funtion

and a preedene relation.

Definition 1 (weight funtion) We all a weight funtion on � any funtion

w : � ! N suh that (i) w(a) > 0 for every onstant a 2 �, (ii) there exist

at most one unary funtion symbol f 2 � suh that w(f) = 0. Given a weight

funtion w, we all w(g) the weight of g. The weight of any ground term t,

denoted jtj, is de�ned as follows: for every onstant  we have jj = w() and for

every funtion symbol g of a positive arity we have jg(t

1

; : : : ; t

n

)j = w(g)+ jt

1

j+

: : :+ jt

n

j.

These onditions on the weight funtion ensure that the Knuth-Bendix order

is a simpli�ation order total on ground terms (see, e.g., [1℄). In this paper, f

will always denote a unary funtion symbol of weight 0.

Definition 2 (preedene relation) A preedene relation on � is any total or-

der � on �. A preedene relation � is said to be ompatible with a weight

funtion w if, whenever f is a unary funtion symbol f of weight zero, f is the

greatest element w.r.t. �.

In the sequel we assume a �xed weight funtion w on� and a �xed preedene

relation � on �, ompatible with w.

Definition 3 The Knuth-Bendix order on TA(�) is the binary relation � de-

�ned as follows. For any ground terms t = g(t

1

; : : : ; t

n

) and s = h(s

1

; : : : ; s

k

) we

have t � s if one of the following onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and

t

i

� s

i

.
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Note that the Knuth-Bendix order is a total monotoni well-founded order,

see, e.g., [1℄. Let TA

�

(�) denote the struture of the term algebra over � with

the Knuth-Bendix order �.

In this paper we will only onsider signatures onsisting of unary funtion

symbols and onstants.

3 Interpretations

Interpretations play an important role in mathematial logi, allowing us to

desribe the properties of a given struture based on the properties of another

struture.

We will use an interpretation of �rst-order strutures with the Knuth-Bendix

order, in the struture of two suessors onsidered in the weak monadi seond-

order language. The weak monadi seond-order language is a language losed

under _;^;:, whih extends �rst-order language with variables X;Y; : : : ranging

over �nite sets, inludes atomi formulas t 2 X where t is a �rst order term and

allows quanti�ers over the set variables.

Let us introdue a simple notion of interpretation whih we will use later

to show the deidability of the �rst-order theory of the unary Knuth-Bendix

orders. For a more general theory of interpretations see, e.g., [7, 6, 18℄. In the

sequel we will use lower-ase letters x; y; z; : : : to denote �rst-order variables and

upper-ase letters X;Y; Z; : : : to denote seond-order variables.

Definition 4 Let A be a struture in a �rst-order language L

A

and B be a

struture in a weak monadi seond-order language L

B

. We say that the stru-

ture A is interpretable in the struture B if there exist a positive integer m and

the folling formulas:

1. �

domain

(

�

X), where

�

X is a tuple of seond-order variables of the length m

suh that the set A

0

= f

�

S j B j= �

domain

(

�

S)g is non-empty;

2. �

g

(

�

X

1

; : : : ;

�

X

n

;

�

Y ) for eah funtion symbol g in the language L

A

, where the

arity of g is n and

�

X

1

; : : : ;

�

X

n

;

�

Y are tuples of seond-order variables of the

length m, and this formula de�nes a funtion, denoted by g

0

, on A

0

, i.e., we

have

g

0

(

�

S

1

; : : : ;

�

S

n

) =

�

T , B j= �

g

(

�

S

1

; : : : ;

�

S

n

;

�

T );

3. �

P

(

�

X

1

; : : : ;

�

X

n

) for eah prediate symbol P in L

A

, where the arity of P is

n and

�

X

1

; : : : ;

�

X

n

are tuples of seond-order variables of the length m, and

this formula de�nes a prediate on A

0

, denoted by P

0

, i.e., we have

P

0

(

�

S

1

; : : : ;

�

S

n

), B j= �

P

(

�

S

1

; : : : ;

�

S

n

);

suh that the following ondition holds.

The struture with the domain A

0

, in whih every funtion symbol f is inter-

preted by the funtion f

0

and every prediate symbol P is interpreted by P

0

, is

isomorphi to the struture A.
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We will use the following fundamental property of interpretability.

Proposition 1. If a struture A is interpretable in the struture B and the

theory of B (in the language L

B

) is deidable, then the theory of A (in the

language L

A

) is also deidable.

The proof an be found, e.g. in [7, 6, 18℄.

4 Interpretation of the Knuth-Bendix order in WS2S

We will use interpretations to show the deidability of the �rst-order theory of

the unary Knuth-Bendix orders. We show how to interpret Knuth-Bendix orders

in the struture of two suessors in the weak monadi language. Then, using

the result [19℄ on the deidability of the weak monadi theory of two suessors,

we onlude that the �rst-order theory of the unary Knuth-Bendix orders is

deidable.

Let us briey reall the de�nition of the struture of two suessors (see, e.g.,

[3℄ for details). The domain onsists of �nite binary strings inluding the empty

string �. There are two funtions 0(x) and 1(x) whih add 0 and 1 respetively

to the end of the string. For example 0(101) = 1010. Instead of 0(t) and 1(t) we

will write, respetively, t � 0 and t � 1. The atomi formulas are equalities t = s

between �rst-order terms, and t 2 X where t is a �rst-order term. Formulas

are built from atomi formulas using logial onnetives ^;_;:, the �rst-order

quanti�ers 9x;8x and seond-order quanti�ers over �nite sets 9X;8X . We will

use the following standard shorthands: 9x 2 X�(x;X) for 9x(x 2 X ^ �(x;X))

and 8x 2 X�(x;X) for 8x(x 2 X � �(x;X)). Binary strings an be seen as

positions in binary trees, and in the sequel we sometimes will use the word

position instead of string.

Below we will use the following de�nable relations on sets with a straightfor-

ward meaning.

Emptiness:

X = ; $ 8x(x 62 X):

Intersetion:

X \ Y = Z $ 8x(x 2 Z $ (x 2 X ^ x 2 Y )):

Union:

X [ Y = Z $ 8x(x 2 Z $ (x 2 X _ x 2 Y )):

Partition:

Partition(X;X

1

; : : : ; X

n

)$ X =

[

1�i�n

X

i

^

^

1�i<j�n

X

i

\X

j

= ;:
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Pre�xClosed:

Pre�xClosed(X)$ 8x((x � 0 2 X _ x � 1 2 X) � x 2 X):

Sets satisfying Pre�xClosed will be alled trees.

Pre�x order v:

x v y $ 8X((y 2 X ^ Pre�xClosed(X)) � x 2 X):

Likewise, we introdue

x � y $ x v y ^ x 6= y:

Lexiographi order �

lex

:

x �

lex

y $ x v y

_

9z(z � 0 v x ^ z � 1 v y):

Likewise, we introdue

x <

lex

y $ x �

lex

y ^ x 6= y:

Maximal pre�x: Informally,MaxPref (m;X) says thatm is a maximal element

in X w.r.t. the pre�x order.

MaxPref (m;X)$ m 2 X ^ 8z 2 X:(m � z):

Minimal pre�x: Informally, MinPref (m;X) says that m is a minimal element

in X w.r.t. the pre�x order.

MinPref (m;X)$ m 2 X ^ 8z 2 X:(z � m):

Maximal lexiographially: Informally,MaxLex (m;X) says thatm is a max-

imal element in X w.r.t. the lexiographi order.

MaxLex (m;X)$ m 2 X ^ 8z 2 X:(m <

lex

z):

Assuming a �xed Knuth-Bendix order we will show how to interpret it in the

struture of two suessors using the weak monadi seond-order language.

Let us onsider a signature � = fg

1

; : : : ; g

s

g onsisting of unary funtion

symbols and onstants. From now on we assume that � is �xed and denote

by s the number of funtion symbols and onstants in it. We denote the set

of onstants in � by �



and the set of unary funtion symbols by �

g

. Let w

be a weight funtion on � and � be a preedene relation ompatible with

w. Also f will always denote the funtion symbol of weight zero. Denote the

Knuth-Bendix order indued by this weight funtion and preedene relation by

�. Now we show how to interpret TA

�

(�) in the struture of two suessors

using the weak monadi language.

We de�ne the interpretation in three steps. First we map terms into labelled

trees and de�ne funtions and relations on them suh that the obtained stru-

ture will be isomorphi to TA

�

(�). Then we show how labelled trees an be

represented as s+ 1-tuples of �nite sets of binary strings. Finally we show how

to de�ne these representations, and orresponding funtions and relations on

them in the struture of two suessor using weak monadi seond{order logi.
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Coding of terms.

The labelled trees are binary trees labelled with the funtion symbols. We

want tree representation of terms to satisfy the following properties

1. The funtions of TA

�

(�) an be de�ned in the monadi seond-order lan-

guage.

2. The funtion symbols of the term algebra are represented in suh a way that

we an ompare weights of terms using the monadi seond-order language.

3. For the terms of equal weight we should be able to ompare their top funtion

symbols and then lexiographially ompare their subterms.

Let us start with an example. Consider a signature ff(); g(); h(); g, and a

weight funtion w suh that w(f) = 0; w(g) = 2; w(h) = w() = 1. Figure 1

shows how to onstrut a labelled tree representing the term f(h(f(f(g())))).

The labelled tree is built by traversing the tree inside-out, for example, the root

of the labelled tree is labelled with the onstant . We would like the rightmost

branh of the tree to have the length equal to the weight of the term. To this end,

we repeat every funtion symbol of a positive weight the number of times equal

to its weight. Sine the funtion symbol f has the weight 0, it is not inluded on

the rightmost branh. To represent this symbol, we make branhing to the left

at the orresponding points of the tree.

Before giving a formal de�nition of the representation of terms as labelled

trees, let us onsider trees as sets of binary strings. Any binary tree without

labels an be de�ned as a set of binary strings, namely the positions of the

nodes in the tree. For example, the tree of Figure 1 ontains the binary strings

� labelled with , strings 1 and 11 labelled as g, string 111 labelled by h, and

strings 110, 1100, and 1110 labelled by f .

Formally, for eah term t we de�ne a labelled binary tree Tree

t

and two

positions Right

t

and Top

t

in this tree. The de�nition is by indution on t.

1. If t is a onstant  of a weight w, then Tree

t

onsists of the strings �; 1; : : : ; 1

w�1

,

labelled by , and Right

t

= Top

t

= 1

w�1

.

2. If t = f(t

0

), then Tree

t

is obtained from Tree

t

0

by adding the string Top

t

0

� 0

labelled by f , and we have Top

t

= Top

t

0

� 0, Right

t

= Right

t

0

.

3. If t = g(t

0

), where g has a positive weight w, then Tree

t

is obtained from

Tree

t

0

by adding the strings Right

t

0

� 1; : : : ;Right

t

0

� 1

w

labelled by g, and we

have Top

t

= Right

t

= Top

t

0

� 1

w

.

The mapping t 7! Tree

t

de�nes the embedding of terms into labelled trees.

Now it is easy to de�ne the funtions of the term algebra TA

�

(�) on the

labelled trees. We de�ne the value of a funtion g on the labelled tree represen-

tation of a term t to be equal to the labelled tree representation of the term g(t).

Likewise, we an de�ne the Knuth-Bendix order on suh trees. It is evident that

the obtained struture on the labelled trees is isomorphi to TA

�

(�).

Now we will show how to represent labelled trees by s + 1-tuples. Let T be

a labelled tree whose set of positions is X . Then we represent T as the tuple



The deidability of the �rst-order theory of the Knuth-Bendix order . . . 7



g

g

f

f

h

f

Fig. 1. The labelled tree representation of fhffg, w(f) = 0; w(g) = 2; w(h) =

w() = 1

hX;X

g

1

; : : : ; X

g

s

i, where eah set X

g

i

is the set of positions labelled by g

i

and

X is the set of all positions in this tree. If a term t is represented by a labelled

tree T , and T is represented by a tuple hX;X

g

1

; : : : ; X

g

s

i, we will also say that

the tuple hX;X

g

1

; : : : ; X

g

s

i represents the term t.

To omplete our onstrution, we have to show how to de�ne in the seond-

order monadi language the set of tuples whih represent the terms of TA

�

(�),

and then show that all funtions and prediates of TA

�

(�) are de�nable on the

representation.

To this end we introdue some auxiliary de�nable prediates on sets of strings.

OneSu: Informally, OneSu(X) says that the set of strings X onsists of

strings of 1's, ontains the empty string, and is pre�x losed.

OneSu(X)$ � 2 X ^ (8x 2 X(x 6= � � 9y 2 X x = y � 1 )):

Spine: The set of strings on rightmost branh of a tree will be alled the spine

of this tree. Spine(X;Y ) says that X is a tree and Y is its spine.

Spine(X;Y )$ Pre�xClosed(X) ^OneSu(Y ) ^ Y � X ^

8Y

0

((Y

0

� X ^OneSu(Y

0

)) � Y

0

� Y ):

Comb: Informally, Comb(X) says that X is a tree and all right-branhing po-

sitions in it are in its spine.

Comb(X)$ Pre�xClosed (X)^

8x(x � 1 2 X � 9Y Spine(X;Y ) ^ x 2 Y ):

LabelledTree: Informally, LabelledTree(X;X

g

1

; : : : ; X

g

s

) says that hX;X

g

1

; : : : ; X

g

s

i

is a tuple whih is a labelled tree (not neessarily representing a term) ap-

propriately labelled in the following sense: all positions along its spine are

labelled with funtion symbols of positive weights and all other positions are
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labelled with the funtion symbol of the weight 0.

LabelledTree(X;X

g

1

; : : : ; X

g

s

)$ Partition(X;X

g

1

; : : : ; X

g

s

)

^ Comb(X)

^ Spine(X;[

g2�nffg

X

g

):

The labelled trees de�ned by LabelledTree(X;X

g

1

; : : : ; X

g

s

) are similar to

those representing terms, exept that in our representation of terms eah our-

rene of a funtion symbol of a positive weight should be repeated the number

of times equal to the weight. Let us express this restrition in the weak monadi

seond-order logi.

A set onsisting of strings of 1's will be alled a 1-set. A 1-set whih is a

set of suessive positions we be alled an interval. The length of an interval is

the number of elements in it. Consider a labelled tree hX;X

g

1

: : : ; X

g

s

i and a

funtion symbol g 2 �nffg. First we introdue notions of g-interval and maximal

g-interval. A g-interval is an interval whih is ontained in X

g

and ontains no

branhing positions with a possible exeption of the maximal position of this

interval.

g-interval: Let g 2 � n ffg. Informally Interval

g

(I;

�

X) says that

�

X is a labelled tree and I is a g-interval.

Interval

g

(I;

�

X)$ LabelledTree(

�

X) ^ I � X

g

^

9m

0

;m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)

^ 8y(m

0

v y v m

1

� y 2 I))

^8z 2 I( :MaxPref (z; I) � z � 0 62 X):

Maximal g-interval: is a g-interval that an not be properly extended.

MaxInterval

g

(I;

�

X)$ Interval

g

(I;

�

X) ^ 8J(Interval

g

(J;

�

X) � I 6� J):

Our next goal is to express that the length of every maximal g-interval is a

multiple of w(g). To this end we introdue a notion of n-interval, for eah positive

n. We say that a position x is the n-suessor of a position y if x = y � 1

n

. An

n-interval is a 1-set whih onsists of a sequene of positions suh that eah next

position is an n-suessor of the previous. We always assume that an n-interval

ontains at least two elements. For example, the following set is a 2-interval

f1; 111; 11111g. Let us show that for a given n, the property of being an n-

interval is expressible in the monadi seond-order logi.

1-set:

OneSet(X)$ 9Y X � Y ^OneSu(Y ):

n-interval:

Interval

n

(X)$ OneSet(X) ^ 9m(MinPref (m;X) ^ 1

n

(m) 2 X)

^8y 2 X(MaxPref (y;X) _ (y � 1

n

2 X ^

V

1�i<n

y � 1

i

62 X)):
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Now, to say that the length of every maximal g-interval in a tree is a multiple

of w(g), it is enough to say that for every maximal g-interval in the tree, its

minimal point and the suessor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(

�

X) says that

�

X is a labelled tree and the length

of every maximal g-interval in this tree is a multiple of w(g).

Preterm(

�

X)$ LabelledTree(

�

X)^

V

g2�nffg

8I(MaxInterval

g

(I;

�

X) �

9m

0

9m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)^

9Y Interval

w(g)

(Y ) ^m

0

2 Y ^m

1

� 1 2 Y )):

Finally, to de�ne terms we need to say that the root position of a term is a

onstant and there are no other ourrenes of onstants.

Term:

Term(

�

X)$ Preterm(

�

X) ^ � 2

S

g2�



^

V

g2�



(X

g

6= ; � � 2 X

g

^MaxPref (1

(w(g)�1)

(�); X

g

)):

So, we have that Term(

�

X) de�nes the domain of our term algebra in the

struture of two suessors. Let us now show how to de�ne the funtions of the

term algebra and the Knuth-Bendix order on this domain. Eah onstant an be

easily de�ned as following.

Constants: For eah onstant  2 �



de�ne

�



(

�

X)$ Term(

�

X) ^X



= [

0�i<w()

f1

i

(�)g ^X = X



:

Now we onsider a funtion symbol g 2 �

g

n ffg. In order to say that

�

Y = g(

�

X) we need to say that the spine of

�

Y extends the spine of

�

X with g

repeated w(g) times.

Funtion symbols of positive weight: For eah funtion symbol g 2 �

g

n

ffg de�ne

�

g

(

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nfgg

X

h

= Y

h

^

9S9m(Spine(X;S) ^MaxLex (m;S)^

Y

g

= (X

g

[

S

1�i�w(g)

f1

i

(m)g)):

In order to say that

�

Y = f(

�

X) where f is the funtion symbol of zero weight

we need to say that

�

Y extends the greatest position in

�

X, w.r.t. lexiographi

order, with f .

Funtion symbol of zero weight: For the funtion symbol of zero weight de-

�ne

�

f

(

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nffg

X

h

= Y

h

^

9m(MaxLex (m;X) ^ Y

f

= (X

f

[ fm � 0g)):
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Finally, we will de�ne the Knuth-Bendix order. For this we need some aux-

iliary prediates.

Point of di�erene: Informally, PointOfDi�erene(x;

�

X;

�

Y ) says that

�

X;

�

Y rep-

resent terms and they di�er at the position x.

PointOfDi�erene(x;

�

X;

�

Y )$ Term(

�

X) ^ Term(

�

Y )^

W

g2�

((x 2 X

g

^ x 62 Y

g

) _ (x 2 Y

g

^ x 62 X

g

)) :

Maximal point of di�erene: Informally,MaxPointOfDi�erene(x;

�

X;

�

Y ) says

that

�

X;

�

Y are terms, and x is the greatest point of di�erene w.r.t. the lexi-

ographi order.

MaxPointOfDi�erene(x;

�

X;

�

Y )$ PointOfDi�erene(x;

�

X;

�

Y )^

8y(PointOfDi�erene(y;

�

X;

�

Y ) � y �

lex

x):

Now we are ready to de�ne the Knuth-Bendix order. Indeed, to say that

�

X �

�

Y it is enough to say that

�

X;

�

Y are terms, the maximal point of their

di�erene is in X and the funtion symbol at this position in

�

X is greater in

the preedene relation� than the funtion symbol at this position in

�

Y , if this

position belongs to Y .

Knuth-Bendix order:

�

X �

�

Y $ 9x(MaxPointOfDi�erene(x;

�

X;

�

Y ) ^ x 2 X^

V

g2�

(x 2 X

g

� (x 62 Y _

W

h�g

x 2 Y

h

))):

Lemma 5 The formulas Term(

�

X);

�

X �

�

Y and �

g

(

�

X;

�

Y ) for g 2 �, de�ne an

interpretation of the term algebra with the Knuth-Bendix order in the struture

of two suessors.

Proof. The laim follows from the de�nition of the Knuth-Bendix order. 2

Using the deidability of the weak monadi seond-order theory of two su-

essors, this lemma and Proposition 1 we obtain the main result of this paper.

Theorem 6 The �rst-order theory of any Knuth-Bendix order in the ase of the

unary signatures is deidable.

As an anonymous referee pointed out, our result an be easily extended to

the deidability of term algebras with several Knuth-Bendix orders whih have

the same weight funtions and di�erent preedene relations. Indeed, in this ase

the interpretation of terms and term funtions is the same as above and we only

need to add formulas

�

X �

i

�

Y for eah Knuth-Bendix order �

i

.
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5 Open problems

Let us mention some open problems. The �rst problem is to investigate the

omplexity of �rst-order theories of Knuth-Bendix orders in the ase of unary

signatures. Our algorithm uses deidability of the weak monadi seond-order

theory of two suessors, whih is known to be reasonably eÆient in pratie,

but the omplexity of this theory is non-elementary.

Another open problem is the deidability of the �rst-order theory of Knuth-

Bendix orders in the ase of arbitrary signatures.
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The authors are grateful to the anonymous referees for helpful omments.
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