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Abstract

Ordering restrictions play a crucial role in automated deduction. In particular,
orders are used extensively for pruning search space in automated theorem provers
and for rewriting-based reasoning and computation. There are two classes of
orders that are widely used in automated deduction: Knuth-Bendix orders and
various versions of recursive path orders. Despite the fact that Knuth-Bendix
orders were discovered earlier than recursive path orders, and since then have
been used in many state-of-the-art automated theorem provers; the decidability
and complexity of many important problems related to these orders remained
open. In this thesis we try to close this gap and provide various decidability and
complexity results for a number of important decision problems related to Knuth-
Bendix orders. We prove the decidability and NP-completeness of the problem of
solving Knuth-Bendix ordering constraints. In the case of constraints consisting
of single inequalities we present a polynomial-time algorithm. We also prove the
decidability of the problem of solving general first-order Knuth-Bendix ordering
constraints over unary signatures. Another problem we study is the orientability
problem by Knuth-Bendix orders. We present a polynomial-time algorithm for
orientability of systems consisting of term rewrite rules and equalities by Knuth-
Bendix orders, and prove that this problem is P-complete. Finally, we show that
it is possible to extend Knuth-Bendix orders to AC-compatible orders preserving

attractive properties of Knuth-Bendix orders.
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Chapter 1
Introduction

Automated deduction is an important branch of Computer Science, which has
applications in various areas including specification and verification of software
and hardware, synthesis of safe programs, database systems, computer algebra
and others. Omne of the most popular methods used in automated deduction
is resolution-based theorem proving. It turns out that this method is powerful
enough for many applications, yet it can be implemented efficiently. Resolution-
based theorem proving was introduced by Robinson in his seminal paper [Robinson
1965]. Because of its practical importance, a huge amount of research has been
devoted to theoretical improvements of this method, likewise to efficient imple-
mentation issues. Introduction of ordering restrictions has been one of the main
breakthroughs in resolution-based theorem proving and in equational reasoning.
In this work we are mainly focused on theoretical problems related to ordering
restrictions that can help to improve performance of resolution-based theorem
provers. Major research directions involving orders for automated deduction in-

clude
e solving ordering constraints,
e orientability problems,
e studying orders compatible with various equational theories, and
e cfficient ordering algorithms.

There are two classes of orders that are widely used in automated deduction:

Knuth-Bendix orders [Knuth and Bendix 1970] and various versions of recursive
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path orders [Dershowitz 1982]. Both Knuth-Bendix orders and recursive path or-
ders are used in most of the state-of-the-art theorem provers, for example Vampire
[Riazanov and Voronkov 1999], E [Schulz 1999], Waldmeister [Hillenbrand, Buch,
Vogt and Lochner 1997] and SPASS [Weidenbach 2001]. During the last two
decades recursive path orders have been intensively studied and many important
results have been obtained by various researchers. Despite the fact that Knuth-
Bendix orders were discovered earlier than recursive path orders and since then
used in most of automated theorem provers, almost nothing had been known
about properties of these orders.

In this work we try to close this gap and provide various decidability and
complexity results for a number of important problems related to Knuth-Bendix
orders. Let us draw some connections between known results in the area and
results of this thesis. More details about applications of orders in automated

deduction can be found in Chapter 2.

Constraint solving. Using solvability of ordering constraints we can dramati-
cally reduce the number of redundant inferences in a resolution-based prover. As
a consequence, the problem of solving ordering constraints for the known simplifi-
cation orders is one of the important problems in the area. There exists extensive
literature on solving recursive path ordering constraints: [Jouannaud and Okada
1991, Comon 1990, Nieuwenhuis 1993, Nieuwenhuis and Rivero 1999, Narendran,
Rusinowitch and Verma 1998, Narendran and Rusinowitch 2000], but until re-
cently no algorithms for solving Knuth-Bendix ordering constraints were known.
We show

e The decidability and NP—completeness of the problem of solving Knuth-

Bendix ordering constraints (see Chapter 4).

e The polynomial-time computability of the problem of solving Knuth-Bendix

ordering constraints consisting of single inequalities (see Chapter 6).

e The decidability of first-order Knuth-Bendix ordering constraints over unary

signatures (see Chapter 5).

These results are reported in [Korovin and Voronkov 2000, Korovin and Voronkov
2001a, Korovin and Voronkov 20015, Korovin and Voronkov 2002, Korovin and
Voronkov 20030].
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Orientability. Usually an order is an important parameter of a deduction sys-
tem that can be chosen according to the problem to solve. The choice of an
order is especially important for problems containing equality and problems re-
lated to term rewrite systems and can be restated as a problem of orientability
of equational (term rewrite) systems. In some cases the user can define man-
ually the order that the system should use on a given problem. Of course it
would be desirable to automate the process of choosing an appropriate order.
In general this problem is bound to be computationally difficult, and hence we
can try to solve this problem for some known classes of orders. The orientability
problem for recursive path orders has been studied and shown to be NP-hard
[Krishnamoorthy and Narendran 1985, Lescanne 1984]. We study orientability

problem for Knuth-Bendix orders and show the following.

e The problem of the existence of a Knuth-Bendix order which orients a
given system of equalities and term rewrite rules can be solved in the time
polynomial in the size of the system. Moreover, if the system of equalities
and rewrite rules is orientable by a Knuth-Bendix order, we can find such

an instance in polynomial time (see Chapters 6,7).

e The problem of orientability of systems of equalities and rewrite rules by a
Knuth-Bendix order is P-complete. Moreover, it is P-hard even for systems

consisting only of term rewrite rules or only of equalities (see Chapters 6,7).

These results are reported in [Korovin and Voronkov 20016, Korovin and
Voronkov 2003¢, Korovin and Voronkov 2003d]. Let us note that an algorithm
for orientability of term rewriting systems by a weaker version of Knuth-Bendix
order has been presented in [Martin 1987, Dick, Kalmus and Martin 1990].

Orders compatible with associativity—commutativity. Among various equa-
tional theories, theories axiomatized by the axioms of associativity and commu-
tativity, so-called AC-theories, play a special role. Such theories very often occur
in applications and require special treatment in automated systems. In such sys-
tems AC-compatible simplification orders is a crucial ingredient. Importance of
AC-compatible simplification orders triggered a huge amount of research aimed to
design such orders: [Dershowitz, Hsiang, Josephson and Plaisted 1983, Bachmair
and Plaisted 1985, Gnaedig and Lescanne 1986, Cherifa and Lescanne 1987, Ka-
pur, Sivakumar and Zhang 1990, Narendran and Rusinowitch 1991, Bachmair
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1992, Rubio and Nieuwenhuis 1993, Kapur, Sivakumar and Zhang 1995, Marché
1995, Kapur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio
2002]. Usually, AC-compatible simplification orders are designed from known
simplification orders. Recently, a lot of work has been done to modify recursive
path orders to obtain AC-compatible simplification orders AC-total on ground
terms [Kapur et al. 1990, Rubio and Nieuwenhuis 1993, Kapur et al. 1995, Ka-
pur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio 2002].
Although Knuth-Bendix orders are widely used in automated deduction, to our
knowledge no AC-compatible simplification variant of Knuth-Bendix orders have
been known. In Chapter 8 we define a family of AC-compatible Knuth-Bendix or-
ders. These orders enjoy attractive features of the standard Knuth-Bendix orders,

such as
e a polynomial-time algorithm for term comparison, and
e computationally efficient approximations.

These results are reported in [Korovin and Voronkov 2003a].



Chapter 2
Motivation

In this chapter we briefly introduce resolution and paramodulation calculi. The
main goal of our presentation is to illustrate how results of this thesis can be
applied in automated deduction. Thus, all results in this chapter are well-known
and the reader wishing to study this subject in detail can find a comprehensive
treatment of these topics in e.g. [Bachmair and Ganzinger 2001, Baader and
Nipkow 1998, Nieuwenhuis and Rubio 2001].

This chapter is organized as follows. In Section 2.2 we introduce a simple
version of resolution-based inference system and discuss the efficiency problems.
In Section 2.3 we show how these problems can be tackled with the help of simple
constraints. In Section 2.4 we extend resolution into resolution with constrained
clauses. In Section 2.5 we introduce the subsumption rule and show how first-
order constraints can be used. In Section 2.6 we introduce equational reasoning
and term rewriting, and discuss the role of orientability. In Section 2.7 we show
how the resolution system can be extended with equality and the use of constraint
solving and orientability for this system. Finally, in Section 2.8 we show how
to integrate nonorientable equations like commutativity into term rewriting and

paramodulation calculi with the help of E-compatible simplification orders.

2.1 Introduction

In practical applications we can specify properties of systems such as programs
or hardware devices using first-order formulas. Usually we want to be sure that
this specification satisfies some required properties. Often problems of this kind

can be reformulated as the validity problem for first-order formulas. In order to
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prove validity of first-order formulas various deduction calculi have been devised.
Roughly speaking, deduction calculi allow us to prove validity of formulas using
simple transformations (derivations). Two main properties of a deduction cal-
culus are soundness and completeness. Soundness ensures that we deduce only
valid formulas and completeness guarantees that if a given formula is valid then
we can prove it in a finite number of steps.

Another important property of a deduction calculus is that it can be imple-
mented efficiently. This is one of the main concerns in the area of automated
deduction. It turns out that it is a very difficult task to devise an efficient cal-
culus for first-order logic. One of the most successful attempts is the resolution
calculus introduced by Robinson [1965]. The resolution calculus and its refine-
ments form a basis for most of the contemporary theorem provers for first-order

logic. Let us briefly describe this calculus.

2.2 Resolution-based theorem proving

We assume that the reader is familiar with the syntax and semantics of first-
order logic. We consider formulas over a finite language consisting of predicate
and function symbols and we assume that the language is arbitrary but fixed.
Also w.l.o.g. we assume that our language contains at least one constant.

Let us sketch how the resolution calculus can be applied to prove valid-
ity of first-order formulas. To prove the validity of a first-order formula we
prove the unsatisfiability of its negation. To prove the unsatisfiability of a
formula we first eliminate all existential quantifiers, by a transformation pre-
serving satisfiability /unsatisfiability of this formula (for efficient algorithms for
such transformations we refer to [Baaz, Egly and Leitsch 2001, Nonnengart and
Weidenbach 2001]). Now we can restrict ourself to universally quantified formu-
las. The key theorem, which is used to prove completeness of resolution calculi,
is Herbrand’s theorem which states the following. Consider a formula ¢ = Yz (z)
where 1 (7) is a quantifier—free formula. Then, ¢ is unsatisfiable if and only if
there exists a finite number of tuples of terms ¢, ...,t, without variables such
that the formula 1(;) A ... A(¢,) is unsatisfiable. Let us note that this theorem
gives us a semi—decision procedure for proving validity of first-order formulas,
since we can check effectively satisfiability of variable-free formulas. Of course,

such a procedure would be highly inefficient in practice, that is the reason why
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the resolution calculus was devised.

Now we are ready to introduce the resolution calculus. The resolution calculus
involves formulas of a special kind, so-called clauses. A clause is a disjunction of
literals, where a [literal is either an atomic or a negated atomic formula. Initially
we have a set of clauses which are implicitly universally quantified. The goal is to
prove that this set is unsatisfiable, or in other words to deduce the empty clause.
The inference system consists of two rules: the resolution rule and the factoring

rule.

Resolution: 4 \/((é v_lﬁﬁv D

where # is the most general unifier of the atoms A and B.

. AvVvBVC
Factoring: (Bv 0)0

where # is the most general unifier of the atoms A and B.

This inference system was proved to be refutation complete, i.e., if we have an
unsatisfiable set of clauses, then there is a proof of the empty clause using these
inference rules. Usually the proof search is implemented via a saturation process,
i.e., exhaustively application of inferences to the previously derived clauses. There
are three possible outcomes of a saturation process. We derive the empty clause
which means that the initial set of clauses is unsatisfiable. Or, the procedure stops
without deducing the empty clause which means that the initial set of clauses is
satisfiable. The third possibility is that the procedure does not terminate which
means that the initial set of clauses is satisfiable. Only the first two outcomes
are useful for applications. Consequently we want to restrict nontermination of
the procedure without compromising completeness. Although we can not avoid
nontermination of resolution process on all problems, due to undecidability of
first-order logic, we can narrow the class of such problems.

Let us consider the following simple example.

ExAaMPLE 2.2.1 Consider the following set of clauses S = { B(z)VA(f(x)), 7 A(z)V
A(f(x))}. It is easy to see that S is satisfiable, nevertheless the resolution process

does not terminate.
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It turns out that even for unsatisfiable sets of clauses, the straightforward ap-
proach of applying inference rules is very inefficient in the sense that we generate
a huge number of unnecessary inferences. Therefore, one of the main problems in
the area is how to restrict applicability of the inference rules while preserving the
completeness of the inference system. One of the most prominent approaches to
this problem is based on various ordering restrictions on applicability of inference
rules. Ordering restrictions and related problems will be the main topic for the

rest of this chapter.

2.3 Resolution and constraints

Ordering refinements were introduced into resolution in [Slagle 1967], who at-
tributes the idea to [Reynolds 1965]. In [Slagle 1967] orders on literals in the
clause were used to restrict applicability of resolution and factoring rules. This
idea turned out to be very productive (see e.g. [Bachmair and Ganzinger 2001]
for a comprehensive recent survey). In particular, if we consider a simplification
order > (see Definition 3.3.1) on the set of ground atoms, then the following
resolution system with ordering restrictions is complete. (To simplify the presen-
tation we omit restrictions based on selection functions and refer to [Bachmair

and Ganzinger 2001] for the general case.)

Resolution: 4 \/((é v_lﬁﬁv D

where ¢ is the most general unifier of the atoms A and B.

Restriction of applicability: For every atom C’ in C there exists a ground
substitution 7 such that Afv > C’fv. In other words, we apply this in-
ference rule only if the ordering constraint Af(z) > C'6(Z) is satisfiable.
Likewise, for every atom D' in D there exists a ground substitution o such
that Bfo = D'fc. So, in addition we require that the ordering constraint
BO(z) = D'0(z) is satisfiable.

Factoring: AVBVC

(BVv ()
where # is the most general unifier of the atoms A and B.
Restriction of applicability: For every atom C”" in C' there exists a ground

substitution v such that Af~y = C'0~. In other words, we apply this infer-
ence rule only if the ordering constraint A0(z) = C'#(z) is satisfiable.
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These ordering restrictions are powerful but to use them we need algorithms for
solving ordering constraints, (see Chapter 3 for the definition of constraints).
There are two classes of orders extensively used in automated deduction, namely
Knuth-Bendix orders and recursive path orders. The decidability of recursive path
ordering constraints is shown in [Comon 1990] and complexity results are given
in [Jouannaud and Okada 1991, Nieuwenhuis 1993, Comon and Treinen 1994]. In
Chapter 4 we prove the decidability of Knuth-Bendix ordering constraints and
show that this problem is NP-complete for conjunctive constraints (as corollary
it is NP-complete for quantifier free constraints). It is interesting to note that
for Knuth-Bendix constraints consisting of a single inequality, as used above in
ordered resolution, there is an efficient polynomial-time algorithm solving them,
presented in Chapter 6. This is in contrast with recursive path orders, for which
it is shown that the problem of solving constraints consisting of a single inequality
is NP-complete [Comon and Treinen 1994].

Let us reconsider Example 2.2.1. Now we apply ordered resolution instead
of unrestricted resolution. For a suitable order we can have that the constraint
A(f(x)) > B(z), is unsatisfiable and therefore the procedure stops returning the
answer “satisfiable”, in contrast to the unrestricted resolution. (An example of
such an order is a Knuth-Bendix order > with parameters {|B| = 3, |A| = 1, |f| =
1; B> A > f} see Definition 3.3.8 of Knuth-Bendix orders.)

Here we also can notice that in addition to the constraint satisfaction problem,
there is a problem of choosing an appropriate order to minimize the number of
applicable rules. This problem is related to the orientability problem, which is
shown to be decidable in polynomial time for Knuth-Bendix orders see Chapters
6,7.

It turns out that it is possible to restrict resolution even further by introducing

constrained clauses, which will be discussed in the next section.

2.4 Inherited constraints

In order to restrict resolution further, instead of ordinary clauses we consider
constrained clauses which are of the form C(z) | ¢(Z), where C(Z) is a clause
and ¢() is an ordering constraint. Usually a clause is viewed as a representation
of all its ground instances C'(z)o, then a constrained clause C(z) | ¢(Z) can be

viewed as a representation of all ground C(Z)o such that the constraint ¢(z)o
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is valid. The main benefit of using constrained clauses is that we can inherit
constraints along the derivation. Now the resolution rule can be replaced with
the following rule.

CVA|T -BVD|T
(CVD))|(OCANTANTHO

Resolution with inherited constraints:

where 6 is the most general unifier of the atoms A and B and OC is the ordering
constraint imposed by this inference. Now a clause C(Z) | ¢(Z) is redundant if
constraint ¢(Z) is unsatisfiable.

Various types of constraint clauses are introduced and completeness results are
proved in [Huet 1972, Biirkert 1990, Kirchner, Kirchner and Rusinowitch 1990,
Nieuwenhuis and Rubio 1992, Nieuwenhuis and Rubio 1995]. Again, in order
to gain from constrained clauses, we need algorithms for checking solvability
of ordering constraints (see Chapter 4 for a nondeterministic polynomial time

algorithm for this problem for Knuth-Bendix orders).

2.5 First-order constraints

In resolution-based theorem proving there are important simplifications which
allow us to remove clauses from the search space. It turns out that in order
to express applicability conditions for these simplifications, we need to consider
constraints which involve first-order quantifiers. As an example we consider sub-

sumption.

Subsumption: ([Voronkov 2000]) We say that a constrained clause C(Z) | ¢(Z)

subsumes a constrained clause D(Z) | ¢(Z) if the following holds:
Va(ip(x) = yle(y) A Cly) € D(x))).

If the clause D(z) | ¢(Z) is subsumed by a clause C(z) | (z) then it
can be shown that the clause D(Z) | ¢(z) is redundant and can be removed
from the search space. In order to check whether one clause is subsumed by
another we need to solve ordering constraints involving alternation of quanti-
fiers. Unfortunately the first-order theory of recursive path orders is undecid-
able [Treinen 1990, Comon and Treinen 1997]. Recently, it was shown that
in the case of the signatures consisting of unary function symbols and con-

stants the first-order theory of recursive path orders is decidable [Narendran and
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Rusinowitch 2000]. In Chapter 5 we show that the first-order theory of the
Knuth—Bendix orders is decidable if we consider signatures consisting of unary
function symbols and constants.

Another possible application of solvability of first-order ordering constraints
is simplification of constraints. For example, consider a constrained clause C'(z) |
©(Z, 7). It might be the case that the variables § do not occur in the clause C(Z)
and therefore we want to simplify the constraint ¢(z,7) to a constraint ¢'(Z)
which does not contain variables from y. From the decidability procedure for
first-order Knuth—Bendix ordering constraints over unary signatures, we can see
that there is a representation of constraints where such redundant variables can

be eliminated.

2.6 Equational reasoning and term rewriting

Equational reasoning plays an important role in mathematics and computer sci-
ence. Most problems occurring in practical applications involve reasoning with
equality.

Formally, we are studying properties of structures defined using identities.
Although the language is restrictive we still can define a lot of interesting and
important classes of structures such as groups, rings, lattices, etc.. Let us consider

axioms of group theory:
e associativity axiom: (zoy)oz~xo(yoz),
e left-unit axiom: eox ~ x,
e left-inverse axiom: i(x) ox ~e.

In many situations we are interested in the following question: given a set of
axioms and an equality ¢ ~ s, is t ~ s valid in all structures satisfying these
axioms (e.g. is i(x o y) = i(y) o i(x) valid in all groups)? In other words, does
the given equality logically follow from the axioms? One way to check it, is to
transform terms ¢ and s by replacing equal subterms using the axioms, and wait
until ¢ will be syntactically equal to s. In fact, this method is sound and complete
by Birkhoff’s theorem (see e.g. [Baader and Nipkow 1998]), i.e., if the equality
t ~ s follows from the axioms, then exhaustively applying transformations as

above we will deduce syntactically identical terms in a finite number of steps.
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Unfortunately this method has two major drawbacks. First, for a given set of
axioms we cannot predict whether the algorithm terminates for every equality
t ~ s. More importantly, this algorithm is hopelessly inefficient. For example
if we want to prove that (x o i(y)) oy ~ x follows from the axioms of group
theory, then among other deduced equalities we obtain {(z o (e 0 i(y))) oy =~
z,(zoi(y))o(eoy) ~eox, (xoileoy))o(eoy)~x)...} (using left-unit axiom),
which have nothing to do with the actual proof.

The main approach to overcome these problems is as follows. We represent
axioms as rewrite rules and apply them only in one direction. Now in place of
axioms we have term rewrite rules. For example a possible term rewriting system

for groups is as follows.
e associativity rule: (zoy)oz —zo(yoz2),
e left-unit rule: eox — 1z,
e left-inverse rule: i(z) oz — e.

The idea is to reduce a given term into a normal form using these rewrite rules.
Then, if our term rewriting system satisfies certain properties, we can guarantee
that this rewriting process will always terminate and produce a unique normal
form for each term. As a consequence, the problem of checking whether a given
equality follows from the axioms becomes simple: we produce normal forms of
corresponding terms and check syntactic identity of normal forms. This approach,
called term rewriting, was introduced in the seminal paper of Knuth and Bendix
[1970] and has been intensively studied and developed during the last 30 years.
For example, consider again the equality (zoi(y))oy =~ x. The only applicable
rule is the associativity rule which produces z o (i(y) o y) ~ z, at the next step
the only applicable rule is the left-inverse rule which produces x o e ~ x, now
the only applicable rule is the left-unit rule which proves the equality producing
x =~ x. Although the term rewriting system above is sound, it is incomplete, i.e.,
not all equalities which follow from the axioms of group theory can be proved
by this term rewriting system. For example x o i(x) ~ e is a logical consequence
of group theory, but cannot be proved by this term rewriting system (none of
the rules is applicable). Therefore a natural question to ask is what are the
properties of term rewriting systems which guarantee that the term rewriting

system is complete, i.e., can prove all logical consequences? These properties
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are termination and confluence. Termination guarantees that there is no infinite
sequences of rewritings and confluence guarantees that if we can rewrite a given
term into two different ones then we can join these rewrites. If a term rewriting
system is confluent and terminating, then every term can be rewritten into a
unique normal form. As a consequence, every equality can be proved or disproved
by rewriting. Therefore, termination is one of the crucial properties of term
rewriting systems. Moreover, it turns out that confluence is decidable if our term
rewriting system is terminating. In general, termination of rewriting systems is
undecidable (see e.g. [Baader and Nipkow 1998]), but in many practical cases we
can prove termination using orientability of term rewriting systems by reduction
orders. In fact, if our term rewriting system can be oriented using a reduction
order then it is terminating. Let us define the orientability problem. Let > be
any reduction order on ground terms and [ — r be a rewrite rule. We say that >
orients [ — r, if for every ground instance I — 7’ of [ — r we have I’ > r’. We

say that > orients a term rewriting system R if it orients every rewrite rule in R.

Orientability problem (TRS): Given a term rewriting system R check whether

there exists a reduction order = which orients R.

Knuth-Bendix orders and recursive path orders are two major classes of orders
that can be used to show termination of term rewriting systems. For recursive
path orders the orientability problem is computationally difficult, in particular it
is NP-hard and co-NP-hard [Krishnamoorthy and Narendran 1985, Comon and
Treinen 1994]. We show that for Knuth-Bendix orders the orientability prob-
lem can be solved in polynomial-time, in particular we show that this problem
is P-complete (Chapter 6). Let us note that there are powerful extentions of
termination analysis based on orientability, by considering dependency relation
between term rewrite rules, focusing only on rules that can start a nonterminating
sequence of rewrites (see [Arts and Giesl 2000]).

The term rewriting technique for equational reasoning can be integrated into
resolution-based theorem proving as shown in the next section. Let us men-
tion that term rewriting systems are already expressive enough to be used in
verification (see e.g. [Arts and Giesl 2001, Hoe and Arvind 1999]) where cer-
tain specifications are represented as term rewriting systems. Again, termination

plays a crucial role there.
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2.7 Introducing equality into resolution

The equality predicate is used in many applications and consequently it is impor-
tant to introduce it into resolution calculus. One way to do this is by introducing
equality axioms. Indeed, the equality predicate ~ can be axiomatized by the

following set of axioms

o reflexivity axiom: x ~ x;

symmetry axiom: r >~y Dy ~ x;

transitivity axiom: >~ yAy >~z D x =~ z;

function substitution axioms: x; ~ y; A ... Az ~ Yy, D f(z,...,2,) =

f(y1,. .., yn), for every function symbol f;

predicate substitution axioms: z; ~ y; A ... Ay =~ yp A P(21,...,2,) D

P(y1,--.,yn), for every predicate symbol P.

Suppose that we want to prove a theorem containing equality, then we can try
to deduce it from the equality axioms above using resolution system. However,
this would lead to a combinatorial explosion due to the universal applicability of
the equality axioms.

In order to overcome these problems it has been suggested to build equality
into resolution calculus via special rules. Such a rule, called paramodulation, was
introduced in [Robinson and Wos 1969].
s~tvC, L'V

(L[t]vCy Vv Cy)0

where 0 is the most general unifier of s and s.

Paramodulation:

Robinson and Wos [1969] proved completeness of the system consisting of res-
olution, factoring and paramodulation in the presence of some addition axioms,
called function reflexivity axioms. Later Brand [1975] proved that resolution,
factoring and paramodulation is complete even without function reflexivity ax-
ioms. Nevertheless, unrestricted application of paramodulation is still very inef-
ficient. Recent research has been aiming at various restrictions of applicability of
paramodulation. One of the most prominent approaches is introducing ordering
restrictions where we replace “bigger” terms by “smaller” ones, with respect to

the given simplification order. The main idea goes back to term rewriting. Given
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a simplification order >, we can replace paramodulation with ordered paramod-
ulation as follows.
s~tvC, L[V,

(LIt] v CyLVv )0 7

where 0 is the most general unifier of s’ and s.

Ordered paramodulation:

Restriction of applicability:

e s’ is not a variable;

e there exists a ground substitution v such that sfy > t6~.

Ordered paramodulation was introduced and studied in [Peterson 1983, Hsiang
and Rusinowitch 1986] where completeness results are proved. Let us refer to
[Nieuwenhuis and Rubio 2001] for a recent comprehensive survey of state-of-the-
art refinements of the paramodulation calculus.

Here we can observe that if an order > is such that for all ground substitutions
o we have so > to then we can apply paramodulation rule only when we replacing
instances of s by instances of ¢ but not vice versa. This is a desirable restriction
of applicability. Now we are facing a problem of how to choose an order such that
equalities occurring in the set of clauses would be oriented by this order. This
is the orientability problem for sets of equalities, which can be stated as follows.
We say that > orients an equality s >~ t, if it orients either the rewrite rule s — ¢
or the rewrite rule t — s. The orientability problem for systems of equalities is a
problem of determining whether there exists a simplification order which orients a
given system of equalities. A straightforward algorithm for checking orientability
of systems of equalities would be to try all possible orientations of equalities and
apply an orientability algorithm for term rewriting systems. Such an algorithm
would require to test an exponential number of possible orientations of equalities.
In Chapter 7 we show how to overcome this problem for Knuth-Bendix orders,
presenting a polynomial time algorithm for checking orientability of systems of
equalities. In some cases orientation of some subsystem of equalities is desirable to
be fixed in advance. For example, if we know which orientation of the group theory
axioms can lead to a convergent term rewriting system, we might require that
this subsystem be oriented in this particular way. So the general statement of the
orientability problem is as follows: given a system of equalities and term rewrite

rules, determining whether there exists a simplification order which orients this



2.7 Introducing equality into resolution 24

system. In Chapter 7 we show that this problem can also be solved in polynomial
time for Knuth-Bendix orders.

A further refinement of ordered paramodulation is maximal paramodulation.

s~tVvCy L[s'VCy
(L[] v Cy Vv Cy)o

where 6 is the most general unifier of s’ and s.

Maximal paramodulation:

Restriction of applicability:

1. s’ is not a variable;

2. there exists a ground substitution v such that sfy > t6;
3. L[s']0 is maximal w.r.t. > in (L[s'] V C3)#;
4

. (s ~ t)f is maximal w.r.t. > in (s ~ ¢V C})#.

Similar to resolution we can inherit constraints along the derivations without
loosing completeness (see [Nieuwenhuis and Rubio 1995]). This imposes stronger
restrictions on applicability of rules. Thus, we can make use of both orientability
and constraint solving algorithms.

The rules described so far were inference rules, so every application of such a
rule produces a new clause, therefore enlarging the search space. For efficiency
reasons, another type of rules, so-called simplification rules, are of great impor-
tance. Simplification rules allow us to replace clauses with “simplified” ones. One

of the most popular simplification rules for equality reasoning is demodulation.

s~t |L[s]vC
(L[t] v C)8

Demodulation:

where s’ = s0.

Applicability: sy > tfy for every ground substitution ~.

After application of the demodulation the clause in the frame will be removed
from the search space. As a consequence we want to orient equations in order to

simplify clauses. For this, we can again employ an orientability algorithm.
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2.8 Building in equational theories

One disappointing feature of the term rewriting approach is that some important
axioms like commutativity can be oriented by no simplification ordering. To cope
with this problem rewriting modulo theories has been devised, where we rewrite
equivalence classes generated by equational theory rather than individual terms.
A general approach is to partition a given set of equational axioms into a set
of rewrite rules R which induces a rewrite relation on terms — g, and a set of
equations E which induces an equivalence relation on terms =g. We say that a
term ¢ R/E-rewrites in one step to a term t' (and denote this by ¢ —p/g t') if
there exists a term s E-equivalent to ¢ and a term s’ E-equivalent to ¢ such that
t rewrites to t' by —g. In other words ¢ — g/ t' if t =p s[lo] and t' = s[ro] for
a term s and a rewrite rule [ — r in R. We say that a term ¢ is in a normal form
if we cannot R/E-rewrite it. Now we can try to decide equational consequences
of the the given set of axioms by normalizing terms w.r.t. R/FE-rewriting and
check whether the obtained normal forms are equivalent modulo E. For this,
similar to the ordinary rewriting, R/E-rewriting has to be terminating and every
two terms equal w.r.t. our axioms should rewrite to the same normal form. We
can prove termination of R/E-rewriting using simplification orders which satisfy
an additional property, called E-compatibility. We say that an order > is E-
compatible if it satisfies the following property: if s = ¢, s =5 s’ and t = t', then
s' = t'. The order > is called E-total, if for all ground terms s,t, if s #g t, then
either s > t or ¢ > s. Designing E-compatible simplification orders has been an
active research area.

Among various equational theories, theories axiomatized by the axioms of as-
sociativity and commutativity, so-called AC-theories, play a special role. Such
theories very often occur in applications and require special treatment in auto-
mated systems. AC-reasoning based on AC-rewriting has been integrated into
paramodulation framework in [Rusinowitch and Vigneron 1995, Nieuwenhuis and
Rubio 1997]. A crucial ingredient in these approaches is an AC-compatible AC-
total simplification order. Existence of an AC-compatible AC-total simplification
order has been an open problem for many years and was finally solved by Naren-
dran and Rusinowitch [1991] who applied this order to show that any ground AC-
theory can be represented as a finite convergent rewriting system. Unfortunately

this order was defined only for ground terms which restricts its applicability.
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Recently there has been a huge amount of research devoted to designing AC-
compatible AC-total simplification orders, mainly by modifying recursive path
orders. Since Knuth-Bendix orders are widely used in automated deduction, it is
important to find AC-compatible variants of it. In Chapter 8 we present a family
of AC-compatible Knuth-Bendix orders. These orders enjoy attractive features of
the standard Knuth-Bendix orders, such as polynomial-time algorithm for term
comparison and computationally efficient approximations based on weight com-

parisons.



Chapter 3

Ordering restrictions:

preliminaries

In this chapter we introduce basic definitions like orders on sets and multisets
(Section 3.2), orders on terms (Section 3.3) and finally notion of ordering con-
straints (Section 3.4) where we also overview some known results on solving or-

dering constraints.

3.1 Term algebras

The main objects we will be working with are terms over a finite signature. A
signature is a finite set of function symbols with assigned arities (nonnegative
integers) e.g. X = {g(,), h(),c} is a signature with function symbols ¢ of arity
two, (such symbols also called binary symbols), h of arity one,(also called unary
symbols) and ¢ of arity zero (also called constants). We will denote a signature
by . Terms of the signature ¥ over a set of variables X are defined by induction
as follows, constants and variables are terms, and for each function symbol g € ¥
of a positive arity n and terms ¢y,...t, we have g(¢1,...,t,) is a term. Terms

which contain no variables are called ground terms.

DEFINITION 3.1.1 (substitution) A substitution 6 is a mapping from the set of
variables X to the set of terms. This mapping can be extended from variables
to terms in the following canonical way. For every constant ¢, 6(c) = ¢ and
for every nonconstant term g(t1,...,t,), 0(g(t1,...,t,)) = g(0(t1),...,0(t,)). In

the sequel we consider substitutions which are identity on all but finitely many
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variables. An application of a substitution € to a term ¢ will be denoted by tf. [

DEFINITION 3.1.2 Let X be a finite signature which contains at least one con-
stant. The X~term algebra TA(X) is an algebra with the domain of the set of
all ground Y—terms and the following interpretation: constants interpreted by

constants from the domain and the value of a function ¢ on terms ¢ is the term
g()- O

When the signature is clear from the context, then we say the term algebra instead
of the ¥~term algebra.

Some authors call the Y—term algebra as an absolutely free algebra (in the
class of all ¥-algebras), it means that there exists a unique homomorphism from
the term algebra into any »-algebra.

In the future we always assume that our signature contains at least one con-

stant symbol.

3.2 Orders on sets

DEFINITION 3.2.1 A partially ordered set (A, >) is a set A with a binary relation
> which is reflexive, transitive and antisymmetric. An order is called linear or
total if for any two elements a,b € A either a« > b or b > a. We say that a is
strictly greater than b, denoting a > b, if @ > b and b 2 a. An order is called

well-founded if there is no infinite decreasing chain a > b > - - -. O

Let us define multisets which is a generalization of sets (for the properties of
multisets see [Baader and Nipkow 1998]).

DEFINITION 3.2.2 A multiset M over a set A is a function M : A — N. OJ

A multiset is finite if there are only finitely many « such that M (z) > 0. We will
consider only finite multisets. We adopt a standard set notation for multisets
for example {a,a,b} denotes the multiset M = {a — 2,b — 1} and we write
a € M if M(a) > 0. The union, intersection and multiset difference are defined
as follows: (M U M) () = My(x) + My(z), (My N M) (x) = min(M,(x), My(z))
and (M;—M,)(z) = maz(0, M, (z) — My(z)).

One of the important properties of multisets is as follows: if have a total, well—
founded order on a set A then we can extend this order into a total, well-founded

order on the multisets over A.
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DEFINITION 3.2.3 Given a strict order > on a set A, we define the corresponding
multiset order on all multisets over A as follows: M >,,.; N if there exist multisets
X, Y such that the following holds:

e ) £X C M, and
e N=(M\X)UY, and
e VycYdre X x>uy.
O

We also call >,,.; as a multiset extension of >. The multiset orders were intro-
duced by Dershowitz and Manna [1979].

PROPOSITION 3.2.4 If > s a strict order then >, ts a strict order. If > is a

well-founded order then >, s a well-founded order. [

For a proof let us refer to [Baader and Nipkow 1998].

3.3 Orders on terms

One of the most general classes of orders on terms which is used in automated

deduction is so-called simplification orders introduced by Dershowitz [1979].

DEFINITION 3.3.1 A strict order > on TA(Y) is called a simplification order if

it has the following properties:

e > is monotone (or compatible with Y—operations): for all s1, s, € TA(X) and

n—ary function symbol g € ¥, 51 > so implies g(t1,..., ¢ 1,51, tix1y ...y tn) >
g(tl, cestict, SQ,tH_l, e ;tn) for all 7:, 1< < n, and all t1,... ;ti—lati—l—l; ooty €
TA(Y).

e > has a subterm property: if rs] # s, then r[s| > s.
U

One of the main properties of simplification orders is that every simplification
order is well-founded [Dershowitz 1979].

There are two subclasses of simplification orders that are widely used because
of a possibility to generate them automatically for a given set of clauses. They

are: Knuth-Bendix orders and recursive path orders.
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Let us start from the definition of recursive path orders. Recursive path orders
are generalization of lexicographic path orders introduced by Kamin and Lévy
[1980] and multiset path orders introduced by Dershowitz [1982].

DEFINITION 3.3.2 Let us fix a strict order > on X. The lexicographic path order
> o o1 TA(X) induced by > is defined as follows: g(s1, ..., Sn) >upo h(t1, ..., tm)

if one of the following conditions holds:
® S; > h(ty,....t,) for some i, 1 < i < n.
e g> hand g(sy,...,sn) >po t; foralli=1,...,m.

e g = hand g(s1,...,8,) >po t; for all & = 1,...,m and there exists j,

1< ] < m, such that s; = ti,.. ., Sj—1 = tj—l and Si >lpo t;.
U

Lexicographic path orders are simplification orders (for a proof see [Baader
and Nipkow 1998]).

REMARK 3.3.3 If our signature contains at least two non-constant function sym-
bols then there are terms with an infinite number of different terms below them

with respect to the lexicographical path order.

Proor. We illustrate the proof for the case ¥ = {g(),h(),c} and g > h the
general case is similar. It is easy to check that all terms h"(c) are strictly less

than the term g¢(c) for any natural number n. O

One of the main usage of orders in automated deduction is to replace “big”
terms by “smaller” terms. This remark shows that “small” terms in the sense of
lexicographic path orders can be arbitrarily large in the physical representation.
We will see later, Lemma 3.3.9, that for a rather large class of Knuth-Bendix
orders the number of terms below any fixed term is finite.

Let us consider multiset path orders introduced by Dershowitz [1982]. These
orders are defined on the equivalence classes over the multiset equivalence. The
multiset equivalence =,,, is the least equivalence relation such that if we have
that a term ¢ is in the equivalence class, then any term obtained by permutation

of immediate subterms of ¢ is in the same equivalence class.
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DEFINITION 3.3.4 Let us fix a strict order > on X. The multiset path order >,
on TA(Y) induced by >> is defined as follows g(s1,...,5,) >mpo A(t1,. .., tn) if

one of the following conditions holds:
® S >ppo h(t1, ... tm) Or S; =gy h(t1,. .., ty) for some i, 1 <7 <n.
e g> hand g(s1,...,8n) >mpo t; foralli=1,... m.

e g=~hand {81,...,Sn} >l {tl,...,tn}.
O

Recursive path orders on terms is a combination of lexicographical path orders
and multiset path orders. We divide our signature X into two disjoint sets >J;., and
Y- The multiset equivalence =,,,; on TA(X.; U, ) is defined w.r.t. function
symbols in ¥,,,;. That is, =, is the least equivalence relation such that if we
have that a term ¢, with top function symbol in ¥,,,;, is in the equivalence class,
then any term obtained by permutation of immediate subterms of ¢ is in the same

equivalence class.

DEFINITION 3.3.5 Let us fix a strict order > on X.
The recursive path order >,,, on TA(X) induced by > is defined as follows:
G(S15- -5 80) >mo h(ty, ..., 1) if one of the following conditions holds:

Si >rpo M(t1, .. tm) OF 8§ =mu h(t1, ..., ) for some i, 1 <i <n.

g> h and h(s1,...,sn) > ti foralli=1,...,m.

e g=nh,g€ X, and g(s1,...,8n) > ti foralli =1,...,m and there exists
j, 1 S] < m, such that s; = ti, .. -5 Sj—-1 = tj—l and Si >rpo t;.

e g=~h, g€ X, and {31,...,sn} >l {tl,...,tn}.
O

Lexicographic and multiset path orders are the special cases of recursive path
orders, when we fix ¥,, = X, ¥,,u = ¥ respectively. Recursive path orders
on terms, modulo the multiset equivalence, are well-founded, compatible with
Y —operations, and total.

Let us now define Knuth-Bendix orders on TA(X) [Knuth and Bendix 1970].
Knuth-Bendix orders is a family of orders parameterized by two parameters: a

weight function and a precedence relation.
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DEFINITION 3.3.6 (weight function) We call a weight function on ¥ any func-
tion w : ¥ — N such that (i) w(a) > 0 for every constant a € X, (ii) there exist at
most one unary function symbol f € ¥ such that w(f) = 0. Given a weight func-
tion w, we call w(g) the weight of g. The weight of any ground term ¢, denoted
|t], is defined as follows: for every constant ¢ we have |¢| = w(c) and for every
function symbol g of a positive arity we have |g(t1,...,t,)| = w(g)+|t1|+. . .+|tn]-
0

DEFINITION 3.3.7 (precedence relation) A precedence relation on X is any total
order > on . A precedence relation > is said to be compatible with a weight
function w if, whenever f is a unary function symbol f of weight zero, f is the

greatest element w.r.t. >>. 0

These conditions on the weight function and precedence relation ensure that
every Knuth-Bendix order is a simplification order total on ground terms (see,
e.g. [Baader and Nipkow 1998]).

Let us consider a weight function w on ¥ and a precedence relation > on X,

compatible with w.

DEFINITION 3.3.8 The Knuth-Bendiz order on TA(X) is the binary relation

~kpo defined as follows. For any ground terms ¢ = g(ty,...,t,) and s =
h(s1,...,sk) we have t > gpo s if one of the following conditions holds:
L |t} > |s];

2. |t| = |s|] and g > h;

3. |t| =|s|, g = h and for some 1 <i < n we have t; = s1,...,t;,_ 1 = s; 1 and

t; =kBO Si-
]

Note that every Knuth-Bendix order is a total monotonic well-founded order,
see, e.g. [Baader and Nipkow 1998|.

For a unary function symbol f and a term ¢, let f™(¢) denote a term obtained
by m applications of f to t. Let us prove the following simple properties of weight

functions which we will use later.

LEMMA 3.3.9 FEvery weight function satisfies the following properties.
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1. The weight of every term is positive.

2. If ¥ contains the unary function symbol of the weight 0, then, for every

weight, either there are no terms of that weight or there are infinitely many.

3. If a term s is a subterm of t then either |t| > |s| or |t| = |s| and t has the
form f™(s) for some m > 0, where f is the unary function symbol of the

weight 0.

4. If X contains no unary function symbol of the weight 0, then for every

natural number n there is only a finite number of terms of the weight n.

Proor. First property follows from the fact that the weight of every constant is
positive.

Denote the unary function symbol of the weight 0 as f. Then the second
property follows from the fact that if we have a term ¢ then for every m € N the
term f™(¢) has the same weight as ¢.

To prove the last two properties let us show that if we consider a nonconstant
term t with a top function symbol different from f then the weight of ¢ is strictly
greater than the weight of any of its immediate subterms.

Indeed, if we consider a term t = g(ty,...,t,) where g is different from f,

then |g(t1,...,t,)| = w(g) + |t1| + - - -+ |t,] and all possible cases are as follows:

e either w(g) > 0 and |t| > |t1]|+ - -+[t,| and therefore |t| > |t;| for 1 <i < n,

or

e w(g) =0 and n > 1 so we have |t| = |t;| + ... + |t,|, and since the weight

of every term is positive we have that |t| > |t;] for 1 <7 < n.

From this, the third property follows immediately. To show the last property
consider a signature without the unary function symbol of zero weight. From the
observation above we have that in this case each term has depth less or equal
than its weight. Since there are only finite number of terms of a fixed depth we
conclude that for each weight there is only a finite number of terms of this weight.
OJ

From this lemma it follows that if our signature contains no unary function
symbol of weight zero then there is only a finite number of terms below each term.

The following example shows that if our signature contains the unary function
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symbol of the weight 0 and a binary functional symbol then there exists a term

t with an infinite number of terms below it of the same weight as ¢.

EXAMPLE 3.3.10 Let ¥ = {f(),9(,),c1} and f > g > ¢; and w(f) = 0. Then
g(f(c1),c1) =kpo g(c1, f*(c1)) for any natural number n. Moreover we have that

w(g(f(c1),c1)) = w(g(er, f*(c1))) for any natural number n. O

3.4 Ordering constraints

In this section we describe types of ordering constraints that we will work with.
Let us fix a signature ¥ which induces the term algebra TA(X) and let us
fix an order on this term algebra. We denote TA. (X) the structure of the term

algebra with the order > and we call this structure an ordered term algebra.

DEFINITION 3.4.1 A congjunctive ordering constraint (or just a constraint ) is a

conjunction of atomic formulas of the language of TA- (X). O

For example, if we have ¥ = {h(, ), g(), ¢} then h(x, g(y)) > cAg(z) > h(g(z),y)A
9(g9(y)) = g(g(c)) is a constraint with free variables x, y.

DEFINITION 3.4.2 A quantifier—free constraint is a quantifier—free formula of the
language of TA- (X). O

For example, if we have ¥ = {h(, ), g(), ¢} then (h(g(y),2) > z) = —=(2 = g(m) V

z > ¢g(c)) is a quantifier—free constraint.

DEFINITION 3.4.3 A first-order constraint is a first order formula of the language
of TAL (). O

For example, if we have ¥ = {A(, ), g(), ¢} then Vy3z(h(g(y),z) > 2 Ay >c) is a
first-order constraint.

A constraint ¢() is satisfiable in the ordered term algebra TA. (X) if TAL (X)) |
Az¢ () i.e. there exist ground terms ¢ such that the sentence ¢(¢) is valid in our
ordered term algebra. Let us fix an ordered term algebra TA. (X) then the con-
straint satisfiability problem is a problem to decide for a given constraint whether
it satisfiable in TA- (X) or not. A solution to a constraint is a substitution which
makes this constraint valid. It is clear, that the quantifier—free (first-order) con-
straint satisfiability problem is equivalent to the problem of the decidability of
the existential (first—order) theory of the ordered term algebra.
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3.5 Solving ordering constraints

In this section we overview some results on solving recursive path ordering con-
straints.

Term algebras are rather well-studied structures. Malcev [1961] was the first to
prove the decidability of the first-order theory of term algebras. Other methods
of proving decidability were developed by Comon and Lescanne [1989], Kunen
[1987], Belegradek [1988] and Maher [1988]. The complexity of the first-order

theory of any term algebra over a signature containing a binary function symbol

is nonelementary, i.e. not bounded by any tower of exponents 2 (see [Ferrante
and Rackoff 1979]).

If we introduce a binary predicate into a term algebra, then one can obtain
a richer theory. Term algebras with the subterm predicate have an undecidable
first—order theory and a decidable existential theory [Venkataraman 1987].

Let us consider term algebras with lexicographic path orders.

THEOREM 3.5.1 [Comon 1990] The quantifier—free constraint satisfiability prob-

lem for lexicographic path orders is decidable. 0

Later, it was shown that this problem is NP—complete.

THEOREM 3.5.2 [Nieuwenhuis 1993] The quantifier—free constraint satisfiability
problem for lexicographic path orders is NP—complete. O

Let us prove a simple result (similar to the result from [Nieuwenhuis 1993])

from which NP-hardness will follow.

PROPOSITION 3.5.3 For any structure S with at least two elements the following
holds.

1. The problem of deciding whether a given existential formula is valid in S is

NP-hard.

2. The problem of deciding whether a given first-order formula is valid in S s

PSPACE-hard.

PRrOOF. It is well-known that the problem of satisfiability of propositional formu-
las is NP-complete and the problem of satisfiability of quantified propositional
formulas is PSPACE-complete (see e.g. [Papadimitriou 1994]). We show how
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to reduce satisfiability of propositional formulas to satisfiability of quantifier-free
constraints in .S and satisfiability of quantified propositional formulas to to sat-
isfiability of first-order constraints in S.

We transform any propositional formula P into a quantifier-free constraint C'
as follows. For any propositional variable X occurring into P we fix a pair of
new variables z1,x,. Any occurrence of a propositional variable X we replace
with the formula x; = x5. It is easy to check that the obtained constraint C' is
satisfiable in S if and only if P is satisfiable.

For quantified propositional formulas, in addition to the previous transfor-
mations, we replace each propositional quantifier X with first-order quantifiers
daydx,, likewise VX we replace with Va1V, It is easy to check that the obtained
first-order constraint is satisfiable in .S if and only if the initial propositional quan-
tified formula is satisfiable. O

COROLLARY 3.5.4 If a term algebra contains at least two elements then the
quantifier-free constraint satisfiability problem is NP-hard and first-order con-
straint satisfiability problem is PSPACE-hard, for any order. O

It turns out that for lexicographic path orders even the problem of satisfiability
of the atomic formulas is NP-complete [Comon and Treinen 1994].

Although the constraint satisfiability problem for lexicographic path orders is
in NP, a practical algorithm was presented only in [Nieuwenhuis and Rivero 1999].

Let us consider first-order lexicographic path ordering constraints. Treinen
[1990] proved the undecidability of the constraint satisfiability problem for a gen-
eralization of lexicographical path orders. He used a reduction of the Post cor-
respondence problem to the first-order constraint satisfiability problem. Later,
Comon and Treinen [1997] proved that the constraint satisfiability problem for
lexicographic path orders is undecidable again using a reduction of the Post cor-

respondence problem.

THEOREM 3.5.5 [Comon and Treinen 1997] Let us fix a signature ¥ and an
order > on X such that there exists a binary function h minimal with respect to
>.This order induces a lexicographic order = on TA(X) such that the first-order
theory of the ordered term algebra TA, (X) is undecidable. 0

It turns out that if we consider a signature which consists only of constants
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and unary function symbols then the problem of satisfiability of first—order lexico-
graphic path ordering constraints is decidable [Narendran and Rusinowitch 2000].

Let us consider recursive path ordering constraints. The quantifier-free con-
straints satisfiability problem is shown to be decidable [Jouannaud and Okada
1991] and NP—complete [Narendran et al. 1998]. To our knowledge it is unknown
whether the satisfiability problem of first-order multiset path ordering constraints

is decidable or not.



Chapter 4

Knuth-Bendix constraint solving

is NP-complete

This chapter is based on papers [Korovin and Voronkov 2000, Korovin and
Voronkov 2001a].

In this chapter we present a nondeterministic polynomial-time algorithm for
solving Knuth-Bendix ordering constraints, and hence show that the problem
is contained in NP for every term algebra with a Knuth-Bendix order. As a
consequence, we obtain that the existential first-order theory of any term algebra
with a Knuth-Bendix order is NP-complete too. Let us note that the problem of
solvability of a Knuth-Bendix ordering constraints consisting of a single inequality
can be solved in polynomial time see Chapter 6.

This chapter is structured as follows. In Section 4.2 we introduce the notion
of isolated form of constraints and show that every constraint can be effectively
transformed into an equivalent disjunction of constraints in isolated form. This
transformation is represented as a nondeterministic polynomial-time algorithm
computing members of this disjunction. After this, it remains to show that
solvability of constraints in isolated form can be decided by a nondeterminis-
tic polynomial-time algorithm. In Section 4.3 we present such an algorithm using
transformation to systems of linear Diophantine inequalities over the weights of
variables. Finally, in Section 4.4 we complete the proof of the main result and

present some examples.
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4.1 Preliminaries

In this chapter, f will always denote a unary function symbol of the weight 0.
In the sequel we assume a fixed weight function w on ¥ and a fixed precedence
relation > on Y, compatible with w.

The main result of this chapter is the following.

Theorem 4.4.2: The existential first-order theory of any

term algebra with the Knuth-Bendixz order in a signature

with at least two symbols is NP-complete.

To prove this result, we introduce a notion of Knuth-Bendix ordering con-

straint and show the following.

Theorem 4.4.1: For every Knuth-Bendiz order, the
problem of solving ordering constraints is contained in

NP.

We also show that the systems of linear Diophantine equations and inequalities
can be represented as ordering constraints for some Knuth-Bendix orders, and

as a corollary we obtain the following.

Theorem 4.4.4: For some Knuth-Bendiz orders, the

problem of solving ordering constraints is NP-complete.

Some authors [Martin 1987, Baader and Nipkow 1998] define Knuth-Bendix
orders with real-valued weight functions. We do not consider such orders here,
because for real-valued functions even the comparison of ground terms can be un-
decidable (see Example 4.4.7 in Section 4.4). Sometimes it is useful to consider
constraint solving problem for the so-called extended signature semantics, where
we look for solutions to the constraints in some possible extension of the signature.
For recursive path orders this problem is studied in [Nieuwenhuis 1993, Nieuwen-
huis and Rivero 1999]. A possible direction for future research is to apply the
methods of this chapter for solving Knuth-Bendix ordering constraints in the
extended signature semantics.

The proof of Theorem 4.4.2 will be given after a series of lemmas. The idea
of the proof is as follows. First, we will make TA(X) into a two-sorted structure

by adding the sort of natural numbers, and extend its signature by

1. the weight function |- | on ground terms;
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2. the addition function + on natural numbers;

3. the Knuth-Bendix order > po on ground terms.

Given an existential formula of the first-order theory of a term algebra with
the Knuth-Bendix order, we will transform it step by step into an equivalent
disjunction of existential formulas of the extended signature. The main aim of
these steps is to replace all occurrences of > o by linear Diophantine inequalities
on the weights of variables. After such a transformation we will obtain existential
formulas consisting of linear Diophantine inequalities on the weight of variables
plus statements expressing that, for some fixed natural number N, there exists at
least N terms of the same weight as |z|, where z is a variable. We will show how
these statements can be expressed using systems of linear Diophantine inequalities
on the weights of variables and then use the fact that the decidability of systems
of linear Diophantine equations is in NP.

We denote by TA*(X) the following structure with two sorts: the term al-
gebra sort and the arithmetical sort. The domains of the term algebra sort and
the arithmetical sort are the sets of ground terms of ¥ and natural numbers,

respectively. The signature of TAT(X) consists of

1. all symbols of ¥ interpreted as in TA(X);

2. symbols 0, 1, >, + having their conventional interpretation over natural num-

bers;

3. the binary relation symbol > ko on the term algebra sort, interpreted as
the Knuth-Bendix order;

4. the unary function symbol |- |, interpreted as the weight function mapping

terms to numbers.

When we need to distinguish the equality = on the term algebra sort from the
equality on the arithmetical sort, we denote the former by =14, and the latter
by =n.

We will prove that the existential theory of TA™(X) is in NP, from which
the fact that the existential theory of any term algebra with the Knuth-Bendix
order belongs to NP follows immediately. We consider satisfiability, validity,

and equivalence of formulas with respect to the structure TA*(X). We call a
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constraint in the language of TAT(X) any conjunction of atomic formulas of this

language.

LEMMA 4.1.1 The ezistential theory of TAY(X) is in NP if and only if so is the

constraint satisfiability problem.

PRrROOF. Obviously any instance A of the constraint satisfiability problem can
be considered as validity of the existential sentence dx; ...z, A, where z1,...,2,
are all variables of A, so the “only if” direction is trivial.

To prove the “if” direction, take any existential formula Jzq,...,z,A. This
formula is satisfiable if and only if so is the quantifier-free formula A. By convert-
ing A into disjunctive normal form we can assume that A is built from literals

using A, V. Replace in A
1. any formula —s > ko t by s =ra t V't >kpo S,
2. any formula —s =15 t by s =kpo t V't >=kpo S,
3. any formula —p > ¢ by p=nqV q > p,
4. any formula —-p =y q by p>qV q>p,

and convert A into disjunctive normal form again. It is easy to see that we obtain
a disjunction of constraints. The transformation gives an equivalent formula since
both orders > xpo and > are total.

It follows from these arguments that there exists a nondeterministic polynomial-
time algorithm which, given an existential sentence A, computes on every branch
a constraint C; such that A is valid if and only if one of the constraints C; is
satisfiable. U

A substitution € is called grounding for an expression C' (i.e., term or con-
straint) if for every variable x occurring in C' the term 6(z) is ground. Let 6 be
a substitution grounding for an expression C. We denote by C'f the expression
obtained from C' by replacing in it every variable x by #(x). A substitution 6
is called a solution to a constraint C' if # is grounding for C' and C'f is valid in
TAT(Y).

In the sequel we will often replace a constraint C(z) by a formula A(z,7)
containing extra variables 7 and say that they are “equivalent”. By this we mean
that TAT(X) | VZ(C(Z) <> 3gA(Z,7)). In other words, the set of solutions to C

is exactly the set solutions to A projected on z.
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4.2 Isolated forms

We are interested not only in satisfiability of constraints, but also in their solu-
tions. Our algorithm will consist of equivalence-preserving transformation steps.
When the signature contains no unary function symbol of the weight 0, the trans-
formation will preserve equivalence in the following strong sense. At each step,
given a constraint C'(z), we transform it into constraints Ci(z,7),...,Ch(Z,7)
such that for every sequence of ground terms ¢, the constraint C'(¢) holds if and
only if there exist £ and a sequence of ground terms § such that Cy(¢, §) holds.
In other words, the following formula holds in TA™*(X):

C(z) < g(C1(Z,9) V ...V Cu(z,7)).

Moreover this transformations will be presented as a nondeterministic polynomial-
time algorithm which computes on every branch some C;(z, §), and every C;(z, )
is computed on at least one branch. When the signature contains a unary func-
tion symbol of the weight 0, the transformation will preserve a weaker form of
equivalence: some solutions will be lost, but solvability will be preserved. More
precisely, we will introduce a notion of an f-variant of a term and show that the

following formula holds:

C(z) < gz (f-variant(z,z) A (C1(Z,9) V ...V Cu(Z,79))), (4.1)

where f-variant(z, z) expresses that Z and Z are f-variants.

In our proof, we will reduce solvability of Knuth-Bendix ordering constraints
to the problem of solvability of systems of linear Diophantine inequalities on
the weights of variables. Condition 1 in Definition 3.3.8 of the Knuth-Bendix
order, [t| > |s| has a simple translation into a linear Diophantine inequality, but
conditions 2 and 3 do not have. So we will split the Knuth-Bendix order in
two partial orders: >, corresponding to condition 1 and >, corresponding to
conditions 2 and 3. Formally, we denote by ¢ >, s the formula [t| > |s| and by
t >ez s the formula |t| =y |s| At =kpo s. Obviously, t; =kpo t» if and only if
t1 >lex t2 V11 =4 ta. So in the sequel we will assume that > gpo is replaced by
the new symbols >, and >, .

We use 1 =xgo T2 =kBO ... =KBO Tn to denote the formula z; =xpo

Lo N Ty =go T3 N ... \NTp_1 >=kBo Tpn, and similar for other binary symbols in



4.2 Isolated forms 43

place of > kpo.

A term ¢ is called flat if ¢ is either a variable or has the form g(xy, ..., z,),
where g € X, m > 0, and xy,..., 7, are variables. We call a constraint chained
if

1. it has a form t,#t2# ... #t,, where each occurrence of # is >, >z O

=TA;
2. each term ¢; is flat;

3. if some of the t;’s has the form g(xq,...,z,), then z1,..., x, are some of
the ¢;’s.

For example ¢(z,y) >w f(Y) =iz ¥ >w T =Ta z is a chained constraint.

Denote by L the logical constant “false”.

LEMMA 4.2.1 Any constraint C' is equivalent to a disjunction C; V ...V Cy of
chained constraints. Moreover, there exists a nondeterministic polynomial-time
algorithm which, for a given C, computes on every branch either L or some C;;

and every C; is computed on at least one branch.

Proor. First, we can apply flattening to all terms occurring in C' as follows. If
a nonflat term ¢g(¢1,...,t,) occurs in C, take any i such that ¢; is not a variable.
Then replace C' by v = t; A C', where v is a new variable and C’ is obtained
from C by replacing all occurrences of ¢; by v. After a finite number of such
replacements all terms will become flat.

Let s,t be flat terms occurring in C' such that no comparison s#t occurs in
C. Using the valid formula s >, tV s > t VS =1a t VI >y SV T = S We can

replace C' by the disjunction of the constraints

S>wt/\0, 8>lext/\0, SZTAt/\C,
tw sANC, t =1 sNC.

By repeatedly doing this transformation we obtain a disjunction of constraints
C1 V...V Cy in which for every i € {1,...,k} and every terms s,¢ occurring in
C;, some comparison constraint s#t occurs in Cj.

To complete the proof we show how to turn each C; into a chained constraint.
Let us call a cycle any constraint s,#ss# ...#s,#s1, where n > 1. We can

remove all cycles from C; using the following observation:
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1. if all # in the cycle are =14, then s, #s; can be removed from the constraint;

2. if some # in the cycle is >, or >, then the constraint C; is unsatisfiable.

After removal of all cycles the constraint C; can still be not chained because it
can contain transitive subconstraints of the form s;#soF ... #s, A s1#s,, n > 2.
Then either C; is unsatisfiable or s;#s, can be removed using the following

observations:

1. Case: s1#s, 15 S1 >y Sp. 1f some # in s1#SoF . . . #5, 1S -, then s; =, s,
follows from sy #s9# ... # sy, otherwise s1#s9# ... #s, implies [s1| = |sy|

and hence C; is unsatisfiable.

2. Case: s1#5S, 1S S1 »iex Sp. 1f some # in s1#so# ... #5, 1S =, then C; is
unsatisfiable. If all # in sy#s2# ...#s, are =14, then C; is unsatisfiable
too. Otherwise, all # in s1#so# . .. #s, are either >, or =14, and at least

one of them is ;. It is not hard to argue that s; >, s, follows from

S1#SoFE .. . FESp.

3. Case: s1#s, s S1 =1a Sp. If all # in s;#seF ... F#s, are =1a, then

S1 =7a Sy, follows from s;#so# ... #s,, otherwise C} is unsatisfiable.

It is easy to see that after the removal of all cycles and transitive subconstraints
the constraint C; becomes chained.

Note that the transformation of C' into the disjunction of constraints C; V...V
C} in the proof can be done in nondeterministic polynomial time in the following
sense: there exists a nondeterministic polynomial-time algorithm which, given C,
computes on every branch either | or some C};, and every C; is computed on at

least one branch. O

We will now introduce several special kinds of constraints which will be used in
our proofs below, namely arithmetical, triangle, simple, and isolated.

A constraint is called arithmetical if it uses only arithmetical relations =y and
>, for example |f(z)| > |a| + 3.

A constraint y; =1a t1 A ... Ay, =T1a t, is said to be in triangle form if

1. y1,...,y, are pairwise different variables, and

2. for all j > i the variable y; does not occur in ¢;.
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The variables ¥y, ..., y, are said to be dependent in this constraint.

A constraint is said to be simple if it has the form

T11 > lex T12 ™ lex - - - ™ lex T1in,g Ao A Tkl > lex Tk2 ™ lex -+ - > lex xknk;

where 11, ..., Tk, are pairwise different variables.

A constraint is said to be in isolated form if either it is L or it has the form
Ca,rith A Ctriang A Csimp:

where Cyy, is an arithmetical constraint, Ciigng is in triangle form, and Cyjpy, is
a simple constraint such that no variable of Cj;y, is dependent in Clign,g.

Our decision procedure for the Knuth-Bendix ordering constraints is designed
as follows. By Lemma 4.2.1 we can transform any constraint into an equivalent
disjunction of chained constraints. Our next step is to give a transformation of
any chained constraint into an equivalent disjunction of constraints in isolated
form. Then in Section 4.3 we show how to transform any constraint in isolated
form into an equivalent disjunction of systems of linear Diophantine inequalities
on the weights of variables. Then we can use the result that the decidability of
systems of linear Diophantine inequalities is in NP.

Let us show how to transform any chained constraint into an equivalent dis-
junction of isolated forms. The transformation will work on the constraints of

the form

Ccham A Carith A CtTiang A Csimp; (42)
such that
1. Carith, Ciriang, Csimp are as in the definition of isolated form;
2. Cepain 18 @ chained constraint;

3. each variable of C¢p44, neither occurs in Cyypy, nor is dependent in Clrigng-

We will call such constraints (4.2) working. Let us call the size of a chained
constraint C' the total number of occurrences of function symbols and variables
in C'. Likewise, the essential size of a working constraint is the size of its chained

part Ccham .
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At each transformation step we will replace working constraint (4.2) by a
disjunction of working constraints but of smaller essential sizes. Evidently, when
the essential size is 0, we obtain a constraint in isolated form.

Let us prove some lemmas about solutions to constraints of the form (4.2).

Note that any chained constraint is of the form

tn#tiott .. #lim,
~w
(4.3)
~w
te1# et - - #Fkmy,
where each # is either =15 or >, and each ¢;; is a flat term. We call a row in
such a constraint any maximal subsequence t;;#ti2# . . . #tiy, in which >, does
not occur. So constraint (4.3) contains k rows, the first one is t11#t 12 . . . #t1im,
and the last one tg #to# - . . #tem, . Note that for any solution to (4.3) all terms

in a row have the same weight.

LEMMA 4.2.2 There exists a polynomial-time algorithm which transforms any
chained constraint C' into an equivalent chained constraint C' such that the size
of C" is not greater than the size of C, either C" is L or of the form (4.3), and
C" has the following property. Suppose some term of the first row ty; of C' is a

variable y. Then either
1. y has ezactly one occurrence in C', namely t,; itself; or

2. y has exactly two occurrences in C', both in the first row: some ty, has the
form f(y) for n < j, and w(f) = 0; moreover in this case there exists at

least one =, between ti, and ti;.

PROOF. Note that if y occurs in any term ¢(y) which is not in the first row, then
C' is unsatisfiable, since for any solution # to C' we have |y6| > |t(y)0], which is
impossible. Suppose that y has another occurrence in a term ¢y, of the first row.

Counsider two cases.

1. t1, coincides with y. Then either C' has no solution, or part of the first row
between ¢, and ¢;; has the form y =ro ... =ra y. In the latter case part
y =1a can be removed from the first row, so we can assume that no term

in the first row except t;; is y.



4.2 Isolated forms 47

2. t1,, 18 a nonvariable term containing y. Since 11, and y are in the same row,
for every solution # to C' we have |yf| = |t1,0|. Since ty, is a flat term, by
Lemma 3.3.9 the equality |yf| = |t1,,0| is possible only if ¢y, is f(y), n < j
and there exists at least one >, between t;, and ¢,;. Finally, if f(y) has
more than one occurrence in the first row, we can get rid of all of them but

one in the same way as we got rid of multiple occurrences of y.

Note that the transformation presented in this proof can be made in polynomial
time. It is also not hard to argue that the transformation does not increase the

size of the constraint. O

We will now take a working constraint Cepein A Clarith A Clriang N Climp, Whose
chained part satisfies Lemma 4.2.2 and transform it into an equivalent disjunction
of working constraints of smaller essential sizes in Lemma 4.2.5 below. More
precisely, these constraints will be equivalent when the signature contains no
unary function symbol of the weight 0. When the signature contains such a
symbol f, a weaker notion of equivalence will hold, see formula (4.1) on page 42.

A term s is called an f-variant of a term ¢t if s can be obtained from ¢ by a
sequence of operations of the following forms: replacement of a subterm f(r) by
r or replacement of a subterm r by f(r). Evidently, f-variant is an equivalence
relation. Two substitutions #; and 6, are said to be f-variants if for every variable
x the term x6, is an f-variant of z6,. In the proof of several lemmas below we will
replace a constraint C'(z) by a formula A(Z,y) containing extra variables y and

say that C(Z) and A(Z,y) are equivalent up to f. By this we mean the following.

1. For every substitution #; grounding for Z such that TAT(X) = C(z)6,, there
exists a substitution 6, grounding for z,y such that TA"(X) & A(z, )0,

and the restriction of 6y to = is an f-variant of 6.

2. For every substitution 6, grounding for Z, § such that TA*T(X) = A(Z, 7)0,,
there exists a substitution #; such that TA*(X) & C(z)0; and 6, is an

f-variant of the restriction of 6, to .

In other words, formula (4.1) on page 42 holds. Note that when the signature
contains no unary function symbol of the weight 0, equivalence up to f is the

same as equality of terms in TAT(Z).

LEMMA 4.2.3 Let C' = Cepain A Carith N Ciriang N\ Ciimp be a working constraint
and 61 be a solution to C'. Let 605 be an f-variant of 60, such that
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1. 05 is a solution to Cpeim and

2. 0y coincides with 0, on all variables not occurring in Cpgin -
Then there exists an f-variant 05 of O such that

1. 05 is a solution to C and

2. 03 coincides with 05 on all variables except for the dependent variables of
CtTiang-

PROOF. Let us first prove that 6 is a solution to both Cy, and Cjpyp. Since
Csimp and Cpgip have no common variables, it follows that ¢, and 6, agree on all
variables of Cypyp, and so 05 is a solution to Cjjp,. Since ¢, and 60, are f-variants
and the weight of f is 0, for every term ¢ we have |t6;| = |ts|, whenever t6; is
ground. Therefore, 0y is a solution to C,.yy, if and only if so is #;. So 6, is a
solution to Cyip.

It is fairly easy to see that 6, can be changed on the dependent variables of
C'iriang Obtaining a solution 65 to C' which satisfies the conditions of the lemma.
O

This lemma will be used below in the following way. Instead of considering the
set ©, of all solutions to C\j.n We can restrict ourselves to a subset ©5 of ©; as
soon as for every solution #; € © there exists a solution 6, € O, such that 5 is
an f-variant of 6.

Let us call an f-term any term of the form f(¢). By the f-height of a term
t we mean the number n such that ¢ = f™(s) and s is not an f-term. Note that
the f-terms are exactly the terms of a positive f-height. We call the f-distance
between two terms s and ¢ the difference between the f-height of s and f-height
of t. For example, the f-distance between the terms f(a) and f(f(g(a,b))) is —1.

Let us now prove a lemma which implies that any solution to C' can be trans-

formed into a solution with a “small” f-height.

LEMMA 4.2.4 Let Copgin be a chained constraint of the form

DIFDIAFE DL -

where each # s either =1a o1 =. Further, let C pain satisfy the conditions of
Lemma 4.2.2 and 0 be a solution to Copem. Then there exists an f-variant 0" of
0 such that
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1. ¢ is a solution to Cupein and

2. for every k € {1,...,l}, the f-height of px0' is at most k.
PROOF. Let us first prove the following statement

(4.4)  The row p#p,_1# ...#p; has a solution 6, such that (i) 6; is an f-
variant of @, (ii) for every 1 < k < [ the f-distance between pif; and

pr—101 is at most 1.

Suppose that for some k the f-distance between pif and py_160is d > 1. Evidently,
to prove (4.4) it is enough to show the following.

(4.5)  There exists a solution 6, such that (i) 6, is an f-variant of 6, (ii) the
f-distance between pify and py 109 is d — 1, and (iii) for every k' # k
the f-distance between pp0s and pg_165 coincides with the f-distance

between pklg and pkl_lg.

Let us show (4.5), and hence (4.4). Since 6 is a solution to the row, then for
every k"' > k the f-distance between any pg~6 and pg6 is nonnegative. Likewise,
for every k" < k — 1 the f-distance between any p,_ 160 and pgr6 is nonnegative.
Therefore, for all k" > k > k", the f-distance between py«0 and p.6 is > d, and

hence is at least 2. Let us prove the following.

(4.6)  Every variable x occurring in pj#p;_1# . . . #px does not occur in py_1# . . . #p1.

Let x occur in terms p; and p; such that [ > ¢ > %k and & —1 > j > 1. Since the
constraint satisfies Lemma 4.2.2, then p; = f(z) and p; = x. Then the f-distance
between p;0 and p;0 is 1, but by our assumption it is at least 2, so we obtain a
contradiction. Hence (4.6) is proved.

Now note the following.
(4.7)  If for some k" > k a variable x occurs in pgn, then 26 is an f-term.

Suppose, by contradiction, that xf is not an f-term. Note that py~# has a positive
f-height, so pg» is either x of f(x). But we proved before that the f-distance
between pg0 and pr_10 is at least 2, so x must be an f-term.

Now, to satisfy (4.5), define the substitution 6, as follows:
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0,(x) 0(z), if 2 does not occur in py, ..., pi;
xTr) =
2 t, if x occurs in py, ..., p, and O(z) = f(t).

By (4.6) and (4.7), 6, is defined correctly. We claim that 6 satisfies (4.5). The
properties (i)—(iii) of (4.5) are straightforward by our construction, it only remains
to prove that 5 is a solution to the row, i.e. for every k' we have pyOs#pp_16-.
Consider the case when k' > k. Since 6 is a solution to the row, for each k" > k
we have pgrf is an f-term and hence pyr is either a variable or a term f(z)
for some variable x. Therefore, by definition of f, we have pp8 = f(pyf2) and
pr—10 = f(pr_102), s0 prOo#tpr 16, follows from pyO#pr 16. When k' < k we
have py6 = pr@y and pg 10 = ppr 105, hence ppOs#pg_105. The only remaining
case is k = k'.

Assume k£ = k’. Since the f-distance between ppf and py_10 is d > 1, we
have prf # pr_10, and hence p,#pr_1 must be pr >er Pr_1. Since # is a solution
t0 Pk >1ez Pr—1 and since #, is an f-variant of #, the weights of prfy and py_160:
coincide. But then pify > pr_10> follows from the fact that the f-distance
between pfy and p_10, isd —1 > 1.

Now the proof of (4.5), and hence of (4.4), is completed. In the same way as

(4.4), we can also prove

(4.8)  The constraint Cypg has a solution €' such that (i) 6" is an f-variant of
6, (ii) for every 1 < k < [ the f-distance between pi#; and py_16' is at
most 1. (iii) the f-height of p;6’ is at most 1; (iv) 6" and 6 coincide on

all variables occurring in the rows below the first one.

It is easy to see that #' from (4.8) satisfies all conditions required by our lemma.
O

The following lemma is the main lemma of this section.

LEMMA 4.2.5 Let C' = Cepain A Carith N Ciriang N\ Cyimp be a working constraint
in which Cepein 15 nonempty. There exists a nondeterministic polynomial-time
algorithm which transforms C into a disjunction of working constraints having

Cehain of smaller sizes and equivalent to C' up to f.

Proor. The proof is rather complex, so we will give a plan of it. The proof

is presented as a series of transformations on the first row of Cguin. These
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transformations may result in new constraints added to Copitn, Chriang, and Ciimyp.
First, we will get rid of equations s =t t in the first row, by introducing quasi-
flat terms, i.e. terms f¥(t), where ¢ is flat. If the first row contained no function
symbols, then we will replace the first row by new constraints added to Cjip,
and Cyyn, thus decreasing the size of the chained part. If there were function
symbols in the first row, we will continue as follows.

We will “guess” the values of some variables x of the first row, i.e. replace
them by some quasi-flat term f™(g(y)), where 7 is a sequence of new variables.
After these steps, the size of the first row can, in general, increase. Then we
will show how to replace the first row by new constraints involving only variables
occurring in the row, but not function symbols. Finally, we will prove that the
number of variables from the new constraints that remain in the chained part is
not greater than the original number of variables in the first row, and therefore
the size of the chained part decreases.

Formally, consider the first row of C pein. Let this row be py#pi_1# ... #p:1.
Then C e has the form py#p,1# ... #p1 =0 t1# ... #t,. [f 1 =1, i.e., the first
row consists of one term, we can remove this row and add |p;| > |t1] to Couritn
obtaining an equivalent constraint with smaller essential size, that is, the size of
Cehain- S0 we assume that the first row contains at least two terms.

As before, we assume that f is a unary function symbol of the weight 0. By
Lemma 4.2.4, if some p; is either a variable x or a term f(x), it is enough to
search for solutions @ such that the height of zf is at most [.

A term is called quasi-flat if it has the form f*(t) where ¢ is flat. We will now
get rid of equalities in the first row, but by introducing quasi-flat terms instead
of the flat ones. When we use notation f*(¢) below, we assume k > 0, and f°(¢)
will stand for t. We eliminate equalities from the first row in two steps. First we
will eliminate equalities among variables and f-terms transforming them into an
equivalent set of equalities in triangle form, then we eliminate all other equalities
in the first row.

Consider the set S of all equalities ¢ =75 s occurring in the first row of C'pgin,
where s and t are either variables or flat f-terms. We will transform S into an
equivalent system F'in triangle form such that all terms in F' will be flat. We
assume that before the transformation F' is empty. First we replace all equalities
in S of the form f(x) =ta f(y) by  =ra y obtaining an equivalent system S’

in which all equalities are of the form x =15 t. Now, either S’ is unsatisfiable or
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there exists an equality x =15 ¢ in S’, such that x does not occur in f-terms of
S’. We move such an equality x =14 ¢ into F' and replace all occurrences of x in
S’ by t, obtaining S”. It is easy to see that the system F' U S" is equivalent to
S, all terms in F'U S" are flat, F' is in triangle form and the number of variables
occurring into S” is less than the number of variables occurring into S. Repeating
this process we can eliminate all variables from S and obtain the required F' in
polynomial time.

Now we remove from C ., all equalities occurring in S. Let us note that
variables of F' can occur in Cgpe only in the first row, and only in the terms
fT(y) for 0 < r < 1. Next we repeatedly replace all occurrences of dependent
variables of F' occurring in Cpe,n Obtaining an equivalent constraint in chained
form with terms of the form f*(z) where k is bounded by the size of F. Finally
we move F' into Cligng-

After all these transformations we can assume that equalities f*(x) = f™(y)
do not occur in the first row.

If the first row contains an equality x =7a t between a variable and a term,
we replace this equality by £, replace all occurrences of x by ¢ in the first row, and
add x =1a t to Clpgng Obtaining an equivalent working constraint. Since x can
occur only in the terms of the form f7(z), it is easy to see that these replacements
can be done in polynomial time.

If the first row contains an equality g(z1,..., %) =ra h(ti,...,t,) where g
and h are different function symbols, the constraint is unsatisfiable.

If the first row contains an equality g(z1,...,2,) =1a 9(Y1,...,Yn) wWe do
the following. If the term g(xy,...,z,) coincides with g(yi,...,yn), replace this
equality by g(x1,...,2,). Otherwise, find the smallest number i such that x; is

different from y; and
1. add Yi =TA T4 to Ctm’ang;
2. replace all occurrences of y; in Copgin by ;.

We apply this transformation repeatedly until all equalities g(xq,...,2,) =Ta
9(y1,...,yn) disappear from the first row.
So we can now assume that the first row contains no equalities and hence it
has the form ¢, >z ¢n_1 >1ex - .- ™1z q1, Where all of the terms ¢; are quasi-flat.
If all of the ¢; are variables, we can move ¢, >iez Gn—1 >tez - - - =iex ¢1 10 Climp

and add |g1| > |t1] to Cypig, Obtaining an equivalent working constraint of smaller
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essential size. Hence, we can assume that at least one of the ¢; is a nonvariable
term.

Take any term g in the first row such that g is either a variable x or a term
f7(z). Note that other occurrences of x in C\pgin can only be in the first row, and
only in the terms of the form f*(x).

Consider the formula G defined as

VoV oe=n M) (4.9)

geX—{f} m=0...l
where 7 is a sequence of pairwise different new variables. Since we proved that it
is enough to restrict ourselves to solutions 6 for which the height of 26 is at most
[, the formulas C' and C' A G are equivalent up to f.

Using the distributivity laws, C' A G can be turned into an equivalent dis-
junction of formulas z =15 f™(g(y)) A C. For every such formula, replace x by
f™(g(7)) in the first row, and add z =75 f™(g(7)) to the triangle part. We do
this transformation for all terms in the first row of the form f*(z), where k > 0
and z is a variable. Now all the terms in the first row are of the form f™(g(7)),
where ¢ is different from f and m > 0.

Let us show how to replace constraints of the first row with equivalent con-
straints consisting of constraints on variables and arithmetical constraints. Con-
sider the pair g, g,—1. Now ¢, = fk(g(l"l, oo ty)) and g1 = f(h(yL, -5 Y0))
for some variables xi,...,2y,91,...,y, and function symbols g,h € ¥ — {f}.
Then ¢, =1ee @118 f¥(g(@1, -5 20)) =tex [™(R(y1,- -, 0)). fk <mor (k=m
and h > g), then f*(g(z1,...,24)) =iex f™(h(y1,...,9y)) is equivalent to L. If
k> mor (k=m and g > h), then f*(g(x1,...,24)) =tex [ (h(y1,-..,y0)) is
equivalent to the arithmetical constraint |g(xy,...,z,)| =~ |h(¥1,. .., yy)| Which
can be added to Cp. If K =m and g = h (and hence u = v), then

fk(g(l‘l, s un)) ™ lex fm(h(yla s 7yv)) A |g(.’L‘1, s 75L'U)| =N |h(y17 R yv)| A
\/ (x1 =1A 1 A ... AZis1 =74 Yic1 A Ti > KBO Yi)-
i=1..u
We can now do the following. Add |g(z1,...,z.)| =~ |h(Y1, .-, Ys)| t0 Copign, and

replace ¢, >z ¢n—1 With the equivalent disjunction

\/ (1 =1A Y1 Ao A Tim1 =TA Yic1 AZi >KBO Yi)-

i=1...u
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Then using the distributivity laws turn this formula into the equivalent dis-
junction of constraints of the form C'Axy =1a 1A . .AZiZ1 =1A Yie1 ATi = KkBO Vi
forall7 = 1...u. For each of these constraints, we can move, as before, the equal-
ities & =1 y one by one to the triangle part Ciigng, and make Cepein AT; = kB0 Vi
into a disjunction of chained constraints as in Lemma 4.2.1.

Let us analyze what we have achieved. After these transformations, in each
member of the obtained disjunction the first row is removed from the chained part
Cehain of C. Since the row contained at least one function symbol, each member of
the disjunction will contain at least one occurrence of a function symbol less than
the original constraint. This is enough to prove termination of our algorithm,
but not enough to present it as a nondeterministic polynomial-time algorithm.
The problem is that, when p,, is a variable z or a term f(x), one occurrence of z
in p, can be replaced by one or more constraints of the form xz; >xpo v;, where
x; and y; are new variables. To be able to show that the essential sizes of each
of the resulting constraints is strictly less than the essential size of the original
constraint, we have to modify our algorithm slightly.

The modification will guarantee that the number of new variables introduced
in the chained part of the constraint is not greater than the number of variables
eliminated from the first row. We will achieve this by moving some constraints to
the simple part Cgim,. The new variables only appear when we replace a variable
in the first row by a term f*(h(ui,...,uy)) or by f*¥(h(vy,...,vy)) obtaining a
constraint f*(h(ui, ..., un)) =wee fE(h(v1,...,v,)), which is then replaced by

UL =7A V1 N\ ... AUj—1 =TA Vi1 N U; ™KBO V;- (4.10)

Let us call a variable u; (respectively, v;) new if f*(h(uy,...,u,)) occurred in
the terms of the first row when we replaced a variable by a nonvariable term
containing h using formula (4.9). In other words, new variables are those that
did not occur in the terms of the first row before our transformation, but appeared
in the terms of the first row during the transformation. All other variables are
called old. After the transformation we obtain a conjunction F of constraints
of the form x; =ra x; or x; ~kpo ;, where x;,z; can be either new or old.
Without loss of generality we can assume that this conjunction of constraints
does not contain chains of the form z1# ... #x,#x; where n > 2 and at least
one of the #’s is = gpo. Indeed, if F contains such a chain, then it is unsatisfiable.

We will now show that the number of new variables can be restricted by
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moving constraints on these variables into the triangle or simple part. Among
the new variables, let us distinguish the following three kinds of variables. A new
variable x is called blue in E if E contains a chain x =1p &1 =1a ... =TA Tp,
where z,, is an old variable. Evidently, a blue variable z causes no harm since it
can be replaced by an old variable z,,. Let us denote by < the inverse relation to
= kpo- A new variable x is called red in E if it is not blue in E and E contains
a chain x#x,# ... #x,, where x, is an old variable, and all of the #’s are either
=7a, OF =gpo, or <. Red variables are troublesome, since there is no obvious
way to get rid of them. However, we will show that the number of red variables
is not greater than the number of replaced variables (such as the variable x in
(4.9)). Finally, all new variables that are neither blue nor red in E are called
green in F.

Getting rid of the green variables. We will now show that the green
variables can be moved to the simple part of the constraint Cl;p,. To this end,
note an obvious property: if F contains a constraint x#y and z is green, then
y is green too. We can now do the following with the green variables. As in
Lemma 4.2.1, we can turn all the green variables into a disjunction of chained
constraints of the form v #...#uwv,, where # are =pa, >, Or >, and use the
distributivity laws to obtain chained constraints vi#...#wv,. Let us call this
constraint a green chain. Then, if there is any equality v; =t v;11 in the green
chain, we add this equality to Cjgng and replace this equality by v;;1 in the
chain. Further, if the chain has the form vy > ... >jer Uk 0w Vkt1 7 - . . FU,, We
add vy >jep - >iew Uk 10 Cyimp and |vg| > |vg41] to Cupisn, and replace the green
chain by vg,1# . .. #v,. We do this transformation until the green chain becomes
of the form vy >, ... >z vg. After this, the green chain can be removed from
E and added to Cjpp. Evidently, this transformation can be presented as a
nondeterministic polynomial-time algorithm.

The red variables. Let us show the following: in every term f*(h(uy, ..., uy))
in the first row at most one variable among wuy, ..., u,, is red. It is not hard to ar-
gue that it is sufficient to prove a stronger statement: if for some ¢ the variable u;
is red or blue, then all variables uy, ..., u;_; are blue. So suppose that w; is either
red or blue and u;#y,# . ..#y: is a shortest chain in F such that y; is old. We
prove that the variables uy, ..., u; 1 are blue, by induction on n. When n =1 and

u; is red, E contains either u; > gpo y1 or y1 =kpo u;, where y; is old. Without
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loss of generality assume that £ contains u; > gpo y1. Then (cf. (4.10)) this equa-
tion appeared in £ when we replaced f*(h(uy,...,umn)) =es f¥(h(vi,...,vn)) by
Uy =1A V1 A ... ANU;_1 =1A Vi1 ANU; =kpo v; and y; = v;. But then E also con-
tains the equations uy; =1p v1,...,u; 1 =T1A V;_1, where the variables vq,...,v; |
are old, and so the variables uq,...,u;_; are blue. In the same way we can prove
that if u; is blue then wuq,...,u;_; are blue. The proof for n > 1 is similar, but
we use the fact that vq,...,v;_; are blue rather than old.

To complete the transformation, we add all constraints on the red and the old
variables to Cpgin and make Cpq, into a disjunction of chained constraints as in
Lemma 4.2.1.

Getting rid of the blue variables. If E contains a blue variable x, then it
also contains a chain of constraints © =pa 1 =714 ... =71a Z,, Where x,, is an old
variable. We replace x by x,, in C' and add x =75 , to the triangle part Ciigng-

When we completed the transformation on the first row, the row disappears
from the chained part Cpqi, of C. If the first row contained no function symbols,
the size of C\p4i, Will become smaller, since several variables will be removed from
it. If C pain contained at least one function symbol, then after the transformation
the number of occurrences of function symbols in C 4, Will decrease. Some red
variables will be introduced, but we proved that their number is not greater than
the number of variables eliminated from the first row. Therefore, the size of
Chain strictly decreases after the transformation due to elimination of at least
one function symbol.

Again, it is not hard to argue that the transformation can be presented as
a nondeterministic polynomial-time algorithm computing all members of the re-

sulting disjunction of constraints.
O

Lemmas 4.2.1 and 4.2.5 imply the following:

LEMMA 4.2.6 Let C be a constraint. Then there exists a disjunction C1V...VCy
of constraints in isolated form equivalent to C' up to f. Moreover, members of

such a disjunction can be found by a nondeterministic polynomial-time algorithm.
O

Our next aim is to present a nondeterministic polynomial-time algorithm solv-

ing constraints in isolated form.
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4.3 From constraints in isolated form to systems

of linear Diophantine inequalities

Let C be a constraint in isolated form
Osimp A Carith A Ctriang-

Our decision algorithm will be based on a transformation of the simple constraint
Csimp into an equivalent disjunction D of arithmetical constraints. Then, in
Section 4.4 we show how to check the satisfiability of the resulting formula D A
Carith N Ciriang by using an algorithm for solving systems of linear Diophantine
inequalities on the weights of variables.

To transform Cl;p, into an arithmetical formula, observe the following. The

constraint Cyy, is a conjunction of the constraints of the form

T1 >lew -+ lex TN

having no common variables. To solve such a constraint we have to ensure that
there exist at least IV different terms of the same weight as x; (since the Knuth-
Bendix order is total).

In this section we will show that for each N the statement “there exists at least
N different terms of a weight w” can be expressed in the Presburger Arithmetic
as an existential formula of one variable w.

We say that a relation R(Z) on natural numbers is 3-definable, if there ex-
ists an existential formula of Presburger Arithmetic C'(z,7) such that R(Z) is
equivalent to 35C(z, 7). We call a function r(z) 3-definable if so is the relation
r(z) = y. Note that composition of 3-definable functions is I-definable.

Let us fix an enumeration g, ..., gs of the signature . We assume that the
first B symbols ¢y, ..., gp is a sequence of all symbols in ¥ of arity > 2, and the
first F' symbols g1, ..., gr is a sequence all nonconstant symbols in ¥. The arity
of each g; is denoted by arity,. In this section we assume that B, F', S, and the
weight function w are fixed.

We call the contents of a ground term ¢ the tuple of natural numbers (ny, . .., ng)
such that n; is the number of occurrences of g¢; in t for all 2. For example, if the
sequence of elements of ¥ is g, h,a,b, and t = h(g(h(h(a)), g(b,b))), the contents
of tis (2,3,1,2).
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LEMMA 4.3.1 The following relation ezists(z,ny,...,ng) is I-definable: there

exists at least one ground term of ¥ of the weight © and contents (nq,...,ng).

ProoOF. We will define exists(x,nq,...,ng) by a conjunction of two linear Dio-
phantine inequalities.

The first equation is

xr = Z w(g;) - n. (4.11)

1<i<S
It is not hard to argue that this equation says: every term with the contents
(n1,...,ns) has weight .

The second formula says that the number of constant and nonconstant func-

tion symbols in (ny,...,ng) is appropriately balanced for constructing a term:
1+ Z (arity; — 1) -n; = 0. (4.12)
1<i<§
[

Let us prove some lower bounds on the number of terms of a fixed weight.

We leave the following two lemmas to the reader. The first one implies that,
if there exists any ground term ¢ of a weight x with at least /N occurrences of
nonconstant symbols, including at least one occurrence of a function symbol of

an arity > 2, then there exists at least N different ground terms of the weight x.

LEMMA 4.3.2 Letx,ny,...,ns be natural numbers such that exists(xz,ny, ..., ng)
holds, ny + ... +ng > 1 and ny + ... + np > N. Then there exist at least N

different ground terms with the contents (ny,...,ng). O

The second lemma implies that, if there exists any ground term ¢ of a weight
x with at least /N occurrences of nonconstant function symbols, including at least
two different unary function symbols, then there exists at least NV different ground

terms of the weight x.

LEMMA 4.3.3 Letz,ny,...,ns be natural numbers such that exists(xz,ny, ..., ng)
holds, ni+...+np > N and at least two numbers amongng.1, ..., N are positive.
Then there exists at least N different ground terms with the contents (ny, ..., ng).

U
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Let us note that if our signature consists only of a unary function symbol of a
positive weight and constants, then the number of different terms in any weight
is less or equal to the number of constants in the signature.

The remaining types of signatures are covered by the following lemma.

LEMMA 4.3.4 Let ¥ contain a function symbol of an arity greater than or equal
to 2, or contain at least two different unary function symbols. Then there exist
two natural numbers Ny and Ny such that for all natural numbers N and x such
that © > N - Ny + Ny, the number of terms of the weight x is either 0 or greater
than N.

Proor. If ¥ contains a unary function symbol of the weight 0 then the number
of different terms of any weight is either 0 or w and the lemma trivially holds.

Therefore we can assume that our signature contains no unary function symbol
of the weight 0. Define

W = max{w(g)|1 <i< S}
A = max{arity;|1 <i< S}
N = WA

Ny, = W2 (A+1)+W.

Take any N and z such that z > N - Ny + Ns.

Let us prove that if there exists a term of the weight x then the number
of occurrences of nonconstant function symbols in this term is greater than N.
Assume the opposite, i.e. there exists a term ¢ of the weight x such that the
number of occurrences of nonconstant function symbols in ¢ is M < N. Let
(ni,...,ng) be the contents of ¢ and L denote the number of occurrences of
constants in t. Note that (4.12) implies L = 1+ Y, _,p(arity; — 1) - n;. Then
using (4.11) we obtain o

N - Ni+ Ny < [t| :Zlgigsw(gi)'ni SW'Z1§¢§S”i:
W-(M+L)=W-(M+1+> . plarity; — 1) - n;) <
W-(M+1+A-1)>qepm) =W - (M+1+(A-1)-M) =
W-(M-A+1)<W-(N-A+1)<N-N;+ No.

So we obtain a contradiction.

Consider the following possible cases.
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1. There exists a term of the weight x with an occurrence of a function symbol
of an arity greater than or equal to 2. In this case by Lemma 4.3.2 the

number of different terms of the weight z is greater than N.

2. There exists a term of the weight x with occurrences of at least two different
unary function symbols. In this case by Lemma 4.3.3 the number of different

terms of the weight z is greater than N.

3. All terms of the weight x have the form g*(c) for some unary function symbol
g and a constant c. We show that this case is impossible. In particular, we
show that for any nonconstant function symbol h there exists a term of the
weight x in which g and h occur, therefore we obtain a contradiction with

the assumption.

We have r = w(g) - k + w(c). Denote by H the arity of h. Let us define
integers M, M,, M3 as follows

My = w(g);
My, = k—w(h)—w(c)- (H—1);
M; = w(g)(H—-1)+1.

Let us prove that M;, My, M3 > 0 and there exists a term of the weight x
with M, occurrences of h, M; occurrences of g and M3 occurrences of ¢ and

hence obtain a contradiction.

Since ¢ is unary, w(g) > 0, and so M; > 0. Since H > 1, we have M; > 0.
Let us show that My > 0, i.e. £k > w(h) +w(c) - (H —1). We have

k= (z—w(c)/w(g) > (NN + Ny —w(c))/w(g) =
(N2 —w(e))/w(g) = (W?- (A+1) + W —w(c))/w(g) >
W2 (A+1)/w(g) >W-(A+1) =W +W -A>
w(h) +w(c)-A>w(h)+w(c) - (H-1).

It remains to show that there exists a term of the weight x with M; occur-
rences of h, M, occurrences of g and Mj; occurrences of ¢. To this end we
have to prove (cf. (4.11) and (4.12))
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x=w(h) - My +w(g) - My + w(c) - Ms;
1+ (H-1)-My+(1—-1)-My+ (0—1)M3 = 0.

This equalities can be verified directly by replacing M, My, M3 by their
definitions and x by w(g) - k + w(c). O

Define the binary function ¢nt (truncated number of terms) as follows: tnt(N, M)
is the minimum of N and the number of terms of the weight M and let us show
that ¢tnt can be computed in time polynomial of N+M. To give a polynomial-time

algorithm for this function we need an auxiliary definition and a lemma.

DEFINITION 4.3.5 Let (nq,...,ns) and (my,...,ms) be two tuples of natural
numbers. We say that (nq,...,ns) extends (mq,...,mg) if n; > m; for 1 <i <s.
O

The depth of a term is defined by induction as usual: the depth of every
constant is 1 and the depth of every nonconstant term g(ti,...,%,) is equal to

the maximum of the depth of the ¢;’s plus 1.

LEMMA 4.3.6 Let ty,...,t, be a collection of different terms of the same depth
and Con be the contents of a term such that Con extends the contents of all terms

t;, 1 <1 <n. Then there exist at least n different terms with the contents Con.

Proor. Let us define the notion of leftmost subterm of a term ¢ as follows: every
constant ¢ has only one leftmost subterm, namely c itself, and leftmost subterms
of a nonconstant term ¢(ry,...,r,) are this term itself and all leftmost subterms
of r1. Evidently, for each positive integer d and term ¢, ¢ has at most one leftmost
subterm of the depth d.

It is not hard to argue that from the condition of the lemma it follows that
for every term t; there exists a term s; with the contents Con such that ¢; is a
leftmost subterm of s;. But then the terms sy, ..., s, are pairwise different, since
they have different leftmost subterms of the depth d. ([

LEMMA 4.3.7 Let the signature X contain no unary function symbol of the weight
0 and contain either a function symbol of an arity greater than or equal to 2 or con-

tain at least two different unary function symbols. Then the function tnt(N, M)
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s computable in time polynomial of M + N.

PROOF. It is not hard to argue that for every contents (ny,...,ng) such that
some of the n;’s is greater than M, any term with these contents has the weight
greater than M. The number of different contents in which each of the n;’s is less
than or equal to M is M7, i.e. it is polynomial in M, moreover, all these contents
can be obtained by an algorithm working in time polynomial in M.

Therefore it is sufficient to describe a polynomial-time algorithm which for all
contents (ni,...,ng), where 1 < n; < M, returns the minimum of N and the
number of terms with these contents.

Let us fix contents Con = (ny,...ng) where 1 < n; < M. Using equations
(4.11) and (4.12), one can check in polynomial time whether there exists a term
with the contents Con, so we assume that there exists at least one such term.

Our algorithm constructs, step by step, sets 1g, 1}, ..., of different terms with
contents which can be extended to the contents Con. Each set T; will consist

only of terms of the depth .

1. Step 0. Define Ty = ().

2. Step i+ 1. Define

ﬂ-l—l:{g(tl;---;tm) | geX, ty,... t,, el U...UT;,
Con extends the content of ¢(t,...,t,), and
the depth of g(t1,...,¢,) isi+ 1}.

If T;,1 has N or more terms, then by Lemma 4.3.6 there exists at least N
different terms of the content Con, so we terminate and return N. If 75 is
empty, we return as the result the minimum of N and the number of terms
with the content Con in Ty U ... UT;,,.

Let us prove some obvious properties of this algorithm.

1. If some T; contains N or more terms, then there exists at least N terms

with the content Con. As we noted, this follows from Lemma 4.3.6.

2. At the end of step © + 1 the set Ty U ... UT; 1 contains all the terms with
the contents Con of the depth < i+ 1. This property obviously holds by

our construction.
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This property ensures that the algorithm is correct. To prove that it works in
time polynomial in M + N it is enough to note that each step can be made in

time polynomial in N and the total number of steps is at most M + 1. 0

Now we are ready to prove the main lemma of this section.

LEMMA 4.3.8 There exists a polynomial time of N algorithm, which constructs
an existential formula at_least y(x) valid on a natural number x if and only if

there exists at least N different terms of the weight x.

Proor. If the signature ¥ contains a unary function symbol of the weight 0 then
the number of different terms in any weight is either 0 or w. Therefore we can
define at_least y(x) as Ing ... Ingezists(z,ny,...,ng).

Let us consider the case when the signature ¥ consists of a unary function
symbol g of a positive weight and constants. For every constant ¢ in ¥ consider
the formula G.(x) = Jk(w(g)k + w(c) = x). It is not hard to argue that G.(z)
holds if and only if there exists a term of the form ¢*(c) of weight x. Let P be
the set of all sets of cardinality IV consisting of constants of ¥ (the cardinality of

P is obviously polynomial in N). It is easy to see that

at_least y(z) <> \/ /\ Ge(x).

QEP ceQ

It remains to consider the case when our signature contains a function symbol
of an arity greater than or equal to 2, or contains at least two different unary
function symbols. By Lemma 4.3.4, there exist constants N; and N, such that
for any natural number z such that x > N - N; + N, the number of terms of the
weight x is either 0 or greater than N. Let us denote N - N; + Ny as M and the
set {M'|M' < M Atnt(N,M') > N} as W. By Lemmas 4.3.4, 4.3.7 we have

at_leasty (z) <> (Ing, ..., ngexists(x,ny,...,ng) Nz > M)V ( \/ x =M.
M'ew

O

4.4 Main results

In this section we complete the proofs of the main results of this chapter.
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THEOREM 4.4.1 For every Knuth-Bendix order, the problem of solving ordering

constraints is contained in NP.

PrROOF. Take a constraint. By Lemma 4.2.5 it can be effectively transformed
into an equivalent disjunction of isolated forms, so it remains to show how to
check satisfiability of constraints in isolated form.

Suppose that C'is a constraint in isolated form. Recall that C' is of the form

Cam'th A Ctriang A Csimp- (413)

Let Cyimp contain a chain oy >, ... > @y such that zy,...,zx does not

!

occur in the rest of Cyynp. Denote by C, . the constraint obtained from Cipyp

by removing this chain. It is easy to see that C' is equivalent to the constraint

Carith A Ciriang N Clgmp A\ (73] = |21]) A at least (1))
i=2...N
In this way we can replace C;m, by an arithmetical constraint, so we assume that

Cyimp 1s empty. Let Cigng have the form

U1 :TAtl/\---/\yn:TAtn-

Let Z be the set of all variables occurring in Coypign A Ciriang- It is not hard to
argue that Cgpig, A Ciriang 1s satisfiable if and only if the following constraint is
satisfiable:

Coaritn N yi] =n [t Ao A lyn] =w [ta] AN ,ey atleast (]2]).

So we reduced the decidability of the existential theory of term algebras with a
Knuth-Bendix order to the problem of solvability of systems of linear Diophantine
inequalities. Our proof can be represented as a nondeterministic polynomial-time

algorithm. 0

This theorem implies the main result of this chapter. Let us call a signature
Y trivial if it consists of one constant symbol. Evidently, the first-order theory

of the term algebra of a trivial signature is polynomial.

THEOREM 4.4.2 The existential first-order theory of any term algebra of a non-

trivial signature with the Knuth-Bendix order is NP-complete.
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PrOOF. The containment in NP follows from Theorem 4.4.1. NP-hardness is
proved in Proposition 3.5.3 by reducing propositional satisfiability to the existen-

tial theory of the term algebra (even without the order). O

Let us show that for some Knuth-Bendix orders even constraint solving can
be NP-hard.

EXAMPLE 4.4.3 Consider the signature ¥ = {s, g, h, c}, where h is binary, s, g
are unary, and c is a constant. Define the weight of all symbols as 1, and use any
order > on ¥ such that ¢ > s. Our aim is to represent any linear Diophantine
equation by Knuth-Bendix constraints. To this end, we will consider any ground
term t as representing the natural number |¢| — 1.

Define the formula

equal _weight(x,y) <
9(x) =kpo 5(y) A g(y) > kpo s(x).

Obviously, for any ground terms r, ¢t equal_weight(r,t) holds if and only if |r| = |t].

It is enough to consider systems of linear Diophantine equations of the form

ZL‘1+...+.’I?n+k:.’170, (414)
where g, ..., z, are pairwise different variables, and k£ € N. Consider the con-
straint

equal_weight (s**2(h(y1, h(ya, - - ., (4.15)
h(yn—17 yn))))a
" (o))

It is not hard to argue that
(4.16) Formula (4.15) holds if and only if

| =14+ fyn| =14+ k= |yo| — 1.

Using (4.16), we can transform any system D(xy,...,x,) of linear Diophantine
equations of the form (4.14) into a constraint C'(yq,...,y,) such that for every
tuple of ground terms ¢y, ..., t,, C(ty,...,t,) holds if and only if so does D(|ty| —
L., |ta] = 1).
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Similar, using a formula

greater_weight(z,y) <>
s(w) =kpo 9(y)

one can represent systems of linear inequalities using Knuth—Bendix constraints.
It is easy to see that this reduction can be done in polynomial time, assuming
that coefficients of linear Diophantine equations and inequalities are represented

in the unary notation. 0

Since it is well-known that solving linear Diophantine equations with coeffi-
cients represented in the unary notation is NP-hard, we have the following theo-

rem.

THEOREM 4.4.4 For some Knuth-Bendix orders, the problem of solving ordering

constraints is NP-complete. 0

This result does not hold for all non-trivial signatures, as the following theorem

shows.

LEMMA 4.4.5 There exists a polynomial time algorithm which solves ordering
constraints for any given term algebra over a signature consisting of constants

and any total ordering > on that term algebra.

Proor. Let ¥ ={cy,...,c,}, wlo.g. we can assume that ¢, > ¢, 1 = ... > ¢1.
Let C' be an ordering constraint. First we get rid of equalities as follows. If
t =1a s occurs in C' and ¢ is syntactically equal to s then we remove t =15 s from
C, if t is a variable then we replace all occurrences of ¢t in C' by s and remove
t =7a s from C', otherwise ¢t and s are different constants and C' is unsatisfiable.
Now C' consists of conjunctions of atomic formulas of the form ¢ > s. We define a
relation >{, on terms as follows: ¢ >, s if and only if ¢ > s occurs in C. Let >¢
denote a transitive closure of >~,. It is easy to see, that using a polynomial time
algorithm for transitive closure, we can compute the relation ¢ >4 s in polynomial
time. Note that if >4 is not a strict order then the constraint C' is unsatisfiable.
So we assume that > is a strict partial order.

Now we replace all variables in C' by constants as follows. Take a variable x

such that there is no variable less than x w.r.t. >¢. There are two possible cases:

1. z is a minimal term w.r.t. >¢, then we replace all occurrences of x in C' by

Ct.
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2. there exist some constants less than  w.r.t. >¢, then let ¢, be the great-
est w.r.t. > constant among such constants. If ¢,,,, is the maximal constant
in TA(X) then the constraint C' is unsatisfiable, otherwise we replace all oc-

currences of x by ¢papi1-

Repeating this process we replace all variables in C' in polynomial time. To com-
plete the proof of the lemma, it remains to show that transformations 1,2 above,
preserve satisfiability of constraints without equality. To this end, we consider a
constraint C' without equality and a solution # to C'. If the transformation 1 is

applicable to C' then it is easy to see that

() = { c1, if  is a minimal term w.r.t. >¢,

() otherwise.

is a solution to the constraint obtained after applying the transformation 1 to C.
Similar one can show that the transformation 2 preserves satisfiability of con-

straints without equality. 0

COROLLARY 4.4.6 There exists a polynomial time algorithm which checks solv-
ability of ordering constraints for any given Knuth—Bendix order on any term

algebra over a signature consisting of constants. 0

As we mentioned in Section 4.1, if we consider real-valued Knuth-Bendix
orders then even comparison of ground terms might be undecidable. Let us show

it on the following example.

ExXAMPLE 4.4.7 Consider a non-computable real number r such that 0 <r < 1,
i.e. there is no algorithm which given a positive integer n computes r with the
precision 1/n, in other words finds two natural numbers p, ¢ such that |r —p/q| <
1/n.

Now we consider a signature consisting of two unary symbols ¢g,h and a
constant ¢ and consider any Knuth—Bendix order >xpo on the corresponding
term algebra, such that w(g) = 1 and w(h) = r. Let us show that comparison
of terms in this Knuth—Bendix order is undecidable. Consider a positive inte-
ger n. Then, it is easy to see that there exists a positive integer m such that
g™ (c) =kpo h"(¢) =kpo g™ '(c). Since |g™(c)| # |h"(c)| # |g™ ()], we have
lg™(c)| > [h™(c)] > |g"™ (c)|. From the definition of the weight function we have
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that m > rn > m — 1 and therefore m/n > r > mT_l Let us take p =m — 1 and
g = n, then we have |r — p/q| < 1/n. Therefore using comparison of terms we
can compute 7 with the precision 1/n. This implies that comparison of terms for
this Knuth-Bendix order is undecidable. 0



Chapter 5

First—order Knuth—Bendix
ordering constraints for unary

signatures

This chapter is based on the paper [Korovin and Voronkov 2002].

5.1 Introduction

In resolution-based theorem proving there are important simplifications which
allow us to remove clauses from the search space (for example subsumption). It
turns out that in order to express applicability conditions for these simplifica-
tions, we need to consider constraints which involve first-order quantifiers (see
Chapter 2). Unfortunately the first-order theory of the recursive path orders is
undecidable [Treinen 1990, Comon and Treinen 1997]. Only recently the decid-
ability of the first-order theory of recursive path orders over unary signatures has
been proven [Narendran and Rusinowitch 2000]. A signature is called unary if it
consists of unary function symbols and constants.

In this chapter we prove the following result.

Theorem 5.3.2: The first-order theory of any Knuth-

Bendiz order over any unary signature is decidable.

Our decision procedure uses interpretation of unary terms as trees and uses

decidability of the weak monadic second-order theory of binary trees.
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This chapter is structured as follows. In Section 5.2 we introduce the notion of
interpretation and show how it can be used to prove decidability of a given theory
by reducing this problem to decidability of some known theory. In Section 5.3
we show how to interpret unary terms with any Knuth-Bendix order in the weak
monadic second-order theory of binary trees, which decidability is well-known.

In this chapter we will only consider signatures consisting of unary function

symbols and constants.

5.2 Interpretations

Interpretations play an important role in mathematical logic, allowing us to de-
scribe the properties of a given structure based on the properties of another
structure.

We will use an interpretation of first-order structures with the Knuth-Bendix
order, in the structure of two successors considered in the weak monadic second-
order language. The weak monadic second-order language is a language closed
under V, A, =, which extends first-order language with variables X, Y, ... ranging
over finite sets, includes atomic formulas ¢t € X where ¢ is a first order term and
allows quantifiers over the set variables.

Let us introduce a simple notion of interpretation which we will use later to
show the decidability of the first-order theory of Knuth-Bendix orders over unary
signatures. For a more general theory of interpretations see, e.g., [Hodges 1993,
Ershov 1980, Rabin 1977]. In the sequel we will use lower-case letters z,y, z, ... to
denote first-order variables and upper-case letters X, Y, Z, ... to denote second-

order variables.

DEFINITION 5.2.1 Let A be a structure in a first-order language L, and B be a
structure in a weak monadic second-order language L. We say that the structure
A is interpretable in the structure B if there exist a positive integer m and the

following formulas:

1. Ddomain (X ), where X is a tuple of second-order variables of the length m
such that the set A’ = {S | B E dgomain(S)} is non-emptys;

2. ¢,(X1,...,X,,Y) for each function symbol g in the language L 4, where the

arity of g is n and X, ..., X,,Y are tuples of second-order variables of the
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length m, and this formula defines a function, denoted by ¢’, on A', i.e., we

have

gl(Sl,. . ,Sn) = T<:> B ): ¢g(s’1, .. ,Sn,T),
3. ¢p(Xy,...,X,) for each predicate symbol P in L, where the arity of P is
n and X1,..., X, are tuples of second-order variables of the length m, and

this formula defines a predicate on A’, denoted by P’, i.e., we have

P,(Sl,...,gn)@B):Qsp(sfl,...,sn);

such that the following condition holds.

The structure with the domain A’, in which every function symbol f is interpreted
by the function f’ and every predicate symbol P is interpreted by P’, is isomorphic
to the structure A. O

We will use the following fundamental property of interpretability.

PROPOSITION 5.2.2 If a structure A is interpretable in the structure B and the
theory of B (in the language Ly ) is decidable, then the theory of A (in the language
L) is also decidable. O

The proof can be found, e.g. in [Hodges 1993, Ershov 1980, Rabin 1977].

5.3 Interpretation of the Knuth-Bendix order in
WS2S

We will use interpretations to show the decidability of the first-order theory of
Knuth-Bendix orders over unary signatures. We show how to interpret Knuth-
Bendix orders in the structure of two successors in the weak monadic language.
Then, using the result [Thatcher and Wright 1968] on the decidability of the
weak monadic theory of two successors, we conclude that the first-order theory
of Knuth-Bendix orders over unary signatures is decidable.

Let us briefly recall the definition of the structure of two successors (see, e.g.,
[Comon, Dauchet, Gilleron, Jacquemard, Lugiez, Tison and Tommasi 1997] for

details). The domain consists of finite binary strings including the empty string
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A. There are two functions 0(x) and 1(z) which add 0 and 1 respectively to the
end of the string. For example 0(101) = 1010. Instead of 0(t) and 1(¢) we will
write, respectively, t-0 and ¢-1. The atomic formulas are equalities ¢ = s between
first-order terms, and ¢t € X where t is a first-order term. Formulas are built from
atomic formulas using logical connectives A, V, =, the first-order quantifiers dz, Va
and second-order quantifiers over finite sets 3X,VX. We will use the following
standard shorthands: 3z € X¢(z, X) for dz(x € XA¢(z, X)) and Vo € X¢(x, X)
for Vz(z € X D ¢(x, X)). Binary strings can be seen as positions in binary trees,
and in the sequel we sometimes will use the word position instead of string.
Below we will use the following definable relations on sets with a straightfor-

ward meaning.

Emptiness:
X=0<Ve(x & X).
Intersection:
XNY=ZVe(zreZo (xeXANxeY)).
Union:
XUY=ZVe(zreZe (xeXVrey)).
Partition:

Partition(X,X1,.... X,) & X = | Xin A XinX; =0.

1<i<n 1<i<j<n
PrefixClosed:

PrefizClosed(X) <> Vo((z-0 € X Vao-1€ X) Dz € X).

Sets satisfying PrefizClosed will be called trees.

Prefix order C:
r Ly VX ((y € X A PrefixClosed(X)) Dz € X).

Likewise, we introduce
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rCyrCyAa#uy.
Lexicographic order <j,:
l‘SlezyHﬂ?Ey\/ﬂz(z-OEx/\z-lEy).

Likewise, we introduce

x<lezy(_>m§lea: y/\l'?éy

Maximal prefix: Informally, MazPref(m, X) says that m is a maximal element

in X w.r.t. the prefix order.

MazPref(m,X) <> me X AVz € X=(m C 2).

Minimal prefix: Informally, MinPref (m, X) says that m is a minimal element

in X w.r.t. the prefix order.

MinPref(m,X) <> m e X AVz € X—(z T m).

Maximal lexicographically: Informally, MazLez(m, X) says that m is a max-

imal element in X w.r.t. the lexicographic order.

MazLex(m, X) <> m € X AVz € X=(m <iey 2).

Assuming a fixed Knuth-Bendix order we will show how to interpret it in the
structure of two successors using the weak monadic second-order language.

Let us consider a signature ¥ = {gi,..., g5} consisting of unary function
symbols and constants. From now on we assume that ¥ is fixed and denote by
s the number of function symbols and constants in it. We denote the set of
constants in ¥ by X, and the set of unary function symbols by ¥,. Let w be a
weight function on ¥ and > be a precedence relation compatible with w. Also f
will always denote the function symbol of weight zero. Denote the Knuth-Bendix

order induced by this weight function and precedence relation by >. Now we
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show how to interpret TA, (X) in the structure of two successors using the weak
monadic language.

We define the interpretation in three steps. First we map terms into labelled
trees and define functions and relations on them such that the obtained structure
will be isomorphic to TA, (X). Then we show how labelled trees can be repre-
sented as s + 1-tuples of finite sets of binary strings. Finally we show how to
define these representations, and corresponding functions and relations on them

in the structure of two successor using weak monadic second—order logic.
Coding of terms.

The labelled trees are binary trees labelled with the function symbols. We

want tree representation of terms to satisfy the following properties

1. The functions of TA, (¥) can be defined in the monadic second-order lan-

guage.

2. The function symbols of the term algebra are represented in such a way that

we can compare weights of terms using the monadic second-order language.

3. For the terms of equal weight we should be able to compare their top func-

tion symbols and then lexicographically compare their subterms.

Let us start with an example. Consider a signature {f(), g(), h(),c}, and a
weight function w such that w(f) = 0,w(g) = 2,w(h) = w(c) = 1. Figure 5.1
shows how to construct a labelled tree representing the term f(h(f(f(g(c)))))-
The labelled tree is built by traversing the tree inside-out, for example, the root
of the labelled tree is labelled with the constant c. We would like the rightmost
branch of the tree to have the length equal to the weight of the term. To this end,
we repeat every function symbol of a positive weight the number of times equal
to its weight. Since the function symbol f has the weight 0, it is not included on
the rightmost branch. To represent this symbol, we make branching to the left
at the corresponding points of the tree.

Before giving a formal definition of the representation of terms as labelled
trees, let us consider trees as sets of binary strings. Any binary tree without
labels can be defined as a set of binary strings, namely the positions of the nodes

in the tree. For example, the tree of Figure 5.1 contains the binary strings A



5.3 Interpretation of the Knuth-Bendix order in WS2S 75

C
\9
\9
N
f h
/ /
f f

Figure 5.1: The labelled tree representation of fhffge, w(f) = 0, w(g) =
2, wh)=w(c) =1

labelled with ¢, strings 1 and 11 labelled as g, string 111 labelled by h, and
strings 110, 1100, and 1110 labelled by f.
Formally, for each term ¢ we define a labelled binary tree Tree; and two posi-

tions Right, and Top, in this tree. The definition is by induction on .

1. Iftis a constant c of a weight w, then Tree; consists of the strings \, 1,...,1% !
labelled by ¢, and Right, = Top, = 1“1

2. If t = f(t'), then Tree, is obtained from Tree, by adding the string Top, -0
labelled by f, and we have Top, = Top, - 0, Right, = Right,.

3. If t = g(t'), where g has a positive weight w, then Tree; is obtained from
Treey by adding the strings Right, -1,..., Right, - 1" labelled by ¢, and we
have Top, = Right, = Top, - 1*.

The mapping ¢t — Tree; defines the embedding of terms into labelled trees.

Now it is easy to define the functions of the term algebra TA. (X) on the
labelled trees. We define the value of a function g on the labelled tree represen-
tation of a term ¢ to be equal to the labelled tree representation of the term g(¢).
Likewise, we can define the Knuth-Bendix order on such trees. It is evident that
the obtained structure on the labelled trees is isomorphic to TA, (X).

Now we will show how to represent labelled trees by s + 1-tuples. Let 1" be
a labelled tree whose set of positions is X. Then we represent 1" as the tuple
(X, X,

is the set of all positions in this tree. If a term ¢ is represented by a labelled tree

., Xy,), where each set X, is the set of positions labelled by g; and X

17

T, and T is represented by a tuple (X, X,,,...,X,,), we will also say that the

tuple (X, Xg,,...,X,,) represents the term ¢.
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To complete our construction, we have to show how to define in the second-
order monadic language the set of tuples which represent the terms of TA, (X),
and then show that all functions and predicates of TA. (X) are definable on the
representation.

To this end we introduce some auxiliary definable predicates on sets of strings.

OneSucc: Informally, OneSucc(X) says that the set of strings X consists of

strings of 1’s, contains the empty string, and is prefix closed.
OneSuce(X) A e XANVMreX(z#ADdye Xao=y-1)).

Spine: The set of strings on rightmost branch of a tree will be called the spine

of this tree. Spine(X,Y) says that X is a tree and Y is its spine.

Spine(X,Y) <« PrefizClosed(X) A OneSucc(Y)ANY C X A
VY'((Y' € X A OneSucc(Y')) DY CY).

Comb: Informally, Comb(X) says that X is a tree and all right-branching posi-

tions in it are in its spine.

Comb(X) <> PrefizClosed(X)A
Ve(x-1€ X D 3IY Spine(X,Y)A Az e€Y).
LabelledTree: Informally, LabelledTree(X, Xy, , ..., X,,) says that (X, X,,, ..., X,,)
is a tuple which is a labelled tree (not necessarily representing a term) ap-
propriately labelled in the following sense: all positions along its spine are
labelled with function symbols of positive weights and all other positions

are labelled with the function symbol of the weight 0.

LabelledTree(X, X,,,...,X,,) ¢ Partition(X, X,
A Comb(X)
N Spine(X, Ugeg\{f}Xg).

. 7ng)

17

The labelled trees defined by Labelled Tree(X, Xy, ..., X, ) are similar to those

representing terms, except that in our representation of terms each occurrence of
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a function symbol of a positive weight should be repeated the number of times
equal to the weight. Let us express this restriction in the weak monadic second-
order logic.

A set consisting of strings of 1’s will be called a 1-set. A 1-set which is a
set of successive positions we be called an interval. The length of an interval
is the number of elements in it. Consider a labelled tree (X, X, ..., X, ) and a
function symbol g € ¥\ {f}. First we introduce notions of g-interval and maximal
g-interval. A g-interval is an interval which is contained in X, and contains no
branching positions with a possible exception of the maximal position of this

interval.

g-interval: Let g € ¥\ {f}. Informally Interval,(I, X) says that

X is a labelled tree and I is a g-interval.

Interval, (I, X) <« LabelledTree(X) A1 C X A
Imyg, my(MinPref (mg, I) A MazPref (mq, I)
AVy(mo Ey Emy Dy €el))
Nz € I( =MazPref(z,1) D z-0 ¢ X).

Maximal g-interval: is a g-interval that can not be properly extended.

MazInterval,(I, X) < Interval,(I, X) AV.J(Interval,(J,X) D I ¢ J).

Our next goal is to express that the length of every maximal g-interval is a
multiple of w(g). To this end we introduce a notion of n-interval, for each positive
n. We say that a position x is the n-successor of a position y if v = y - 1™. An
n-interval is a 1-set which consists of a sequence of positions such that each next
position is an n-successor of the previous. We always assume that an n-interval
contains at least two elements. For example, the following set is a 2-interval
{1,111,11111}. Let us show that for a given n, the property of being an n-

interval is expressible in the monadic second-order logic.

1-set:

OneSet(X) <» Y X CY A OneSuce(Y).
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n-interval:

Interval, (X) <> OneSet(X) A Im(MinPref (m, X) A 1™"(m) € X)
AVy € X (MazPref(y, X)V (y-1" € X AN\jcicn ¥ - 1' ¢ X)).

Now, to say that the length of every maximal g-interval in a tree is a multiple
of w(g), it is enough to say that for every maximal g-interval in the tree, its

minimal point and the successor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(X) says that X is a labelled tree and the length

of every maximal g-interval in this tree is a multiple of w(g).

Preterm(X) <> LabelledTree(X)A
Nges iy VI(MazInterval,(I,X) D
ImoImy (MinPref (mg, I) A MazPref (mqy, I)A
Y Intervalyg)(Y) Amo €Y Amy -1 €Y)).

Finally, to define terms we need to say that the root position of a term is a

constant and there are no other occurrences of constants.

Term:

Term(X) <« Preterm(X) A\ € Uges, A
Nges,(Xg # 0 D A € Xy A MazPref (1°9-D(X), X,)).
So, we have that Term(X) defines the domain of our term algebra in the
structure of two successors. Let us now show how to define the functions of the
term algebra and the Knuth-Bendix order on this domain. Each constant can be

easily defined as following.

Constants: For each constant ¢ € X, define

¢e(X) ¢ Term(X) A X, = Up<icw{I'(N)} A X = X..

Now we consider a function symbol g € ¥, \ {f}. In order to say that
Y = g(X) we need to say that the spine of ¥ extends the spine of X with g

repeated w(g) times.



5.3 Interpretation of the Knuth-Bendix order in WS2S 79

Function symbols of positive weight: For each function symbol g € ¥,\{f}
define

by (X,Y) < Term(X) A Term(Y) A Nnes g Xn = YaA
3S3Im(Spine(X, S) A MazLex(m, S)A
Yy =(X,U Ulgigw(g) {I'(m)})).

In order to say that Y = f(X) where f is the function symbol of zero weight
we need to say that Y extends the greatest position in X, w.r.t. lexicographic
order, with f.

Function symbol of zero weight: For the function symbol of zero weight de-

fine

or(X,Y) & Term(X)A Term(Y) A /\hEE\{f} X, = YA
Im(MazLex(m, X) ANY; = (X; U {m-0})).

Finally, we will define the Knuth-Bendix order. For this we need some auxil-

iary predicates.

Point of difference: Informally, PointOfDifference(x, X,Y) says that X, Y rep-

resent terms and they differ at the position x.

PointOfDifference(x, X,Y) <« Term(X) A Term(Y)A
vgez((xEXg/\ngt))v(xEY;J/\ngg))-

Maximal point of difference: Informally, MazPointOfDifference(x, X,Y) says
that X,Y are terms, and z is the greatest point of difference w.r.t. the lex-

icographic order.

Vy(PointOfDifference(y, X,Y) Dy <jop ).

Now we are ready to define the Knuth-Bendix order. Indeed, to say that
X > Y it is enough to say that X,Y are terms, the maximal point of their
difference is in X and the function symbol at this position in X is greater in
the precedence relation > than the function symbol at this position in Y, if this

position belongs to Y.
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Knuth-Bendix order:

X =Y <« 3Jz(MazPointOfDifference(x, X,Y) Az € XA
/\gez(x ceX;D(xgYV Vieo € Y2)))-

LEMMA 5.3.1 The formulas Term(X),X = Y and ¢,(X,Y) for g € &, define
an interpretation of the term algebra with the Knuth-Bendix order in the structure

of two successors.

PROOF. The claim follows from the definition of the Knuth-Bendix order. O

Using the decidability of the weak monadic second-order theory of two succes-

sors, this lemma and Proposition 5.2.2 we obtain the main result of this chapter.

THEOREM 5.3.2 The first-order theory of any Knuth-Bendix order over any unary

signature is decidable. ([l

Let us note that this interpretation of Knuth-Bendix orders also works if we
consider partial precedence order < on the signature, assuming that f is the
greatest symbol w.r.t. <.

Finally, let us remark that our result can be easily extended to the decidability
of term algebras with several Knuth-Bendix orders which have the same weight
functions and different precedence relations. Indeed, in this case the interpreta-
tion of terms and term functions is the same as above and we only need to add
formulas X »>; Y for each Knuth-Bendix order ;.



Chapter 6

Orientability of rewrite rules by
Knuth-Bendix orders

This chapter is based on papers [Korovin and Voronkov 20015, Korovin and
Voronkov 2003d).

Let us give an informal overview of the results proved in this chapter. The
formal definitions will be given in the next section. Let > be any order on ground
terms and [ — r be a rewrite rule. We say that > orients [ — r, if for every
ground instance [ — 7’ of [ — r we have I' = r'. We write [ = r if for every
ground instance ' — 7" of [ — r we have I' = 7' or I' = r’. There are situations
where we want to check if there ezists a simplification order on ground terms
that orients a given system of (possibly non-ground) rewrite rules. We call this
problem orientability. Orientability can be useful when a theorem prover is run
on a new problem for which no suitable simplification order is known, or when
termination of a rewrite system is to be established automatically (see Chapter 2).

We give a polynomial-time algorithm for checking orientability by Knuth-

Bendix orders.

Theorem 6.9.1:  The problem of the existence of a

Knuth-Bendiz order which orients a given term rewriting

system can be solved in polynomial time.

The main algorithmic complexity of our orientability algorithm arises from
the usage of solvability of homogeneous linear inequalities. We show that this
is unavoidable by reducing solvability of certain homogeneous linear inequalities
to our orientability problem. Using this reduction and a reduction to the circuit

value problem we show the following hardness result.
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Theorem 6.9.2: The problem of orientability of term

rewriting systems by Knuth-Bendixz orders is P-complete.

Moreover, it is P-hard even for ground rewriting systems.

A similar problem of orientability by the non-ground version of real-valued
Knuth-Bendix orders was studied in [Dick et al. 1990] and an algorithm for ori-
entability was given. We prove that any term rewriting system orientable by a
real-valued Knuth-Bendix order is also orientable by an integer-valued Knuth-
Bendix order. This result also holds for the non-ground version of Knuth-Bendix
orders considered in [Dick et al. 1990]. In our proofs we use some techniques of
[Dick et al. 1990]. We also show that some rewrite systems could not be ori-
ented by non-ground version of Knuth-Bendix orders, but can be oriented by our
algorithm.

The second problem we consider is solving ordering constraints consisting of a
single inequality, over a given Knuth-Bendix order. If > is total on ground terms,
then the problem of checking if > orients [ — r has relation to the problem
of solving ordering constraints over >. Indeed, > does not orient [ — r if and
only if there exists a ground instance I’ — 7' of [ — r such that ' > [, i.e., if
and only if the ordering constraint r» > [ has a solution. This means that any
procedure for solving ordering constraints consisting of a single inequality can
be used for checking whether a given system of rewrite rules is oriented by >,
and vice versa. Using the same technique as for the orientability problem, we
show that the problem of solving Knuth-Bendix ordering constraints consisting
of single inequalities can be solved in polynomial time. Let us remark that this
algorithm does not use solvability of systems of homogeneous linear inequalities

and runs in the time O(n?) of the size of the constraint.

Theorem 6.9.3: The problem of solving a given Knuth-

Bendix ordering constraint consisting of a single inequal-

ity can be solved in the time O(n?).

6.1 Preliminaries

In the sequel we will often refer to the least and the greatest terms among the
terms of the minimal weight for a given Knuth-Bendix order. It is easy to see that
every term of the minimal weight is either a constant of the minimal weight, or a

term f™(c), where c is a constant of the minimal weight, and w(f) = 0. Therefore,
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the least term of the minimal weight is always the constant of the minimal weight
which is the least among all such constants w.r.t. >. This constant is also the
least term w.r.t. >.

The greatest term of the minimal weight exists if and only if there is no unary
function symbol of the weight 0. In this case, this term is the constant of the

minimal weight which is the greatest among such constants w.r.t. >.

DEFINITION 6.1.1 (grounding substitution) A substitution 0 is grounding for an
expression F (i.e., term, rewrite rule etc.) if for every variable x occurring in £
the term 6(z) is ground. We denote by Ef the expression obtained from E by
replacing in it every variable x by 0(x). A ground instance of an expression FE is

any expression Ff which is ground. 0

A rewrite rule is a pair of terms (I, r), possibly with variables, usually denoted
by | — r. A term rewriting system is a finite set of term rewrite rules. The

following definition is central to this chapter.

DEFINITION 6.1.2 (orientability) A Knuth-Bendix order > orients a rewrite rule
[ — r if for every ground instance I — 7' of | — r we have I’ = r'. A Knuth-

Bendix order orients a system R of rewrite rules if it orients every rewrite rule

in R. O

We show that the problem of the existence of a Knuth-Bendix order which orients
a given system of term rewrite rules can be solved in polynomial time. Moreover,
if the given system of rewrite rules is orientable by a Knuth-Bendix order, we can
find such an order in polynomial time.

The decidability of the orientability problem for Knuth-Bendix orders does not
follow immediately from the decidability of Knuth-Bendix ordering constraints
(Chapter 4), as it is in the case of recursive path orders. For a given finite
signature, there exists only a finite number of different recursive path orders.
But there exists an infinite number of different Knuth-Bendix orders, since the
weight function is not restricted.

We define orientability in terms of ground instances of rewrite rules. One can
also define orientability using the non-ground version of Knuth-Bendix orders as
originally defined by Knuth and Bendix [1970]. But then we obtain a weaker

notion (fewer systems can be oriented) as the following example shows.

ExAMPLE 6.1.3 Consider the following rewrite rule:
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g(x,a,b) = g(b,b,a). (6.1)

For any choice of the weight function w and order >, g(x,a,b) =xpo g(b,b,a)
does not hold for the original Knuth-Bendix order with variables. However,
rewrite rule (6.1) can be oriented by any Knuth-Bendix order such that w(a) >
w(b) and a > b. O

In fact the order based on all ground instances is the greatest simplification order

extending the Knuth-Bendix order from ground terms to non-ground terms.

6.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous
linear inequalities. The definitions related to systems of linear inequalities can be
found in standard textbooks, see, e.g., Schrijver [1998]. We will denote column
vectors of variables by X, integer or real vectors by V, W integer or real matrices
by A, B. Column vectors consisting of 0’s will be denoted by 0. The set of real

numbers is denoted by R, and the set of non-negative real numbers by R*.

DEFINITION 6.2.1 (homogeneous linear inequalities) A homogeneous linear in-
equality has the form either VX > 0 or VX > 0. A system of homogeneous

linear inequalities is a finite set of homogeneous linear inequalities. U

Solutions (real or integer) to systems of homogeneous linear inequalities are de-
fined as usual. When we write a system of homogeneous linear inequalities as
AX > 0, we assume that every inequality in the system is of the form VX > 0
(but not of the form VX > 0).

We will use the following fundamental property of system of homogeneous

linear inequalities:

LEMMA 6.2.2 Let AX > 0 be a system of homogeneous linear inequalities, where
A is an integer matriz. Then there exists a finite number of integer vectors
Vi,...,V, such that the set of solutions to AX > 0 is

{rVi+. 4+ Valr,...,r e R L (6.2)

O
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The proof can be found in, e.g., [Schrijver 1998].
The following lemma was proved in [Martin 1987] for the systems of linear
homogeneous inequalities over the real numbers. We will give a simpler proof of

it here.

LEMMA 6.2.3 Let AX > 0 be a system of homogeneous linear inequalities where
A is an integer matriz and let Sol be the set of all real solutions to the system.
Then the system can be split into two disjoint subsystems BX > 0 and CX > 0
such that

1. BV =0 for every V € Sol.

2. If C' is non-empty then there exists a solution V & Sol such that C'V > 0.

Proor. By Lemma 6.2.2 we can find integer vectors Vi,...,V, such that the
set Sol is (6.2). We define BX > 0 to be the system consisting of all inequalities
WX > 0 in the system such that WV; =0 for all : = 1,...,n; then property 1 is
obvious.

Note that the system C'X > 0 consists of the inequalities WX > 0 such that
for some 2 we have WV; > 0. Take V to be Vi + ...+ V,,, then it is not hard to
argue that C'V > 0. O

Let W be a system of homogeneous linear inequalities. We will call the subsystem
BX > 0 of W the degenerate subsystem if the following holds. Denote by C' the
matrix of the complement to BX > 0 in W and by Sol the set of all real solutions
to W. Then

1. BV =0 for every V € Sol.

2. If C' is non-empty then there exists a solution V' € Sol such that C'V > 0.

For every system W of homogeneous linear inequalities the degenerate subsystem
of W will be denoted by W=. Note that the degenerate subsystem is defined for
arbitrary systems, not only those of the form AX > 0.

Let us now prove another key property of integer systems of homogeneous
linear inequalities: the existence of a real solution implies the existence of an

integer solution.
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LEMMA 6.2.4 Let W be a system of homogeneous linear inequalities with an in-
teger matriz. Let V' be a real solution to this system and for some subsystem of
W with the matriz C' we have CV > 0. Then there exists an integer solution V'
to W for which we also have CV' > 0.

ProOOF. Let W be obtained from W by replacement of all strict equalities
WX > 0 by their non-strict versions WX > 0. Take vectors Vi,...,V, so that
the set of solutions to W' is (6.2). Evidently, for every inequality WX > 0 in
CX > 0 there exists some 7 such that WV; > 0. Define V' as Vi + ... +V,,
then it is not hard to argue that C'V' > 0. We claim that V' is a solution to
W. Assume the converse, then there exists an inequality WX > 0 in W such
that WV’ = 0. But WV’ = 0 implies that WV; = 0 for all 7, so W has no real

solution, contradiction. O
The following lemma follows from Lemmas 6.2.3 and 6.2.4.

LEMMA 6.2.5 Let W be a system of homogeneous linear inequalities with an inte-
ger matriz and its degenerate subsystem is different from W. Let C' be the matriz
of the complement of the degenerate subsystem. Then there exists an integer
solution V' to W such that CV > 0. O

The following result is well-known, see, e.g., [Schrijver 1998|.

LEMMA 6.2.6 The ezistence of a real solution to a system of linear inequalities

can be decided in polynomaial time. 0

This lemma and Lemma 6.2.4 imply the following key result.

LEMMA 6.2.7 (i) The existence of an integer solution to an integer system of ho-
mogeneous linear inequalities can be decided in polynomial time. (ii) If an integer
system W of homogeneous linear inequalities has a solution, then its degenerate

subsystem W= can be found in polynomial time.

PROOF. (i) By Lemma 6.2.6 the existence of a real solution can be checked
in polynomial time. By Lemma 6.2.4 an integer solution exists if and only if
there exists a real solution. Therefore, the existence of an integer solution can be
decided in polynomial time.

(ii) Let WX > 0 be a linear inequality in W. By Lemma 6.2.3 and the
definition of the degenerate system W=, this inequality belongs to W= if and
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only if WU {W X > 0} has no solution. By (i) this can be checked in polynomial
time. U

6.3 States

In Section 6.5 we will present an algorithm for orientability by Knuth-Bendix
orders. This algorithm will work on states which generalize systems of rewrite
rules in several ways. A state will use a generalization of rewrite rules to tuples
of terms and some information about possible solutions.

Let > be any order on ground terms. We extend it lexicographically to an
order on tuples of ground terms as follows: we write {l1,...,l,) > (ry,...,ry) if
for some i € {1,...,n} we have Iy = rq,...,l;_1 = r;_y and [; > r;. We call a
tuple inequality any expression (l1,...,1l,) > (ry,...,r,). The length of this tuple
inequality is n.

In the sequel we assume that ¥ is a fixed signature and e is a constant not
belonging to . The constant e will play the role of a temporary substitute for a
constant of the minimal weight. We also assume that different rewrite rules have
disjoint sets of variables. This can be achieved by renaming variables.

We will present the algorithm for orienting a system of rewrite rules as a
sequence of state changes. We call a state a tuple (R, M, W, U, G, L, >>), where

1. R is a set of tuple inequalities (l,...,1,) > (rq,...,r,), such that every

two different tuple inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms

of the minimal weight.

3. W is a system of homogeneous linear inequalities over the following vari-
ables: {wy | g € ¥ U{e}}. This system denotes constraints on the weight

function collected so far, and w, denotes the minimal weight of terms.

4. U is one of the following values one or any. The value one signals that
there exists exactly one term of the minimal weight, while any means that
no constraints on the number of elements of the minimal weight have been

imposed.
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5.

G and L are sets of constants, each of them contains at most one element.
If d € G (respectively d € L), this signals that d is the greatest (respectively

least) term among the terms of the minimal weight.

6. >> is a binary relation on Y. This relation denotes the subset of the prece-

dence relation computed so far.

Let w be a weight function on X, > a precedence relation on ¥ compatible with

w, and > the Knuth-Bendix order induced by (w, >). A substitution o grounding

for a set of variables X is said to be minimal for X if for every variable x € X

the term o(x) is of the minimal weight. We extend w to e by defining w(e) to be

the minimal weight of a constant of X.
We say that the pair (w,>>) is a solution to a state (R,M, W, U, G, L, >>) if

1.

For every tuple inequality (ly,...,l,) > (r,...,r,) in R and every substi-
tution ¢ grounding for this tuple inequality and minimal for M we have

(ho,...,l,o) = (rio,...,1,0).

The weight function w solves every inequality in W in the following sense:
replacement of each wy by w(g) gives a tautology. In addition, w(e) coin-

cides with the minimal weight w(c) of constants ¢ € X.
If U = one, then there exists exactly one term of the minimal weight.

If d € G (respectively d € L) for some constant d, then d is the greatest
(respectively least) term among the terms of the minimal weight. Note that
if d is the greatest term of the minimal weight, then the signature contains

no unary function symbol of the weight 0.

> extends >>.

We will now show how to reduce the orientability problem for the systems of

rewrite rules to the solvability problem for states.

Let R be a system of rewrite rules such that every two different rules in R
have disjoint variables. Denote by Sg the state (R,M, W, U, G, L, >>) defined as

follows.

1. R consists of all tuple inequalities (I) > (r) such that [ — r belongs to R.

2. M= 0.
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3. W consists of (a) all inequalities w, > 0, where g € ¥ is a non-constant;
(b) the inequality w, > 0 and all inequalities wy — w, > 0, where d is a

constant of X.
4. U = any.
5. G=L=10.
6. >> is the empty binary relation on .

LEMMA 6.3.1 Let w be a weight function, > a precedence relation on X compat-
ible with w, and > a Knuth-Bendiz order induced by (w,>>). Then > orients R
if and only if (w,>>) is a solution to Sg. O

The proof is straightforward.

6.4 Trivial signatures

For technical reasons, we will distinguish two kinds of signatures. Essentially, our
algorithm depends on whether the weights of terms are restricted or not. For the
so-called non-trivial signatures, the weights are not restricted. When we present
the orientability algorithm for the non-trivial signatures, we will use the fact that
terms of sufficiently large weights always exist. For the trivial signatures we will
present a simpler orientability algorithm in Section 6.6.

A signature is called trivial if it contains no function symbols of arity > 2, and
at most one unary function symbol. Note that a signature is non-trivial if and
only if it contains either a function symbol of arity > 2 or at least two function

symbols of arity 1.

LEMMA 6.4.1 Let ¥ be a non-trivial signature and w be a weight function for 3.
Then for every integer m there exists a ground term of the signature ¥ such that

t| > m.

PRrOOF. It is enough to show how for every term ¢ build a term of the weight
greater than |t|. Note that the weight of any term is positive. If ¥ contains a
function symbol g of arity n > 2, then |g(¢,...,t)| = w(g) + n - |t| > [¢t]. If X
contains two unary function symbols, then for at least one of them g we have
w(g) > 0. Then |g(t)| = w(g) + |t| > |¢]. 0O
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6.5 An algorithm for orientability in the case of

non-trivial signatures

In this section we only consider non-trivial signatures. An algorithm for trivial
signatures is given in Section 6.6. The algorithm given in this section will be
illustrated below in Section 6.5.5 on the rewrite rule of Example 6.1.3.

Our algorithm works as follows. Given a system R of rewrite rules, we build
the initial state Sp = (R,M, W, U, G,L,>>). Then we repeatedly transform
(R,M, W, U, G,L,>>>) as described below. We call the size of the state the total
number of occurrences of function symbols and variables in R. Every transfor-
mation step will terminate with either success or failure, or else decrease the size
of R.

At each step we assume that R consists of k tuple inequalities

<l1, L1> > <7“1, R1>,
(6.3)

<lk7 Lk> > (Tlﬁ Rk>7

such that all of the L;, R; are tuples of terms.

We will label parts of the algorithm. These labels will be used in the proof of
its soundness. The algorithm can make a non-deterministic choice of a constant
of the minimal weight, but at most once at step (T3) below, and the number
of non-deterministic branches is bounded by the number of constants in . If
we allow to extend our signature with an extra constant, which is appropriate
for most applications, then this non-deterministic choice can be replaced by by
adding e as a new constant in our signature.

When the set W of linear inequalities changes, we assume that we check the
new set for satisfiability, and terminate with failure if it is unsatisfiable. Likewise,
when we change > we check if it can be extended to an order and terminate

with failure if it cannot.

6.5.1 The algorithm

The algorithm works as follows. Every step consists of a number of state trans-
formations, beginning with PREPROCESS defined below. During the algorithm,

we will perform two kinds of consistency checks:
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e The consistency check on W is the check whether W has a solution. If it

does not, we terminate with failure.

e The consistency check on > is the check whether >> can be extended to
an order, i.e., the transitive closure > of >> is irreflexive, i.e., forno g € X
we have g > ¢. If >> cannot be extended to an order, we terminate with

failure.

It is not hard to argue that both kinds of consistency checks can be performed
in polynomial time. The consistency check on W is polynomial by Lemma 6.2.7.
The consistency check on >> is polynomial since the transitive closure of a binary
relation can be computed in polynomial time, see, e.g., [Cormen, Leiserson and
Rivest 1991].

PREPROCESS. Do the following transformations while possible. If R con-
tains a tuple inequality (ly,...,l,) > (l1,...,l,), terminate with failure. Other-
wise, if R contains a tuple inequality (I,ly,...,0,) > (l,r1,...,7,), replace it by
(liy ooy ly)y > (rey ooy ).

If R becomes empty, proceed to TERMINATE, otherwise continue with MAIN.

MAIN. Now we can assume that in (6.3) each [; is a term different from the
corresponding term r;. For every variable x and term ¢ denote by n(x,t) the
number of occurrences of x in t. For example, n(z, g(z, h(y,z))) = 2. Likewise,
for every function symbol g € ¥ and term ¢ denote by n(g,t) the number of

occurrences of ¢ in t. For example, n(h, g(z, h(y,z))) = 1.

(M1) For all z and ¢ such that n(z,l;) > n(z,r;), add x to M.

(M2) If for some i there exists a variable & M such that n(x,l;) < n(z,r;),

then terminate with failure.

For every pair of terms [, r, denote by W (l,r) the linear inequality obtained
as follows. Let v; and v, be the numbers of occurrences of variables in [ and r

respectively. Then

W(l,r)= Z(n(g, ) —n(g,r))wy + (v, — v,)we > 0. (6.4)

gey

For example, if | = h(z, f(y)) and r = f(g(x, g(x,y))), then
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W(l,r)=w, —2 -w, —we > 0.

(M3) Add to W all the linear inequalities W (l;,r;) for all i and perform the

consistency check on W.

Now compute W=. If W= contains none of the inequalities W (l;, 1), proceed to
TERMINATE. Otherwise, for all ¢ such that W (l;,r;) € W= apply the applicable

case below, depending on the form of /; and r;.

(M4) If (I;,7;) has the form (g(si, ..., sn), h(t1,.-.,t,)), where g is different from
h, then extend >> by adding g >> h and remove the tuple inequality
(l;, L;) > (r;, R;) from R. Perform the consistency check on >>.

(M5) If (I;,r;) has the form (g(sy,...,sn),g(t1,...,t,)), then replace (I;, L;) >
<T‘Z', Rz> by <81, R Lz> > (tl, ey b, Rz>

(M6) If ({;,r;) has the form (z,y), where x and y are different variables, do the
following. (Note that at this point 2,y € ML) If L; is empty, then terminate
with failure. Otherwise, set U to one and replace (l;, L;) > (r;, R;) by
(Li) > (Ri).

(MT7) If (I;,r;) has the form (z,t), where ¢ is not a variable, do the following. If
t is not a constant, or L; is empty, then terminate with failure. So assume
that ¢ is a constant ¢. If L = {d} for some d different from ¢, then terminate
with failure. Otherwise, set L to {c}. Replace in L; and R; the variable x
by ¢, obtaining L) and R] respectively, and then replace (I;, L;) > (r;, R;)
by (L;) > (R)).

(M8) If (I;,r;) has the form (¢,x), where ¢ is not a variable, do the following.
If t contains z, remove (l;, L;) > (r;, R;) from R. Otherwise, if ¢ is a non-
constant or L; is empty, terminate with failure. (Note that at this point
r € M and W(t,x) € W=.) Let now ¢ be a constant c. If G = {d} for some
d different from ¢, then terminate with failure. Otherwise, set G to {c}.
Replace in L; and R; the variable = by ¢, obtaining L} and R} respectively,
and then replace (l;, L;) > (r;, R;) by (L}) > (R}).

After this step repeat PREPROCESS.
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TERMINATE. Let (R, M, W, U,G,L,>>) be the current state. Do the follow-

ing.

(T1) If d € G, then for all constants ¢ different from d such that w, —w, > 0
belongs to W= extend >> by adding d >> c¢. Likewise, if ¢ € L, then for
all constants d different from ¢ such that wg; — w, > 0 € W= extend >> by
adding d >> c. Perform the consistency check on >>.

(T2) For all f in ¥ do the following. If f is a unary function symbol and wy > 0
belongs to W=, then extend >> by adding f >> h for all h € ¥ — {f}.
Perform the consistency check on >>. If U = one or G # (), then terminate

with failure.

(T3) If there exists no constant ¢ such that w. — w, > 0 is in W=, then non-
deterministically choose a constant ¢ € ¥, add w, — w. > 0 to W, perform
the consistency check on W and repeat PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one

constant ¢ such that w. — w, > 0 belongs to W=.

(T5) Terminate with success.

We will show how to build a solution at step (T5) below in Lemma 6.5.19.

6.5.2 Correctness

In this section we prove correctness of the algorithm. In Section 6.5.3 we show
how to find a solution when the algorithm terminates with success. The correct-
ness will follow from a series of lemmas asserting that the transformation steps
performed by the algorithm preserve the set of solutions. We will use notation
and terminology of the algorithm. We say that a step of the algorithm is correct if
the set of solutions to the state before this step coincides with the set of solutions
after the step. When we prove correctness of a particular step, we will always
denote by S = (R, M, W, U, G, L, >>) the state before this step, and by S’ the
state after this step. When we use substitutions in the proof, we always assume
that the substitutions are grounding for the relevant terms.

The following two lemmas can be proved by a straightforward application of

the definition of solution to a state.
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LEMMA 6.5.1 (consistency check) If consistency check on W or on >> termi-

nates with failure, then S has no solution. O

LEMMA 6.5.2 Step PREPROCESS s correct. UJ

Let us now analyze MAIN. For every weight function w and precedence relation
> compatible with w we call a counterezample to (l;, L;) > (r;, R;) w.r.t. (w,>>)
any substitution o minimal for M such that (r;o, R;0) = (l;0, L;0) for the order
> induced by (w,>).

Denote by S™ the state obtained from S by removal of the ith tuple inequality
(Il;, L;) > (ri, R;) from R. The following lemma follows immediately from the

definition of solution.

LEMMA 6.5.3 (counterexample) If for every solution (w,>>) to S™% there exists
a counterexample to (l;, L;) > (r;, R;) w.r.t. (w,>>), then S has no solution. If for
every solution (w,>>) to S~ there exists no counterezample to the tuple inequality
(I;, L) > (ri, R;), then removing this tuple inequality from R does not change the
set of solutions to S. O

This lemma means that we can change (l;, L;) > (r;, R;) into a different tuple
inequality or change M, if we can prove that this change does not influence the
existence of a counterexample.

Let o be a substitution, = a variable and ¢ a term. Denote by o’ the substi-
tution defined by

o(y), ity #uw,
Ui(y)z{ ) .
t, if y=u.

LEMMA 6.5.4 Let w be a weight function on ¥ and > a precedence relation on X
compatible with w. Suppose also that for some x and i we have n(x,l;) > n(z,r;)
and there exists a counterexample o to (l;, L;) > (r;, R;) w.r.t. (w,>). Then
there exists a counterexample o' to (l;, L;) > (r;, R;) w.r.t. (w,>) minimal for

{}.

PROOF. Suppose that ¢ is not minimal for {z}. Denote by ¢ a minimal constant
w.r.t. w and by ¢ the term xzo. Since o is not minimal for {z}, we have |t| > |c|.
Consider the substitution of. Since o is a counterexample, we have |r;o| > |l;0].
We have
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oz = [lio| = n(x, 1) - (|t] = le]);
rioz| = [rio| —n(w,re) - ([t = |c]).
Then
riog|l = [riol —n(w,ri) - (t] = lel) = |ho| —nle,r:) - (|t] - [c])
> |ho| = n(z, k) - ([t = cl) = |log].
Therefore, |r;0| > |l;0¢|, and so ¢t is a counterexample too. O

One can immediately see that this lemma implies correctness of step (M1).

LEMMA 6.5.5 Step (M1) is correct.

PRrROOF. Evidently, every solution to S is also a solution to S’. But by Lemma 6.5.4,
every counterexample to S can be turned into a counterexample to S’, so every

solution to S’ is also a solution to S. O
Let us now turn to step (M2).

LEMMA 6.5.6 (M2) If for some i and v ¢ M we have n(z,l;) < n(z,r;), then S

has no solution. Therefore, step (M2) is correct.

PROOF. We show that for every (w, >) there exists a counterexample to (;, L;) >
(ri, R;) w.r.t. (w,>). Let o be any substitution grounding for this tuple inequal-

ity. Take any term ¢ and consider the substitution of. We have
riog| = liog] = [rio| — o] + (n(z,r:) —n(z, 1)) - ([t] — |ao]).

By Lemma 6.4.1 there exist terms of an arbitrarily large weight, so for a term ¢

t

% i1s a counterexample

of a large enough weight we have |r;ol| > |l;ol], and so o
to <ll,Ll> > <7"Z,RZ>
Correctness of (M2) is straightforward. O

Note that after step (M2) for all ¢ and & ¢ M we have n(z,l;) = n(z, ;).
Denote by O, the substitution such that ©.(z) = ¢ for every variable z.

LEMMA 6.5.7 (M3) Let for all i and v ¢ M we have n(x,l;) = n(x,r;). Every
solution (w,>>) to'S is also a solution to W (l;,r;). Therefore, step (M3) is correct.
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Proor. Let c be a constant of the minimal weight. Consider the substitution
©.. Note that this substitution is minimal for M. It follows from the definition
of W that (w,>) is a solution to W(l;,r;) if and only if |;©. > |r;0.]. But
I1;©| > |ri©.| is a straightforward consequence of the definition of solutions to
tuple inequalities.

Correctness of (M3) is straightforward. O

LEMMA 6.5.8 Let for all x ¢ M we have n(x,l;) = n(x,r;). Let also W(l;,r;) €
W=. Then for every solution to S~ and every substitution o minimal for M we

have |l;o| = |rio].

Proor. Using the fact that n(x,l;) = n(z,r;) for all x ¢ M, it is not hard to
argue that |l;o| — |r;o| does not depend on o, whenever ¢ is minimal for M.

Let ¢ be a constant of the minimal weight. It follows from the definition of
W that if W (l;,r;) € W=, then for every solution to W (and so for every solution
to S7) we have [[;0.] = |r;®.|. Therefore, |l;0| = |r;o| for all substitutions o

minimal for ML O

The proof of correctness of steps (M4)—(M8) will use this lemma in the fol-
lowing way. A pair (w,>>) is a solution to S if and only if it is a solution to
S~¢ and a solution to (l;, L;) > (r;, R;). Equivalently, (w,>>) is a solution to S
if and only if it is a solution to S~* and for every substitution ¢ minimal for M
we have (l;0, L;o) > (r;o, R;o). But by Lemma 6.5.8 we have |l;o0| = |r;ol, so
(lio, Lio) > (r;o, R;o) must be satisfied by either condition 2 or condition 3 of
the definition of Knuth-Bendix orders (Definition 3.3.8).

This consideration can be summarized as follows.

LEMMA 6.5.9 Let for all x ¢ M we have n(x,l;) = n(x,r;). Let also W(l;,r;) €
W=. Then a pair (w,>>) is a solution to S if and only if it is a solution to S™ and
for every substitution o minimal for M the following holds. Let l;o0 = g(ty,...,t,)

and r;o = h(s1,...,sp). Then at least one of the following conditions holds
1. ljoc =r;0 and L;oc = R;o; or
2. g>h; or

3. g = h and for some 1 < i < n we have tyoc = $10,...,t;_ 10 = s;_10 and

t,0 > KBO SiO.
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LEMMA 6.5.10 Step (M4) is correct.

Proor. We know that [; = g¢(s1,...,s,) and r; = h(ty,...,t,) for g # h.
Take any substitution o minimal for M. Obviously, l;0 = r;o is impossible, so
(l;; LiYo > (r;, R;)o if and only if [;o0 > r;0. By Lemma 6.5.9 this holds if and
only if g > h, so step (M4) is correct. O

LEMMA 6.5.11 Step (M5) is correct.

Proor. We know that [; = g(sy,...,s,) and r; = g(t1,...,t,). Note that
due to PREPROCESS, I; # r;, so n > 1. It follows from Lemma 6.5.9 that
(l;; LiYo > (r;, R;)o if and only if (s1,...,s,, Li)o = (t1,...,t,, R;)o, so step
(M5) is correct. O

LEMMA 6.5.12 Step (M6) is correct.

Proor. We know that [; = z and r; = y, where x, y are different variables. Note
that if L; is empty, then the substitution ©., where c is of the minimal weight,
is a counterexample to (x, L;) > (y, R;). So assume that L; is non-empty and

consider two cases.

1. If there exist at least two terms s, of the minimal weight, then there exists
a counterexample to (x, L;) > (y, R;). Indeed, if s > t, then yo > xo for
every o such that o(z) =t and o(y) = s.

2. If there exists exactly one term ¢ of the minimal weight, then xo = yo
for every ¢ minimal for M. Therefore, (z, L;) > (y, R;) is equivalent to
(L) > (Ry).

In either case it is not hard to argue that step (M6) is correct. U

LEMMA 6.5.13 Step (M7) is correct.

Proor. We know that {; = x and r; = t. Let ¢ be the least constant in the
signature. If ¢ # ¢, then O, is obviously a counterexample to (z, L;) > (t, R;).
Otherwise t = ¢, then for every counterexample o we have o(x) = c¢. In either

case it is not hard to argue that step (M7) is correct. U
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LEMMA 6.5.14 Step (M8) is correct.

Proor. We know that I; = t and r; = z. Note that ¢t # x due to the
PREPROCESS step, so if x occurs in ¢ we have to = zo for all 0. Assume

now that x does not occur in ¢t. Then £ € M. Consider two cases.

1. tis a non-constant. For every substitution o minimal for M we have |to| =
|zo|, hence to is a non-constant term of the minimal weight. This implies
that the signature contains a unary function symbol f of the weight 0. Take

any substitution o. It is not hard to argue that ol W7 ig a counterexample

to <t, LZ> > <.’L‘,Rl>

2. tis a constant c¢. Let d be the greatest constant in the signature among the
constants of the minimal weight. If d # ¢, then ©4 is obviously a counterex-
ample to (¢, L;) > (x, R;). Otherwise d = ¢, then for every counterexample

o we have o(z) = c.
In either case it is not hard to argue that step (M8) is correct. O

Let us now analyze steps TERMINATE. Note that for every constant ¢ the
inequality w.—w,. > 0 belongs to W and for every function symbol g the inequality
wy > 0 belongs to W too.

LEMMA 6.5.15 Step (T1) is correct.

Proor. Suppose d € G, ¢ # d, and w. — w, > 0 belongs to W=. Then for
every solution to S we have w(c) = w(e), and therefore ¢ is a constant of the
minimal weight. But since for every solution d is the greatest constant among
those having the minimal weight, we must have d > c.

The case ¢ € L is similar. O

LEMMA 6.5.16 Step (T2) is correct.

Proor. If f is a unary function symbol and wy > 0 belongs to W=, then for
every solution w(f) = 0. By the definition of Knuth-Bendix orders we must have
f>gforall ge ¥ —{f}. But then (i) there exists an infinite number of terms
of the minimal weight and (ii) a constant d € G cannot be the greatest term of
the minimal weight (since for example f(d) > d and |f(d)| = |d|). O
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Step (T3) makes a non-deterministic choice, which can result in several states
Si,...,S,. We say that such a step is correct if the set of solutions to S is the

union of the sets of solutions to Sy,...,S,.

LEMMA 6.5.17 Step (T3) is correct.

PrOOF. Note that w is a solution to w, — w,. > 0 if and only if w(c) is the
minimal weight, so addition of w, — w, > 0 to W amounts to stating that ¢ has
the minimal weight. Evidently, for every solution, there must be a constant ¢ of

the minimal weight, so the step is correct. O

LEMMA 6.5.18 Step (T4) is correct.

PROOF. Suppose U = one, then for every solution there exists a unique term of
the minimal weight. If, ¢ is a constant such that w, — w, > 0 belongs to W=,
then ¢ must be a term of the minimal weight. Therefore, there cannot be more

than one such a constant c. O

6.5.3 Extracting a solution

In this section we will show how to find a solution when the algorithm terminates

with success.

LEMMA 6.5.19 Step (T5) is correct.

Proor. To prove correctness of (Th) we have to show the existence of solution.
In fact, we will show how to build a particular solution.

Note that when we terminate at step (T5), the system W is solvable, since it
was solvable initially and we performed consistency checks on every change of W.

By Lemma 6.2.5 there exists an integer solution w to W which is also a solution
to the strict versions of every inequality in W—W=. Likewise, there exists a linear
order > extending >, since we performed consistency checks on every change
of >>. We claim that (w,>>) is a solution to (R,M, W, U, G, L, >>). To this end
we have to show that w is weight function, > is compatible with w and all items
1-5 of the definition of solution are satisfied.

Let us first show that w is a weight function. Note that W contains all

inequalities w, > 0, where g € X is a non-constant, the inequality w, > 0 and the
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inequalities wy — w, > 0 for every constant d € ¥. So to show that w is a weight
function it remains to show that at most one unary function symbol f has weight
0. Indeed, if there were two such function symbols f; and fs, then at step (T2)
we would add both f; >> f, and f; >> f;, but the following consistency check
on >> would fail.

The proof that > is compatible with w is similar.

Denote by > the Knuth-Bendix order induced by (w,>).

1. For every tuple inequality (l;, L;) > (r;, R;) in R and every substitution o
minimal for M we have (l;0, L;o) > (r;o, R;o). In the proof we will use the

fact that w(e) is the minimal weight.

By step (M3), the inequality W (l;,r;) does not belong to W= (otherwise
(l;, L;) > (r;, R;) would be removed at one of steps (M4)-(M8)). It follows
from the definition of W and the construction of w that if W(l;,r;) €
W — W=, then |[;0.] > |r;O.|, where ¢ is any constant of the minimal
weight. In Lemma 6.5.8 we proved that |/;o| — |r;0| does not depend on o,
whenever o is minimal for M. Therefore, |l;0| > |r;o| for all substitutions

o minimal for ML

2. The weight function w solves every inequality in W and w(e) coincides with
the minimal weight. This follows immediately from our construction, if we
show that w(e) is the minimal weight. Let us show that w, is the minimal
weight. Indeed, since W initially contains the inequalities w.—w, > 0 for all
constants ¢, we have that w(e) is less than or equal to the minimal weight.
By step (T3), there exists a constant ¢ such that w. — w, > 0 is in W=,
hence w(c) = w(e), and so w(e) is greater than or equal to the minimal

weight,.

3. If U = one, then there exists exactly one term of the minimal weight. As-
sume U = one. We have to show that (i) there exists no unary function
symbol f of weight 0 and (ii) there exists exactly one constant of the mini-
mal weight. Let f be a unary function symbol. By our construction, wy > 0
belongs to W. By step (T2) w; > 0 does not belong to W=, so by the defini-
tion of w we have w(f) > 0. By our construction, w.—w, > 0 belongs to W
for every constant c¢. By step (T4), at most one of such inequalities belongs
to W=. But if w. — w, > 0 does not belong to W=, then w(c) — w(e) > 0
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by the construction of w. Therefore, there exists at most one constant of

the minimal weight.

4. If d € G (respectively d € L) for some constant d, then d is the greatest
(respectively least) term among the terms of the minimal weight. We con-
sider the case d € G, the case d € L is similar. But by step (T2) there
is no unary function symbol f such that w; > 0 belongs to W=, therefore
w(f) > 0 for all unary function symbols f. This implies that only constants
may have the minimal weight. But by step (T1) and the definition of w,
for all constants ¢ of the minimal weight we have d >> ¢, and hence also
d>c.

5. > extends >>. This follows immediately from our construction.

6.5.4 Time complexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear
inequalities, and a polynomial-time algorithm for transitive closure, we can prove

the following lemma.

LEMMA 6.5.20 The algorithm runs in time polynomial of the size of the system

of rewrite rules.

Proor. Note that the algorithm makes polynomial number of steps. Indeed,
initially the size of R is O(nlogn) of the size of the system of rewrite rules (and
can even be made linear, if we avoid renaming variables). Each of the steps (M4)-
(M8) decreases the size of R. The algorithm can make a non-deterministic choice,
but at most once, and the number of non-deterministic branches is bounded by
the number of constants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It
remains to prove that every step can be made in polynomial time of the size of a
state and that the size of every state is polynomial in the size of the input.

Solvability of W can be checked in polynomial time by Lemma 6.2.7. The
system W= can be built in polynomial time by the same lemma. The relation
>> can be extended to an order if and only if the transitive closure =>>' of >>
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is irreflexive, i.e., there is no g such that g >>' g. The transitive closure can be
built in polynomial time. The check for irreflexivity can be obviously done in
polynomial time too. Therefore, every step can be performed in polynomial time
of the size of the state.

It remains to show that the size of S is bound by a polynomial. The only part
of S that is not immediately seen to be polynomial is W. However, it is not hard
to argue that the number of equations in S of the form W(l,r) is bound by the
size of the input, and every equation obviously has a polynomial size. It is also

easy to see that the size of the remaining equations is polynomial too. ([

6.5.5 A simple example

Let us consider how the algorithm works on the rewrite rule g(z, a, b) — g(b, b, a)

of Example 6.1.3. Initially, R consists of one tuple inequality

{9(z, a,b)) > (g(b,b,a)) (6.5)

and W consists of the following linear inequalities:

wy >0, w,>0, we—we=>0, wp—we=>D0.

At step (M1) we note that n(x, g(z,a,b)) =1 > 0 = n(x, g(b,b,a)). Therefore,
we add x to M.
At step (M3) we add the linear inequality w, — w;, > 0 to W obtaining

ngOJ w6>07 wa_wCZOJ wb_wezoa we_waO-

Now we compute W=. It consists of two equations w, — w, > 0 and w, — wy, > 0,
so we have to apply one of the steps (M4)—(MS8), in this case the applicable step
is (M5). We replace (6.5) by

(x,a,b) > (b,b,a). (6.6)

At the next iteration of step (M3) we should add to W the linear inequality
we — wy > 0, but this linear inequality is already a member of W, and moreover
a member of W=. So we proceed to step (M7). At this step we set L = {b} and
replace (6.6) by
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{(a,b) > (b,a). (6.7)

Then at step (M2) we add w, —w, > 0 to W obtaining

ngO, we>07 wa_wezoa wb_wezoa we—waO, wa—waO-

Now w,—wj, > 0 does not belong to the degenerate subsystem of W, so we proceed
to TERMINATE. Steps (T1)-(T4) change neither W nor >, so we terminate with
success.

Solutions extracted according to Lemma 6.5.19 will be any pairs (w, >>) such
that w(a) > w(b). Note that these are not all solutions. There are also solutions
such that w(a) = w(b) and a > b. However, if we try to find a description of all
solutions we cannot any more guarantee that the algorithm runs in polynomial

time.

6.6 Orientability for trivial signatures

Consider a trivial signature which consists of a unary function symbol ¢ and some
constants. Let R be a system of rewrite rules in this signature. If some rule in
R has the form ¢ — ¢"(z) such that z does not occur in ¢, then the system is
evidently not orientable. If R contains no such rule, then R can be replaced by

an equally orientable ground system, as the following lemma shows.

LEMMA 6.6.1 Let R be a system of rewrite rules in a trivial signature > such
that no rule in R contains a variable occurring in its right-hand side but not the
left-hand side. Define the ground system R' obtained from R by the following

transformations:

1. Replace every rule ¢"(x) — ¢"(d) in R by all rules ¢g™(c) — g™(d) such

that ¢ 1s a constant in .

2. For every rule ¢"(x) — ¢"(x) in R, if m > n then remove this rule, other-

wise terminate with failure.

Then a Knuth-Bendiz order = orients R if and only if it orients R'.
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We leave the proof of this lemma to the reader. Note that the size of R’ in the
lemma is polynomial in the sum of the sizes of R and ¥. Therefore, we can
restrict ourselves to ground systems.

Moreover, we can assume that for every rule in R’ the function symbol g
never occurs in both left-hand side and right-hand side of R. Indeed, this can
be achieved by replacing every rewrite rule ¢g(s) — ¢(¢) in R’ by s — ¢ until ¢
occurs in at most one side of the rule. Evidently, we can assume that R’ contains
no trivial rules ¢ — ¢. So we obtain a system consisting of rules ¢"(c) — d,
¢ — ¢g"(d), where n > 0, or ¢ — d such that ¢, d are different constants. In other
words, for every rule [ — r in R’ the outermost symbol of [ is different from the
outermost symbol of r.

In order to check orientability of R’, consider the system of homogeneous

linear inequalities W which consists of

1. the inequalities w. > 0 for all constants ¢ € ¥ and the inequality w, > 0;

2. for every rule I — r in R’ the inequalities W (l,7) = >, .w(n(h,1) —
n(h,r))w, > 0.

Evidently, W can be built in time polynomial in the size of R'. Evidently, if
W is unsatisfiable, then R’ is not orientable. If W is satisfiable, let W= be the
degenerate subsystem of W. Let us build a binary relation > on X as follows:

1. for every rule [ — r in R, if W(l,r) € W~, then we take the outermost
symbols h; and hy of [ and r respectively and add h; =>> hy to >>;

2. if wy > 0 belongs to W=, then add g =>> ¢ to >> for all constants c € .

We leave it to the reader to check that R’ is orientable if and only if =>> can be
extended to a linear order. We can prove in the same way as before, that the

check for orientability of R’ can be done in polynomial time.

6.7 The problem of orientability by Knuth-Bendix

orders is P-complete

In Section 6.5.4 we have shown that the orientability problem can be solved

in polynomial time. In this section we show that this problem is P-complete,
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and moreover it is P-hard even for ground rewrite systems. To this end, we
reduce the circuit value problem which is known to be P-complete (see, e.g.,
[Papadimitriou 1994]), to the orientability problem. Our reduction consists of

two steps:

1. we reduce the problem of solving systems of linear inequalities AX > 0,

X > 0, where A is an integer matrix, to the orientability problem;

2. we reduce the circuit value problem to solvability of such systems.

In the systems of linear inequalities, we assume all coefficients to be written in
the unary notation. Both reductions will be LOGSPACE.

Let AX > 0 be a system of linear inequalities and we are looking for strictly
positive solutions to it. For every variable x; in the system we introduce a unary
function symbol f;. We consider the signature X consisting of all such symbols
fi, two unary symbols g, h, and a constant c. We will construct a ground rewrite
rule system R whose orientability will be equivalent to the existence of a solution
to AX > 0,X > 0 as follows. First of all, R contains the rewrite rule

ghc — hggc.

A Knuth-Bendix order with parameters (w,>>>) orients this rule if and only if
w(g) = 0 (and hence also g > h). For each linear inequality [ in the system,
we add to R a rewrite rule r(/), which will be demonstrated by an example (in
order to avoid double indices). Suppose, for example, that the inequality can be

rewritten in the form

Ty + ...+ Ty > Qpp1Tpp1 + -+ ATy, (6.8)

where x,...,xz, are different variables and ay,...,a, are non-negative coeffi-
cients. Then r(I) has the form

ghfi--- ,?’“c—)hgf,?ﬁl---f,‘f"c (6.9)

Note that for every solution we must have w(f;) > 0 since there may be at most
one function symbol of the weight 0. For every weight function w consider the
substitution s of integers to variables such that w(f;) = s(z;) and let > be an

arbitrary precedence relation such that ¢ is maximal w.r.t. >. We leave it to the
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reader to check that (w,>>) is a solution to R if and only if s is a solution to
AX >0,X >0.

It is not hard to argue that the reduction of A to R is LOGSPACE, provided
that the coefficients of the linear inequalities are written in the unary notation.

Let us now describe a reduction of the circuit value problem to the problem
of whether a given system of linear integer inequalities has a positive solution.
Consider a circuit with gates ¢1,...,¢,. For each gate g; we introduce a new
numerical variable x;. We will also use an auxiliary numerical variable y. We
construct a system of linear integer inequalities W in such a way that the circuit
has the value TRUFE if and only if W has a positive solution. For each gate g;
we introduce a system of numerical constraints W; in the following way. If g; is
a FALSE gate then W; is {x; = y}, likewise if g; is a TRUE gate then W; is
{z; = 2y}. If g; is a NOT gate with an input g; then W; is {z; = 3y — ;}.
If g; is an AND gate with inputs g; and g, then W; is {y < z; < 2y, z; < ;j,
z; < xp, xj + 2, — 2y < x;}. Let W be the union of all W; for 1 < i < n. It is
straightforward to check that for every positive solution to the system W' each
variable z; has the value of the variable y or twice that value, moreover it has
the value of y if and only if the gate g; has the value FALSE. To complete the
construction we obtain W by adding to W' an equation z,, = 2y. Note that the
coefficients of W are small, so they can be considered as written in the unary
notation.

We have shown how to reduce the circuit value problem to the orientabil-
ity problem. It is clear that all reductions can be done by a logarithmic-space

algorithm.

6.8 Solving constraints consisting of a single in-
equality

In Chapter 4 we show that the problem of solving Knuth-Bendix ordering con-
straints is NP-complete. Let us show that the problem of solving Knuth-Bendix
ordering constraints consisting of a single inequality can be solved in polynomial
time. Let us fix a Knuth-Bendix order on ground terms, i.e., a precedence rela-
tion on the signature > and a weight function w. Our problem is to decide for
a given pair of terms s and ¢ whether there exists a grounding substitution o

such that so >kpp to. Since every Knuth-Bendix order is total on ground terms



6.8 Solving constraints consisting of a single inequality 107

our problem is equivalent to the following problem: for a given pair of terms ¢
and s decide whether for every grounding substitutions o, to > so holds. The
algorithm we present is similar to the algorithm for the orientability. The main
difference is that there is no need to solve systems of linear inequalities for this
problem. Since the order is given, we can use a simpler version of the notion of
state S = (R,M), where R is a single tuple inequality and M is a set of vari-
ables. Instead of tuple inequalities (L) > (R) we will consider a new kind of
tuple inequalities (L) > (R) with a natural interpretation. Initially R consists of
the tuple inequality () > (s) and M = (). Let e denote the constant that is the
minimal term w.r.t. >. Instead of using the inequality W (l,r), we will use the
inequality W'(l,r) = > cx(n(g, 1) — n(g,r))w(g) + (v — vr)w(e) > 0, where v
and v, are the numbers of occurrences of variables in [ and r respectively. Let us

present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the
form () > (), then terminate with success. If R consists of a tuple inequality
(Ll ly) > (lry, ..o ), replace it by (Iy, ..., 0,) > (r1, ..., 7).

MAIN. Now we can assume that R consists of a tuple (I, L) > (r, R) and the

term [ is different from the term 7.

(M1) For all z such that n(z,l) > n(z,r), add = to M.

(M2) If there exists a variable x & M such that n(z,l) < n(z,r), then terminate

with failure.

(M3) If W'(l,r) > 0 then terminate with success. If W'(l,7) < 0 then terminate

with failure.
Note that at this point we have W'(l,r) = 0.

(M4) If (I, 7) has the form (g(sy, ..., sn), h(t1,...,t,)) where g and h are distinct,
then do the following. If g > h terminate with success, otherwise terminate

with failure.

(M5) If (I,r) has the form (g(s1,...,8n),9(t1,--.,t,)), then replace (I,L) >
(r,R) by (s1,...,8n, L) > (t1,...,t,, R).
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(M6) If (I,r) has the form (z,y), where x and y are different variables, do the
following. (Note that at this point x,y € ML) If there exists only one term
of the minimal weight, then replace (I, L) > (r, R) by (L) > (R). Otherwise

terminate with failure.

(MT7) If ({,r) has the form (z,t), where ¢ is not a variable, do the following.
If t is different from e, then terminate with failure. Otherwise, replace all
occurrences of z in L and R by e obtaining L' and R'. Replace (I, L) > (r, R)
by (L) = (R').

(M8) If (I,r) has the form (¢,z), where ¢ is not a variable, do the following. If ¢
contains x then terminate with success. Otherwise, if ¢ is not the greatest
term among the terms of the minimal weight, then terminate with failure.
Otherwise, replace all occurrences of x in L and R by ¢ obtaining L' and
R', and replace (I, L) > (r, R) by (L") > (R'). Note that this step does not
increase the size of the tuple inequality since ¢ must be a constant, when

we substitute it for x.

After this step repeat PREPROCESS.

The proof of correctness of each step is almost the same as the proof of cor-
rectness for the corresponding steps in the orientability algorithm, so we leave it
to the reader. Let us estimate the complexity of this algorithm assuming a stan-
dard RAM model and considering integer addition and comparison as constant
time operations. Since every iteration of the algorithm decreases the size of R
(measured as the number of symbols), the number of iterations is at most linear
in the size of the input. By the routine inspection of the steps (M1)-(MS8) it is
not hard to argue that every step also requires at most a linear number of elemen-
tary operations. For example, computing n(z,[) and n(x,r) simultaneously for
all variables z at the step (M1) can be done in linear time, as well as computing
W (l',r") at the step (M3). Therefore, our algorithm decides ordering constraints

consisting of a single inequality in the time O(n?).

6.9 Main results

Lemmas 6.5.1-6.5.19 guarantee that the orientability algorithm is correct and
Lemma 6.5.20 implies that it runs in polynomial time. Hence we obtain the

following theorem.
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THEOREM 6.9.1 The problem of the existence of a Knuth-Bendiz order which
orients a given term rewriting system can be solved in the time polynomial in the

size of the system. O

From the reductions of Section 6.7 we also obtain the following.

THEOREM 6.9.2 The problem of orientability of term rewriting systems by Knuth-
Bendix orders is P-complete. Moreover, it is P-hard even for ground rewriting

systems. [

In Section 6.8 we proved the following theorem.

THEOREM 6.9.3 The problem of solving a given Knuth-Bendiz ordering con-

straint consisting of a single inequality can be solved in the time O(n?). 0

The real-valued Knuth-Bendiz order is defined in the same way as above, ex-
cept that the range of the weight function is the set of non-negative real numbers.
Real-valued Knuth-Bendix orders was introduced by Martin [1987]. Note that in
view of the results of Section 6.2 on systems of homogeneous linear inequali-
ties (Lemmas 6.2.4 and 6.2.5) the algorithm is also sound and complete for the

real-valued orders. Therefore, we have

THEOREM 6.9.4 If a rewrite rule system is orientable by a real-valued Knuth-

Bendix order, then it is also orientable by an integer-valued Knuth-Bendiz order.

U

It follows from this theorem that all our results formulated for integer-valued
Knuth-Bendix orders also hold for real-valued Knuth-Bendix orders.

It is worth noting that unlike integer-valued Knuth-Bendix orders, real-valued
Knuth-Bendix orders allow one to classify and topologise the space of all simpli-
fication orders, for details see [Martin and Shand 2000].



Chapter 7

Orientability of equalities by
Knuth-Bendix Orders

This chapter is based on the paper [Korovin and Voronkov 2003¢].

In this chapter we extend orientability results for term rewriting systems,
studied in the previous chapter, to orientability of systems consisting of equalities
and term rewrite rules.

Let > be any order on ground terms and s ~ ¢ be an equality. We say
that = orients an equality s ~ t, if it orients either the rewrite rule s — ¢ or the
rewrite rule £ — s. The orientability problem is a problem of determining whether
there exists a simplification order which orders a given system of equalities and
rewrite rules. A straightforward algorithm for checking orientability of systems
of equalities would be to try all possible orientations of equalities and apply an
orientability algorithm for term rewriting systems. Such an algorithm would
require to test an exponential number of possible orientations of equalities. We

show how to avoid this problem for Knuth-Bendix orders.

Theorem 7.7.1 The problem of the existence of a
Knuth-Bendiz order which orients a given system of
equalities and rewrite rules can be solved in the time poly-
nomzial in the size of the system. Moreover, if the system
of equalities and rewrite rules is orientable by a Knuth-

Bendix order we can find such an order in polynomial

time.

As a basis for our orientability algorithm for systems consisting of equalities
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and rewrite rules we will take the orientability algorithm for systems of rewrite
rules studied in Chapter 6.
We also show that orientability of systems of equalities is at least as hard as

orientability of term rewriting systems.

Theorem 7.7.2 The problem of orientability of systems
of equalities and rewrite rules by Knuth-Bendiz orders
1s P-complete. Moreover, it is P-hard even for systems

consisting only of equalities or only of rewrite rules.

7.1 Preliminaries

An equality is a multiset of two terms s, ¢, usually denoted by s ~ ¢. Note that
s ~ t and t ~ s are regarded as the same equality. A system of equalities and
rewrite rules is a finite set of equalities and rewrite rules. An expression E (e.g.
a term, equality, or a rewrite rule) is called ground if no variable occurs in E.

The following definition is central to this chapter.

DEFINITION 7.1.1 (orientability) A Knuth-Bendix order orients an equality s ~
t if it orients either the rewrite rule s — ¢ or the rewrite rule ¢t — s. A Knuth-
Bendix order orients a system R of equalities and rewrite rules if it orients every

equality and rewrite rule in R. O

In Chapter 6 we have proved that orientability can be solved in polynomial time
for systems consisting of rewrite rules only.
Let us show that the problem of orientability of systems of equalities is at

least as hard as the problem of orientability of systems of rewrite rules.

PROPOSITION 7.1.2 There exists a logarithmic-space algorithm which for a given
system of rewrite rules R produces a system of equalities E such that R is ori-

entable by Knuth-Bendix orders if and only if so is E.

ProoOF. Consider a rewrite system R. Let g be a new binary symbol and ¢ be
a new constant which do not occur in R. Consider a rewrite system R’ which
is obtained from R by replacing each rewrite rule [ — r with a rewrite rule
g(l,x) — g(r, c) where x is a variable which does not occur in I — r. Let us check
that R is orientable by Knuth-Bendix orders if and only if R is. Indeed, let = be

a Knuth—Bendix order which orients R then we extend parameters of this order
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to the new symbols in such a way that ¢ becomes a minimal term in this order.
Now it is straightforward to check that the obtained order >’ orients R'. For the
converse direction let us note that if a Knuth-Bendix order orients R’ then the
same order also orients R.

To conclude the proof we consider the system of equalities £ induced by R'.
Since in each rewrite rule from R’ there exists a variable occurring in the left
hand-side and not occurring in the right hand-side it is easy to see that E is

orientable if and only if R’ is orientable. OJ

Note that this reduction also works for the lexicographic path orders.

7.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous
linear inequalities. In the previous chapter, Section 6.2 we have studied properties

of homogeneous linear inequalities that we will use here as well.

LEmMA 7.2.1 Consider a system of homogeneous linear inequalities W and an
integer homogeneous linear inequality UX > 0. If there exists a solution S to the
system W U {UX > 0} then the degenerate subsystem of W coincides with the
degenerate subsystem of WU {UX > 0}.

Proor. We can assume that W is of the form AX > 0. By Lemma 6.2.2 we can
find integer vectors Vi, ..., V}, such that the set of solutions to AX > 0 is (6.2).
Since we have that US > 0 for a solution to AX > 0 then for some 1 < i <n
we have UV; > 0. Also from Lemma 6.2.3 we have that there exists a solution
S to AX > 0 such that for each inequality WX > 0 from the nondegenerate
subsystem of AX > 0 we have W.S > 0. Now we consider a positive number r
such that rUV; + US > 0, such a number always exists since we have UV, > 0.
It is straightforward to check that rV; 4+ S satisfies the required properties. [

COROLLARY 7.2.2 Consider a system of homogeneous linear inequalities W, then
W= coincides with (W=)=.

Proor. From the previous lemma it follows that if we add to the system W= an
inequality from the non-degenerate subsystem of W then we obtain a new system

with the degenerate part equal to (W=)=. If we continue this process until we
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have added all inequalities from the non-degenerate subsystem of W we obtain
that W= coincides with (W=)=. O

Let us consider a system of homogeneous linear inequalities W. We say that an
equality VX = 0 follows from W if for every solution S to W we have V.S = 0.
Now our goal is to show that for every equality VX = 0 if it follows from W
then it already follows from the degenerate subsystem of W. For this we use the

following theorem.

THEOREM 7.2.3 (Fundamental theorem of linear inequalities.) Let Ay, ..., Ay, U

be vectors in n—dimensional space. Then, either

1. U is a non-negative linear combination of linearly independent vectors from
Ay, oo A, or

2. there exists a vector W such that UW < 0 and A;W >0 for 1 <i<m.

PROOF. The proof can be found in, e.g. [Schrijver 1998]. O

LEMMA 7.2.4 Consider a system of homogeneous linear inequalities W with an
integer matriz and an integer homogeneous linear equality UX = 0. IfUX =0

follows from W then it follows from the degenerate subsystem of W.

PrROOF. We can assume that W is of the form AX > 0. First we prove that
if UX = 0 follows from AX > 0 then the vector U is a non-negative linear
combination of the row vectors of the degenerate subsystem of AX > 0. For this
we apply Theorem 7.2.3 to the row vectors of the matrix A and the vector U.

There are two possible cases.

e U is a non-negative linear combination of the row vectors from the matrix
A. 1 <14 < k Let us show that in this combination all coefficients of the
vectors from the non-degenerate subsystem of AX > 0 are equal to zero.
Otherwise, we consider such a vector C'. Since C is a row vector from the
non-degenerate subsystem, there exists a solution S to AX > 0 such that
CS > 0 and therefore US > 0, which contradicts to the assumption that
UX = 0 follows from AX > 0.

e there exists a vector W such that for each row vector ) of A we have
QW > 0 and also UW < 0. But this contradicts to the assumption that
UX = 0 follows from AX > 0.
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We have shown that U is a non-negative linear combination of the row vectors
from the degenerate subsystem of AX > 0.

Now using Corollary 7.2.2 it is easy to see that UX = 0 follows from the
degenerate subsystem of AX > 0. O

7.3 Constraints

In Section 7.5 we will present an algorithm for orientability by Knuth-Bendix
orders. The algorithm works not only with equalities and rewrite rules. It also
uses linear inequalities on the weights of the signature symbols, constraints on
the precedence relation, and some additional information. All this information
will be formalized using the notion of constraint.

Let > be any binary relation on ground terms. We extend it lexicographi-
cally to a relation on tuples of ground terms as follows: we have (l,...,[,) >
(ri,...,ry) if for some i € {1,...,n} we have l; =ry,...,l;_1 =r;_; and [; > r;.

In the sequel we assume that ¥ is a fixed signature. We also assume that
different equalities and rewrite rules have disjoint sets of variables. This can be
achieved by renaming variables.

Our algorithm will work on constraints. Orientability of a rewrite rule or an
equality are special kinds of constraints. In addition, there are constraints on
the precedence relation and on the weights of the symbols in ¥. The algorithm
will transform constraints step by step. We will show that every step preserves
satisfiability of constraints. Before defining constraints, we introduce special kind
of variables, called marked variables. Intuitively, marked variables range only over

terms of the minimal weight.

DEFINITION 7.3.1 (Constraint) An atomic constraint is an expression having

one of the following forms:

Lo (b, ly)y 7= (r1, ..., rn), where Iy, ... 1,7, ..., are terms. Such con-

straints are called rewriting constraints.

2. (lyy.o o ly) <?=(ry, ..., 1), where Iy, ... l,,7q,..., 7, are terms. Such con-

straints are called orientability constraints.

3. A (strict or non-strict) homogeneous linear inequality over the variables

{wy | g € £}. Such constraints are called weight constraints.
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4. g 7> h, where g, h € ¥. Such constraints are called precedence constraints.

5. gtmw(c), where ¢ is a constant.

A constraint C'is a conjunction Cy A...AC,, of (zero or more) atomic constraints.
Alternatively, we will sometimes regard a constraint as the set {Cy,...,C,} of
all atomic constraints in it. In this case we say that C' contains the atomic
constraints C1,...,C,. Conjunctions (or sets) of atomic rewriting constraints
are called rewriting constraints, and similar for the orientability, weight, and

precedence constraints. [

We consider constraints as conditions on the Knuth-Bendix order. Every Knuth-
Bendix order which satisfies all atomic constraints in C' is called a solution to
this constraint. In order to define solutions, let us give a technical definition. A
substitution ¢ is called an admissible substitution for a weight function w if for
every marked variable x the term o(z) is a ground term of the minimal weight,

that is w(o(x)) is equal to the smallest weight of a constant in X.

DEFINITION 7.3.2 (Solution) Let > be the Knuth-Bendix order induced by (w, >>).
This order is called a solution to an atomic constraint C' if one of the following

conditions holds.

1. Cis a rewriting constraint (ly,...,0,) 7> (r1,...,r,), and for every admis-
sible substitution o we have (l10,...,l,0) = (rio,...,r,0).

2. C is an orientability constraint (ly,...,0,) <7> (ry,...,r,) and > is a so-
lution to either (Iy,...,0,) 7= (ri,...,rp) or (ri,...,7n) 7= (L1, ..., 1n).

3. C'is a weight constraint and w solves C' in the following sense: replacement

of each w, by w(g) gives a tautology.
4. C'is a precedence constraint g 7> h, and g > h.

5. C'is a constraint gtmw(c), and c is the greatest term of the minimal weight.

A solution to an arbitrary constraint C' is a solution to every atomic constraint
in C'. A constraint C'is satisfiable if it has a solution. A constraint C implies a
constraint Cy, denoted by C; D Cy, if every solution to C is also a solution to

Cs. Two constraints are equivalent if they have the same solutions. ([l
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We will often write atomic constraints in W in an equivalent form, for example
write w. > w, instead of w,. — w, > 0.

We will now show how to reduce the orientability problem for the systems of
equalities and rewrite rules to the satisfiability problem for constraints.

Let R be a system of equalities and rewrite rules such that every two different
rules in R have disjoint variables. Denote by C'g the conjunction of the following

constraints:
1. rewriting constraints ([) 7> (r) such that [ — r belongs to R.
2. orientability constraints (I) <7> (r) such that [ ~ r belongs to R.
The following lemma is straightforward.

LEMMA 7.3.3 A Knuth-Bendiz order > orients R if and only if > is a solution
to CR.
OJ

7.4 Rich constraints and trivial signatures

For technical reasons, it will be convenient for us to work with constraints which
contain enough information to decide some properties of its solutions, for example,
which of the constants of X is the smallest. Such constraints are introduced here

and called rich constraints.
DEFINITION 7.4.1 (Rich Constraint) A constraint C' is called rich if

1. C contains all the constraints w. > 0, where ¢ € ¥ is a constant, and all

the constraints wy, > 0, where g € ¥ is a non-constant function symbol.

2. There is a constant e € ¥ such that for all constants ¢ € ¥ distinct from e,

C contains the atomic constraint ¢ 7> e.

3. Exactly one of the following conditions holds. (i) There is a unary function
symbol f € ¥ such that C' contains the atomic constraint wy < 0, all of the
atomic constraints f 7> ¢ for g € X distinct from f, and all of the atomic
constraints w, > 0 for unary function symbols ¢ distinct from f. (ii) For
some constant d € 3, C' contains the constraint gtmw(d). For every unary

function symbol g € X, C contains the atomic constraint w, > 0.
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O

LEMMA 7.4.2 Let C be a rich constraint and the Knuth-Bendiz order = induced
by (w,>) satisfies C.

1. e s the least term with respect to ».

2. There exists a unary function symbol f € ¥ such that w(f) = 0 if and
only if (i) holds. In addition, if such a function f does not exist, then
the constraint contains gtmw(d), and hence d is the greatest term of the

minimal weight.

3. There exists more than one term of the minimal weight if and only if either
there exists a unary function symbol f € ¥ such that w(f) = 0 or there
exists a constant d € X distinct from e such that C' contains the atomic

constraint gtmw(d).
U

LEMMA 7.4.3 The orientability problem can be solved in polynomial time if the

orientability problem for rich constraints can be solved in polynomial time. 0

The idea of the proof of the lemma is as follows: one can “guess” the following
properties of solutions: (a) which of the constants is smallest one, (b) does there
exist a unary function symbol of the weight 0, (c) if such a function does not
exist, then which of the constants is the greatest term of the minimal weight.
Note that we make only a constant number of guesses.

For technical reasons, we will distinguish two kinds of signatures. Essentially,
our algorithm depends on whether the weights of terms are restricted or not. For
the non-trivial signatures, the weights are not restricted. Note that a signature
is non-trivial if and only if it contains either a function symbol of arity > 2 or at
least two function symbols of arity 1. When we present the orientability algorithm
for the non-trivial signatures, we will use the fact that terms of sufficiently large
weights always exist (see Lemma 6.4.1). A (straightforward) algorithm for trivial

signatures is presented in Section 7.6.
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7.5 The orientability algorithm

In this section we only consider non-trivial signatures. Our algorithm works as
follows.

Given a system R of equalities or rewrite rules, we build the initial constraint
C = Cg. Using Lemma 7.4.3 we can assume that C'is rich. We will always denote
by e the constant such that C' contains all atomic constraints ¢ 7> e, where c is
a constant distinct from e (such a constant e exists, since C' is rich). Then
we repeatedly transform C as described below. We call the essential size of a
constraint the total number of occurrences of function symbols and variables in its
rewriting and orientability part. Every transformation step will either terminate
with success or failure, or replace an equality by a rewrite rule, or decrease the
essential size of C'.

At each step the constraint C' can be represented as a conjunction R A W A
O AP A G, where R is a rewrite constraint, W a weight constraint, @ an ori-
entability constraints, P a precedence constraint, and G either empty or has the
form gtmw(c).

For every variable z and term ¢, denote by n(x,t) the number of occurrences of
x in t. For example, n(z, g(z, h(y,z))) = 2. Likewise, for every function symbol
g € ¥ and term t, denote by n(g,t) the number of occurrences of g in ¢. For
example, n(h, g(z, h(y,z))) = 1.

For every term t, denote by W (t) the linear expression obtained as follows.
Let v be the number of occurrences of variables in ¢. Then

W(t) = Z n(g,t)wy + vwe. (7.1)

geX

For example, if t = h(x,z, ¢, e, f(y)), then
W(l) = wy, + we + wy + 4we.

7.5.1 The algorithm

The algorithm works as follows. Every step consists of a number of state transfor-
mations, beginning with REWRITE RULE defined below. During the algorithm,

we will perform two kinds of satisfiability checks:

e The satisfiability check on W is the check whether W has a solution. If it

does not, we terminate with failure.
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e The satisfiability check on P is the check whether PP is satisfiable, that is the
transitive closure of the set {(g,h) | g 7> h is an atomic constraint in P}
is irreflexive. 1i.e., contains no pair (g,g). If P is inconsistent, then we

terminate with failure.

It is not hard to argue that both kinds of satisfiability checks can be performed
in polynomial time. The satisfiability check on W is polynomial by Lemma 6.2.7.
The satisfiability check on PP is polynomial since the transitive closure of a binary
relation can be computed in polynomial time, see, e.g. [Cormen et al. 1991].
When any of the sets W or P changes, we assume that we perform the corre-
sponding satisfiability check and terminate with failure if it fails.
We will label parts of the algorithm, these labels will be used in the proof of

its soundness.

REWRITE RULE.

(RO) Do the following transformations while possible. If R contains a tuple
inequality (ly,...,0,) 7> (ly,...,l,), terminate with failure. Otherwise, if
R contains a tuple inequality (I,ly,...,1,) 7> (l,r1,...,r,), replace it by
(Liy oo b)) 7= (e, ooy 1)
Now R has the form
(ly, L) 7> (r, Ry),

<lk, Lk> 7 <7“k, Rk>,

such that each [; is a term different from the corresponding term r;.

(R1) For all  and ¢ such that n(z,[;) > n(z,r;), mark the variable z.

(R2) If for some i there exists an unmarked variable z such that n(z,l;) <

n(z,r;), then terminate with failure.

(R3) Add to W all the linear inequalities W (l;) > W (r;) for all i and perform
the satisfiability check on W.

Now compute W=. If W= contains none of the inequalities W (l;) > W (r;) proceed
to EQUALITY. Otherwise, for all ¢ such that (W (l;) > W(r;)) € W= apply the

applicable case below, depending on the form of [; and r;.
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(R4) Ifl; = g(s1,...,s,) and 7, = h(ty,...,1,), where g is different from h, then
replace the constraint (l;, L;) 7> (r;, R;) by g 7> h. Perform the satisfiabil-
ity check on P.

(R5) If [; = g(s1,...,8,) and 1; = g(t1,...,t,), then replace (I;, L;) 7> (r;, R;)
by <81, ce ey Snp, Lz> 7 <t1, PN ,tn, Rz>

(R6) If (I;,r;) has the form (z,y), where z and y are different variables, do
the following. (Note that at this point both z and y are marked.) If L;
is empty, then terminate with failure. If the constraint guarantees the
existence of more than one term of the minimal weight (see Lemma 7.4.2),
then also terminate with failure. Otherwise, replace (l;, L;) 7> (r;, R;) by
(Li) 7 (Ri).

(R7) If (I;,r;) has the form (x,t), where ¢ is not a variable, do the following. If
t is different from e, or L; is empty, then terminate with failure. Otherwise

replace in L; and R; the variable x by e, obtaining L, and R] respectively,
and then replace (l;, L;) 7> (r;, R;) by (L}) 7> (R}).

(R8) If (I;,r;) has the form (¢,z), where t is not a variable, do the following.
If ¢ contains x, remove (l;, L;) 7> (r;, R;) from C. Otherwise, if ¢ is a non-
constant or L; is empty, terminate with failure. (Note that at this point
z is marked and (W (t) > W(z)) € W=.) Let now ¢ be a constant c. If
C does not contain the atomic constraint gtmw(c), then terminate with
failure. Otherwise replace in L; and R; the variable x by ¢, obtaining L/
and R} respectively, and then replace (l;, L;) 7> (r;, R;) by (L) 7 (R}).

After this step repeat REWRITE RULE.

EQUALITY.

(EO0) Do the following transformations while possible. If O contains an atomic
constraint (sy,...,s,) <7> (s1,..., ), terminate with failure. Otherwise,
if O contains an atomic constraint (s, s1,...,8,) <7> (s,t1,...,t,), replace
it by (s1,...,8n) <7> (t1,...,tn).

If O is empty, proceed to TERMINATE. Otherwise, @ now has the form

(s1,S1) <7 (t1,11),
(7.3)
(Sky Sky <7 (tg, Ty),
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such that each s; is a term different from the corresponding term t;.

(E1) If, for some ¢ and variable  we have n(z,s;) > n(x,t;), then replace
(si, Si) <7 (t;, T;) by (si, Si) 7> (t;,T;) and proceed to REWRITE RULE.
Likewise, if for some i and variable  we have n(x,t;) > n(z,s;), replace
(5, i) <7= (t, T)) by (&, T3) 7= (s, S;) and proceed to REWRITE RULE.

Note that after this step for every ¢ and variable x, the number of occurrences of
z in s; coincides with its number of occurrences in ¢;.

Now for each (s;, S;) <?> (t;,T;) in O such that W D W (s;) = W(t;) apply
(E2) below, if there is no such tuples in O then proceed to TERMINATE.

(E2) If the top symbols of s; and ¢; coincide, i.e., we have s; = g(uq,...,up)
and t; = g(vq,...,vy), then we replace the constraint (s;, S;) <7= (t;,T;)
by (ui,...,Um,S;) <= (v1,...,0p,T;) and proceed to REWRITE RULE.
Otherwise, remove (s;, S;) <7~ (t;, T;) from the constraint, and proceed to
EQUALITY.

TERMINATE. If the constraint contains gtmw(d), then for all constants ¢ dif-
ferent from d such that w, > w. belongs to W= add d 7> ¢ to the constraint.
Perform the satisfiability check on P. Terminate with success.

Note that after TERMINATE, for each (s;, S;) <7~ (t;,T;) in O either W A
W(s;) > W(t;) or WAW(t;) > W (s;) is satisfiable.

7.5.2 Correctness

In this section we prove correctness of the algorithm and show how to find a
solution when the algorithm terminates with success. The correctness will follow
from a series of lemmas asserting that all of the transformation steps performed by
the algorithm preserve the set of solutions. Although the algorithm can terminate
with success without eliminating all orientability constraints, we will be able to
show that in this case the resulting constraint is always satisfiable. To prove this
we employ lemmas on homogeneous linear inequalities from Section 7.2.

We will use the following notation and terminology in the proof. We say
that a step of the algorithm is equivalence-preserving if the set of solutions to

the constraint before this step coincides with the set of solutions after the step.
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When we use substitutions in the proof, we always assume that the substitutions
are grounding for the relevant terms.
The following lemma can be proved by a straightforward application of the

definition of solution to a state.

LEMMA 7.5.1 (satisfiability check) If satisfiability check on W or on P termi-

nates with failure, then S has no solution. O

In Chapter 6we presented an algorithm for checking orientability of systems
of rewrite rules by Knuth-Bendix orders. Since REWRITE RULE uses the same
steps as the algorithm in Chapter 6, we can deduce the following lemma about
REWRITE RULE.

LEMMA 7.5.2 Steps (R0)-(R8) are equivalence-preserving.

PROOF. The proof is the same as for the steps PREPROCESS, (M1)—(MS8) of the

orientability algorithm for term rewrite rules, see Chapter 6. OJ

LEMMA 7.5.3 Step (E1) is equivalence-preserving .

Proor. Consider (s;, S;) <7 (t;, T;) in O such that for some variable z, n(z, s;) >
n(z,t;). To prove the lemma it suffices to show that if we replace (s;, S;) <7= (t;, T;)
by (t;, S;) 7> (s;, T;) in our constraint, then we obtain an unsatisfiable constraint
C'. Assume that C' has a solution >. Let o be any substitution grounding for this
tuple inequality. Take any term u and modify ¢ by mapping x into u, obtaining

oy. We have

|sioy| — [tiog] =

|sio| = [tio| + (n(x, si) = n(x, 1)) - (Jul —[zo]).
Since there exist terms of an arbitrarily large weight, for a term u of a large enough

weight we have |s;0%| > [t;o¥], which contradicts to the assumption (t;, S;)o¥ >
<8i7 iZ—’7,>0—u O

x

LEMMA 7.5.4 Step (E2) is equivalence-preserving.

PROOF. At this step we have that for each variable x the number of occurrences

of z in s; is the same as the the number of occurrences of = in t; and therefore
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neither s; nor ¢; is a variable. Also, for every solution to the constraint and every

grounding substitution o we have |s;0| = |t;0].
Consider the case when top symbols of s; and t; coincide, i.e., s; = g(u1, ..., up)
and t; = g(v1,...,v,). Then it easy to see that if we have a solution to our con-

straint such that (s;, S;) <7> (t;,T;) the same solution will satisfy the constraint
(UL, .oy Uy S;) <7 (v, ..., v, T;) and vice versa.

Now we consider the case when top symbols of s; and ¢; are different, i.e.
s; = g(u) and t; = h(v). It suffices to show that if we have a solution > to
the constraint after removing (s;, ;) <7> (t;,1;), denoted as C’, then > is also a
solution to (s;, S;) <7 (t;, T;). Consider a solution > to C' induced by (w,>>).
Assume that g > h, then for every substitution ¢ we have s;o0 > t;0 since
|s;o| = |t;o|. Similar, if h > ¢ then for every substitution o we have t;0 > s;0.
U

Let us show that TERMINATE preserves satisfiability.

LEMMA 7.5.5 TERMINATE is equivalence-preserving.

PROOF. Let us show that the addition of all atomic constraints d 7>> ¢ at this
step preserves equivalence. If C' has no solution, then this is obvious. Otherwise,
take any solution > to C and let this solution be induced by (w,>). We know
C' contains gtmw(d), hence d must be the greatest term of the minimal weight.
It is not hard to argue that at the TERMINATE step, W contains all constraints
w. > we, where ¢ is a constant different from d. If such a constraint belongs to
W=, then we have w(c) = w(e), hence ¢ is a term of the minimal weight. But
then we must have d > c¢. By the construction, C' also contains w, > wgy, so
C D w, = wy. Therefore, d > ¢ also implies d > ¢, and the addition of d 7> ¢

does not change the set of solutions. ([

We have shown that all steps of our algorithm preserve satisfiability of con-
straints. Now we show that if the algorithm terminates with success then the
constraint is satisfiable, moreover we will be able to find a solution to the con-
straint in polynomial time.

We call a constraint C' saturated if application of our orientability algorithm

to C' does not change C' and terminates with success.

LEMmMA 7.5.6 If a constraint C = RAWAPAG A Q s saturated then the
constraint C' = RAW AP AG is satisfiable.
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Proor. We have that W is satisfiable, and in addition, for each rewriting con-
straint (l;, L;) 7> (r;, R;) the weight constraint W (l;) > W (r;) does not belong to
W=. By Lemma 6.2.5 there exists a solution w to W such that for each rewrit-
ing constraint (l;, L;) 7> (r;, R;) we have W (l;)w > W (r;)w. Let > be an order
induced by (w,>>), where > is an arbitrary extension of P to a linear order. We
need to show that > satisfies the rewriting constraint R (constraints W,P,G, are
obviously satisfied). For this let us consider a tuple (l;, L;) 7> (r;, R;) in R and
an admissible substitution o and show that (l;, L;)o > (r;, R;)o. From algorithm
(rules (R1), (R2)) we have that for each unmarked variable z, n(z,l;) = n(z,r;),

also for each marked variable y we have |yo| = w(e). Therefore
\lio| — |rio| = W(l;)w — W (r;)w >0,

this shows that (l;, L;)o > (r;, R;)o. O

LEMMA 7.5.7 FEvery saturated constraint is satisfiable.

PROOF. Counsider a saturated constraint
C=RAWAPAGAQ.

We show that C' is satisfiable by induction on the number of atomic constraints
in Q. If O is empty then the claim follows from Lemma 7.5.6. Now assume that
O is not empty. Since C' is saturated we have that for each atomic constraint
(si, Si) <7 (t;, T;) in O either WA W (s;) > W (t;) or WAW(t;) > W(s;) is sat-
isfiable. Assume that WA W (s;) > W(t;) is satisfiable, then add W (s;) > W (t;)
to W and remove (s;, S;) <7~ (t;,T;) from O, obtaining W' and @' respectively.

Let us show that the obtained constraint
C'"=RAWAPAGAQ

is saturated. From Lemma 7.2.1 it follows that the degenerate subsystem of
W' coincides with the degenerate subsystem of W and since C' is saturated we
have that none of the rules (R0)—(R8), (E0), (E1) can change the constraint C".
Also from Lemma 7.2.4 it follows that for each (s}, SI) <7~ (t,,T}) in @ either

W AW (sh) > W (tl) or W AW(t) > W (s}) is satisfiable. Hence, rule (E2) also

can not change the constraint C' and we conclude that C' is saturated. Since O/
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contains less atomic constraints than @' and C’ is saturated, we can apply the

induction hypothesis.
O

7.5.3 Time complexity

Provided that we use a polynomial-time algorithm for solving systems of homoge-
neous linear inequalities, and a polynomial-time algorithm for transitive closure,

a careful analysis of our algorithm shows the following.

LEMMA 7.5.8 The algorithm runs in time polynomial of the size of the system

of rewrite rules. 0

7.6 Orientability for trivial signatures

In this section we consider only trivial signatures. Let us remind that a signature
is called trivial if it contains no function symbols of arity > 2, and at most one
unary function symbol. Consider a trivial signature which consists of a unary
function symbol g and some constants. Consider a constraint C' = R A Q where
R is a rewriting constraint and O is an orientability constraint. If O contains an
orientability constraint ¢t <7> t then C' is obviously unsatisfiable, and therefore
we will assume that for all orientability constraints ¢t <7> s € Q , t is different
from s. If @ contains nonground constraints then we can transform C' into an
equally orientable constraint C' = R' A @ such that all constraints in Q' are

ground.

LEMMA 7.6.1 Let C'=RAQ be a constraint in a trivial signature ¥ such that O
contains nonground atomic constraints. Define a constraint C' = R'AQ/ obtained

by the following transformations.

1. Replace every atomic orientability constraint g™ (z) <7> ¢"(d) with the rewrit-
ing constraint g™ (x) 7> g™(d).

2. Replace every atomic orientability constraint g™ (x) <7> g"(z), where m >

n, with the rewriting constraint ¢g"™(x) 7> ¢™(x).

Then a Knuth-Bendixz order > orients C' if and only if it orients C'. All con-

straints in @ are ground. U
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The proof of this lemma is straightforward and we can restrict ourselves to con-
straints with ground orientability part. Now, consider such a constraint C' = RAQ
and let > be a Knuth-Bendix order which is a solution to R. Then > is also a so-
lution to ), since every Knuth-Bendix order is total on ground terms. Therefore,
we reduce our problem to the problem of orientability of rewriting systems for

trivial signatures which is shown to be solvable in polynomial time in Section 6.6.

7.7 Main results

Lemmas 7.5.1-7.5.7 guarantee that the orientability algorithm is correct and
Lemma 7.5.8 implies that it runs in polynomial time. Hence we obtain the fol-

lowing theorem.

THEOREM 7.7.1 The problem of the existence of a Knuth-Bendiz order which
orients a given system of equalities and rewrite rules can be solved in the time
polynomial in the size of the system. Moreover, if the system of equalities and
rewrite rules is orientable by a Knuth-Bendix order we can find such an order in

polynomial time. O

In Chapter 6 we have proved that the problem of orientability by Knuth-
Bendix orders is P-complete for systems of rewrite rules, moreover it is P-hard
even for ground rewrite rule systems. Therefore, the following result follows from
Theorem 6.9.2 and Proposition 7.1.2.

THEOREM 7.7.2 The problem of orientability of systems of equalities and rewrite
rules by Knuth-Bendiz orders is P-complete. Moreover, it is P-hard even for

systems consisting only of equalities or only of rewrite rules. 0



Chapter 8

AC-Compatible Knuth-Bendix
Orders

8.1 Introduction

This chapter is based on the paper [Korovin and Voronkov 2003a].

E-compatible simplification orders for various equational theories E can be
used for building-in equational theories in theorem provers and rewriting modulo
equational theories (see Chapter 2).

Among various equational theories, theories axiomatized by the axioms of as-
sociativity and commutativity, so-called AC-theories, play a special role. Such
theories very often occur in applications and require special treatment in auto-
mated systems, where AC-compatible simplification orders is a crucial ingredient.

The existence of an AC-compatible simplification order AC-total on ground
terms had been a challenging problem for many years, which was finally solved
in [Narendran and Rusinowitch 1991]. Recently, a lot of work has been done
to modify recursive path orders to obtain AC-compatible simplification orders
AC-total on ground terms [Rubio and Nieuwenhuis 1993, Rubio 2002, Rubio
1999, Kapur and Sivakumar 1998, Kapur and Sivakumar 1997, Kapur et al. 1995,
Kapur et al. 1990]. Despite the fact that Knuth-Bendix orders are widely used in
automated deduction, to our knowledge no AC-compatible simplification variant
of Knuth-Bendix orders have been known. (There was an attempt to introduce
such an order in [Steinbach 1990] but this order is lacking the crucial monotonicity
property, as we will show later).

In this chapter we define a family of AC-compatible Knuth-Bendix orders
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>ackeo- Lhese orders enjoy attractive features of the standard Knuth-Bendix

orders, for example

1. a polynomial-time algorithm for term comparison;

2. computationally efficient approximations based on weight comparison, so in
many practical cases we do not need to traverse the whole term each time

to compare it with another term;

3. light terms are smaller than heavier ones.

Our approach share some ideas with the AC-RPO of Rubio [Rubio 2002, Rubio
1999], but a careful exploitation of some properties of weight functions enable us

to avoid complications leading to an exponential behavior in the AC-RPO case.

8.2 Preliminaries

We will use multisets and multiset extension of an order, as defined in Chapter 3,

where key properties of such extensions are discussed.

DEFINITION 8.2.1 Let > be a binary relation on a set S. A lexicographic exten-
sion of >, denoted by >% is a relation on tuples of elements of S defined as
follows. Let @ = (ay, ..., a,) and b = (b, ...,b,) be two tuples. Then @ > b if

one of the following conditions holds:

1. m>mn;

2. m = n and there exists ¢ such that 1 < ¢ < m, a; > b;, and for all

je{l,...,i—1} we have a; = b,.

The following fact is not hard to check, see, e.g., [Baader and Nipkow 1998|.

LEMMA 8.2.2 If > is an order, then so is >'*. If > is a total order, then so is
>ler If > is a well-founded order, then so is >'". O

For every pre-order > we denote by > the corresponding strict order > defined
as follows: s > t if and only if s > ¢t and t 2 s. We will use this notation for

various pre-orders, for example > will denote the strict version of .
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Let >1,>5 be pre-orders. We call the lexicographic product of >; and >,
denoted >; ® >,, the relation > defined as follows: s > t if and only if either
s> t,or s >y tand s >4 t. It is not hard to argue that >; ® >, is a pre-order.
We define lexicographic product >; ® >, of strict parts of >;, >, as the strict
part of > ® >».

We will also consider lexicographic products of more than two orders.

LEMMA 8.2.3 If >y, > are orders, then so is >y @ >o. If >1, >4 are total orders,
then so is >, @ >o. If >1,>9 are well-founded orders, then so is >1 ® >,. ]

In our proofs below we will often compose the multiset order, the lexicographic
extension, and the lexicographic product of various orders and use Lemmas 3.2.4,

8.2.2 and 8.2.3 to establish properties of the compositions.

8.3 AC-compatible orders

Let E be an equational theory and > be a partial order on ground terms of a
signature X. Denote equality with respect to £ by =g. We say that an order >
is E-compatible if it satisfies the following property: if s > ¢, s =p ¢’ and t =5 t/,
then s > t'. The order > is called E-total, if for all ground terms s, t, if s #g t,
then either s >t or ¢ > s.

Let + be a binary function symbol. The AC-theory for + is the equational

theory axiomatized by set of two formulas

VaVyVz((x +y) + z 2 + (y + 2));
VaVy(z +y ~y+ x).

From now on we assume that we are given a fixed signature ¥ with a distinguished
subset ¥ 4¢ of binary function symbols. The members of ¥, will be called
AC-symbols. Two terms s,t are called AC-equal, denoted s =,¢ t, if they are
equal in the equational theory generated by the union of the AC-theories for all
g € Yac. An order is called AC-compatible if it is E-compatible with respect to

this equational theory.
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8.4 Main results

Our main aim is to find AC-compatible AC-total simplification orders which
generalize standard Knuth-Bendix orders for the case of AC-theories. In the rest
of this chapter we define a family of such orders, each order >,ckpg in this family
is induced by a weight function w and a precedence relation > compatible with

w. We prove the following results.
1. >ackeo 18 an AC-compatible AC-total simplification order,

2. On the terms without AC-symbols, >,ckso coincides with the standard
Knuth-Bendix order induced by w and >>.

3. If ¥ contains no unary function symbols of the weight 0, then for every

ground term ¢ there exists a finite number of terms s such that ¢ >jcksp S.

Further, we extend the orders > jcxpg to non-ground terms in such a way that

for all terms s, and substitutions @, if s >jcksp £, then s€ > ,cxgg 0.

8.5 The Ground Case

8.5.1 Flattened terms

In the sequel the symbol 4 will range over X 4. Let us call a term normalized if
it has no subterms of the form (r+ s) +¢. Evidently, every term is AC-equal to a
normalized term. Since we aim at finding AC-compatible simplification orders, it
is enough for us to define these orders only for normalized terms. For normalized
terms, we introduce a special well-known notation, called flattened term.

To this end, we consider all AC-symbols to be varyadic, i.e., having an un-
bounded arity greater than or equal to 2. A term s using the varyadic symbols
is called flattened if for every non-variable subterm ¢ of s, if ¢ has the form
+(t1,...,t,), then the top symbols of ¢1,...,t, are distinct from +. We identify
a subterm +(ty,...,t,) with the normalized term (¢; + (t3 + ... +¢,)). We will
sometime write subterms of flattened terms as t; + ...+ t,. In the sequel we will
only deal with flattened terms.

Note that we have to be careful with defining substitutions into flattened terms
and the subterm property for them. When we substitute a term s; +...+ s, for
a variable x in x + ¢, +... +1t,, we obtain sy + ...+ s, +t1 + ...+ t,. To prove
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the subterm property for an order > on ordinary terms, we also have to prove the
following cancellation property for flattened terms: sy +so+...+5, > so+...+,.

Similarly, we have to be careful with defining weights of terms with varyadic
symbols. We want the weight to be invariant under =4, in particular, the weight
of a term must coincide with the weight of a flattened term equal to it modulo

AC. Therefore, we modify the definition of weight as follows.

DEFINITION 8.5.1 (Weight) The weight of a ground term ¢, denoted |¢|, is de-
fined as follows. Let t = g(t1,...,t,), where n > 0. Then

1. if g & Y4, then |t| = w(g) + |t1| + ... + [ta]-

2. if g € X ¢, then [t| = (n — Dw(g) + [t1] + ... + |ta]-

We have the following straightforward result.

LEMMA 8.5.2 Let r,s,t be terms. If |s| = |t|, then |r[s]| = |r[t]|. Likewise, if
|s| > |t|, then |r[s]| > |r[t]|- O

8.5.2 Relation >

All relations introduced below will be AC-compatible. Therefore, in the sequel
we will consider the AC-equality instead of the syntactic equality and consider
relations on the equivalence classes modulo =4¢.

To define an AC-compatible weight-based simplification order, let us first
define, for each AC-symbol 4+, an auxiliary partial order >, on multisets of
flattened terms.

If a term ¢ has the form g(tq,...,t,), where n > 0, then g is called the top
symbol of t, denoted by top(t), and ti,...,t, the arguments of t. We define the
top symbol of a variable x to be x itself.

First we introduce the following pre-order >,,, on terms: s >,,, t if and only
if top(s) > top(t) or top(s) = top(t). Note that this order is also defined for
non-ground terms. Likewise, we introduce the pre-order >, on ground terms as
follows: s >, t if |s| > |t|. Naturally, the strict versions of >, and >, are

denoted by >, and >, respectively.
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DEFINITION 8.5.3 (Relation ) Let M, N be two multisets of flattened ground

terms and let

M ={t &M | top(t) > +}:
N' ={t € N |top(t) > +}.

We define M >, N if and only if

M/ (Zw ® Ztop)mul N’.
([l
In other words, we can define the order >, as follows. First, remove from M and
N all elements with top symbols smaller than or equal to +. Then compare the
remaining multisets using the multiset order in which the terms are first compared

by weight and then by their top symbol.

LEMMA 8.5.4 For each symbol + € ¥ 4¢ the relation > is a well-founded order.

Proor. Follows immediately from the observation that the strict part of (>,
® >10p)™" is a well-founded order (by Lemmas 3.2.4 and 8.2.3). a

Let us give a characterization of the relation >,. Let M be a multiset of
ground terms and v be a positive integer. Denote by selected (4, v, M) the mul-
tiset of top functors of all terms in M of the weight v whose top symbol is
greater than 4+ w.r.t. >. Then we have M >, N if and only if there exists an
integer v such that selected(+,v, M) >Z§gl selected(+,v, N) and for all v > v,
selected (+,v', M) =™ selected(+,v', N). Let =, denote the incomparability re-
lation on multisets of terms w.r.t. >=,. That is, given two multisets M, N, we
have M =, N if and only if neither M >, N nor N >, M. Now it is easy
to check that two multisets of terms M and N are incomparable w.r.t. > if
and only if for each weight v we have selected(+,v, M) = selected(+, v, N) and
therefore = is indeed an equivalence relation on terms. So >, can be seen as a

total well-founded order on the equivalence classes of multisets modulo =,.

8.5.3 Order >jckro

Using the relation >, we can define an AC-compatible simplification order

> ACKBO -
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DEFINITION 8.5.5 (Order >jcxgo) Let ¢ = h(ty,...,t,) and s = g(sy,...,sk)
be flattened ground terms. Then ¢ .o s if and only if one of the following

conditions holds:
L. |t| > |s|; or
2. |t| =|s| and h > g; or
3. |t| =|s|, h = g, and either

(a) h € Yac and (ti,... t,) =& (s1,...,8,); or

(b) h € Luc and

i {tl,...,tn} >h {81,...,8k}; or
il. {tl,...,tn} = {81,...,8k} and n > k; or
iii. {tl,...,tn} = {31,...,sk}, n =k and
{tl, e ,tn} -l {81, .. .,sk}.

O

Let us remark that similar to the AC-RPO of Rubio [Rubio 2002, Rubio 1999]
we make a special treatment of the immediate subterms below + having top sym-
bols greater than +. To this end, we use the relation >, which allows us to avoid
recursive computations deeper into subterms at this stage (we need only to com-
pare weights and top symbols of the immediate subterms). As a result, we gain
some efficiency. More importantly, using properties of the weight functions we can
avoid the exponential behavior of AC-RPO caused by enumerating embeddings

of certain subterms.

LEMMA 8.5.6 >jcxpg ¢S an AC-compatible AC-total order on ground terms.

PROOF. It is easy to see that >,cpg is AC-compatible. The AC-totality can be
proved by a routine induction on terms.

Let us prove that >jcxpg is an order. Let us call the f-height of a term r,
denoted by height ;(r), the greatest number n such that r = f"(r'). The proof is
by induction on the order >’ on ground terms defined as follows: ¢ >’ s if |t| > |s]
or [t| = |s| and height ;(t) > height ;(s). Obviously, > is the lexicographic product

of two well-founded orders, and so a well-founded order itself.
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Note the following property of >": if ¢ >" s, then t »,cgo s. Therefore, it is
enough to prove that for each pair of natural numbers (k,[), the relation > jcxgo

is an order on the set of ground terms
{t | |t| =k and height ;(t) = [}.

But this follows from the following observation: >,cxgg on this set of terms is

defined as a lexicographic product of the following five orders:

t> s h>g,;

t >y 586 (ty. o tn) =00 (s1,...,8,) and h = g & Y 4c;
t>38<:>{t1,...,tn} >=h {81,...,8k} and h =g € Y ¢;
t>yse&n>kand h=g € Xy¢;

t>5s<:>{t1,...,tn} mul {31,...,sk} and h =g € Xy¢.

Note that =& and =7 used in this definition are orders by the induction
hypothesis and by Lemmas 8.2.2 and 3.2.4. U

THEOREM 8.5.7 The relation = ckso %S an AC-compatible AC-total simplification

order on ground terms.

ProOF. By Lemma 8.5.6, > ,ckpp is an order, so it only remains to prove the sub-
term property, cancellation property, and monotonicity. The cancellation prop-
erty is obvious, since |so 4+ $1 4+ ...+ s,| > |s1 + ...+ s,|. The subterm property
is checked in the same way as for the standard Knuth-Bendix order.

Let us prove the monotonicity. By Lemma 8.5.6, > jcxgo is an AC-compatible
AC-total order. In particular, =,ckgg is transitive, so it remains to prove the
following property: if ¢ >,ckpo S, then for every function symbol g we have
g(ri, o i, t ity ey Tn) = G, .o i1, 8, g1, -+, Tn). When g & Y40,
the proof is identical to that for the standard Knuth-Bendix order, so we only
consider the case when ¢ is an AC-symbol +.

We have to prove the following statement for all terms s,¢,7y,..., 7, let
u=t+nr+...+rpandv=s+r +...+1r,, then t >,y s implies u > yckro
v. Let t = h(ty,...,t,) and s = ¢(s1,...,s,). Consider all possible cases of
Definition 8.5.5 of > jckgg-

1. |t| > |s|. In this case by Lemma 8.5.2 we have |u| > |v|, and so u >pckpo v-
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Now we can assume [t| = |s|, hence by Lemma 8.5.2 |u| = |v|. Denote by
U and V' the multisets of arguments of u and v, respectively. Note that U
is not necessarily equal to {t, Tlyenny rm}: indeed, the top symbol of ¢ may
be +, and then we have to flatten £ + 7, + ...+ r,, to obtain the arguments
of u. Likewise, V' is not necessarily equal to {3, T1yenny rm}. Denote by p, ¢

the number of elements in U, V' respectively. Note that

) m+1, if top(t) # +;
P=Y i, i top(t) = +.
) m+1, if top(s) # +;
m +k, if top(s) = +.

Since |u| = |v| and top(u) = top(v) = +, the comparison of v and v should

be done using clauses (3(b)i)—(3(b)iii) of Definition 8.5.5. That is, first we

check U >, V. Then, if U =, V, we check if p > ¢. Finally, if p = ¢, we
mul

compare U and V' using the multiset order >t;,. Consider the remaining

cases.

2. h > g. Let us show that if A > + then U >, V and so u >pcxpg v. If +> ¢
then we have U > Ué{t]l = {rl, . .,rm} = Vi{s} =, V. If g> + then
{t} - {3} and hence U = {t,rl,...,rm} - {s,rl,...,rm} =V.Ifg=+
then s is of the form s; + ... + s;,. We have {t} -4 {31,...,3k}, since
the weight of each arguments of s is strictly less than the weight of ¢, and
therefore U >, V.

Now if + > h, then U =, V and p = ¢. In this case u =ycxpp v & U =L
V & t >ackso S, SO U >jckgo V- It remains to consider the case h = +. In
this case we have U =, V—{s} =, V and either U =, V', 80 u > pcxso v, OF
we have U =, V and p > ¢, S0 u >ckso v, by (3(b)ii) of Definition 8.5.5.

3. h=g.
(a) h# +. Then U =, V and p = ¢. In this case u =jyexpe v < U =0

Vet > ACKBO S-

(b) Now it remains to consider the case h = g = +. In this case U =
{t1,.. s tp,r1, o yrmfand V= {sy, ..., Sk, "1, .., "m}. Since t >jcxkpo

s, it is enough to consider the following cases.
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i. {tl, e ,tn} >4 {31, e sk}. In this case U > V, hence u > yckso
v.
ii. {tl, e ,tn} =, {31, . .,sk} and n > k. In this case U =, V but
p > q, hence u > jckpo V-
iii. {tl, e ,tn} =, {31, cee sk}, n =k, and
{tl, o ,tn} -l {81, . .,sk}. In this case U =, V, p = ¢, but

U >K€IL(JBO V, hence u > ackso U-
The proof is complete. O

Suppose that ¥ does not contains a unary function symbol f of the weight 0.
In this case for each weight v there is only a finite number of ground terms of the

weight v. Therefore, we have the following result.

ProPOSITION 8.5.8 If ¥ does not contain a unary function symbol f of the
weight 0, then for every term t, there exists only a finite number of terms s
such that t =ckpo S. O

Now let us show that if our signature contains only two AC-symbols and
in addition one of them is maximal and another is minimal w.r.t. >, then we
can considerably simplify definition of AC-KBO by avoiding >, comparisons. In

particular the following definition will satisfy all required properties.

DEFINITION 8.5.9 (Simplified AC-KBO for two AC symbols) Consider a signa-
ture X containing only two AC-symbols, such that one of them is maximal and
another is minimal w.r.t. > in X.
Let t = h(ty,...,t,) and s = g(sy,...,sk) be flattened ground terms. Then
t >hcxso S if and only if one of the following conditions holds:
L. |t| > |s|; or
2. |t| =|s| and h > g; or
3. |t| =|s|, h = g, and either
(a) h & Yac and (t1,...,t,) =" e (s1,...,85); Or
(b) h € Y 4¢c and

i. n > k and h is maximal in ¥ w.r.t. >; or
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ii. k> n and A is minimal in ¥ w.r.t. >; or

iii. k=nand {t,... . t,} =2 {s),. .. s}
U

THEOREM 8.5.10 The relation >|cgg @5 an AC-compatible AC-total simplifica-

tion order on ground terms.

Proor. We skip the proof which is similar to the general case. O

8.6 Non-Ground Order

In this section we will generalize AC-compatible Knuth-Bendix orders > jckgp to
non-ground terms. The definition will be very similar to the ground case. We will
have to change the definitions of the weight and slightly change the definition of
> . As before, we will be dealing with flattened terms.

Let us modify the notion of weight to non-ground terms. In fact, we will
introduce two different weights |t| and ||t||. As before, we assume that we are
given a weight function w and a precedence relation > compatible with w. Let
e denote the constant in ¥ having the least weight among all constants in 2. It

is not hard to argue that |e| is also the least weight of a ground term.

DEFINITION 8.6.1 (Weight |t|) The weight of a term ¢, denoted |¢[, is defined as

follows.
1. If t is a variable, then |t| = w(e).
2. Ift = g(t1,...,t,) and g € T4, then [t| = w(g) + |t + ... + |tn]-
3. Ift =g(t1,...,t,) and g € X4¢, then [t| = (n — Dw(g) + [t1] + ... + |ta]-
O

It is not hard to argue that the weight of a term ¢ is equal to the weight of
the ground term obtained from ¢ by replacing all variables by e. Therefore,

Lemma 8.5.2 also holds for non-ground terms.

LEMMA 8.6.2 Let r,s,t be terms. If |s| = |t|, then |r[s]| = |r[t]|. Likewise, if
|s| > |t|, then |r[s]| > |r[t]|. O



8.6 Non-Ground Order 138

Let ¢ be a term. Denote by vars(t) the multiset of variables of ¢. For example,

vars(g(z, a, h(y, z))) = {z,y, z}.

DEFINITION 8.6.3 (Generalized Weight) A generalized weight is a pair (n, V),
where n is a positive integer and V' is a multiset of variables. Let us introduce a
pre-order > and an order > on generalized weights as follows. We let (m, M) >
(n, N) if m > n and N is a submultiset of M. We let (m, M) > (n,N) if m > n
and N is a submultiset of M. The generalized weight of a term t, denoted ||t|, is
the pair (|t], vars(t)). We write t >y s if |[t]] > ||s|| and ¢ > s if ||t]] > ||s|]. O

Note that >y is not a strict version of >y,. However, it is easy to see that >y
is a well-founded order. The following properties of >y and >y are also not
difficult to check.

LEMMA 8.6.4 Let r,s,t be terms. If s >w t, then r[s] >w r[t]. Likewise, if
s >w t, then r[s] >w r[t]. Moreover, if s,t are ground terms, then s >,, t if and
only if s >w t, and s >, t if and only if s >y t. U

Note that >y is not a total pre-order. For example, if =,y are two different

variables, then neither x >y y nor y > x holds.

8.6.1 Relation >

Let us now generalize the relation > to non-ground terms. The definition is more
complex that in the ground case because of one technical problem: the order >y
is not the strict version of >y,. Therefore, we cannot compose orders using >y to
obtain new orders as before. In particular, the definition of a multiset extension
of an order does not work any more and should be replaced.

First, instead of the pre-order >, ® >,,, used in the definition of >, on
ground terms, we introduce a pre-order >y ,,, defined as >y ® >4,. We also
write s =w,0p ¢ if ||s|| = ||t]| and top(s) = top(t). Then let us define an order
>w.iop a8 follows: s >y, t if either s >y ¢ or s >y t and top(s) > top(t).

mul ysed in the definition of > for

Now, to define an analogue of (>, ® >4,)
ground terms, let us define the following deletion operation on pairs of multisets
M,N: if t € M, s € N, and t =4, 5, then delete one occurrence of ¢ from M

and one occurrence of s from N.
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DEFINITION 8.6.5 (Relation ) Let M, N be two multisets of flattened terms
and let

M' = {t € M |t is a variable or top(t) > _1_};
N' = {t € N | t is a variable or top(t) > _1_}_

Let M", N" be obtained by applying the deletion operation to M', N’ while pos-
sible. Then we define M >, N if M" contains a non-variable term and for every
s € N" there exists t € M" such that ¢ >y 4, s. We also define M >, N if either
M >, N or N" is empty and M" contains only variables. O

Similarly to the ground case, we have the following lemma.

LEMMA 8.6.6 For each symbol + € ¥ ¢ the relation > is a well-founded order.

Moreover, on ground terms it coincides with the order =, of Definition 8.5.3. [J

8.6.2 Order >jckro

Using the relation >, , we can define an AC-compatible simplification order > ycxgo

in essentially the same way as for ground terms.

DEFINITION 8.6.7 (Order »jcxpo) Let us define the relation > jegg for non-ground
terms as follows. If x is a variable, then for every term s it is not true that
T >ackso S. If y is a variable then ¢ >,ckgo ¥ if and only if y occurs in ¢ and is
distinct from ¢. Let ¢ = h(ty,...,t,) and s = g(sy,...,s;) be flattened terms.

Then t >,ckpo s if and only if one of the following conditions holds:
1. t >y s; or
2. t>w sand h > g; or
3. t >w s, h =g, and either
(a) h & Yac and (t1,...,t,) =k (s1,...,8,); Or
(b) h € ¥4¢ and

1. {tl,...,tn} ) {81,...,8k}; or
il. {tl,...,tn} >h {31,...,8k} and n > k; or
iii. {tl,...,tn} >h {81,...,8k}, n = k and
{ts, o tn} =t {s1, . se ) O
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The proof that =,cxgo is an AC-compatible simplification order is similar to

the ground case, so we have the following theorem:.

THEOREM 8.6.8 The relation >,ckso ¢S an AC-compatible monotonic order sat-
isfying the subterm property. Moreover, on ground terms it coincides with the
order of Definition 8.5.5. U

THEOREM 8.6.9 >ckso 1S closed under substitutions, that is, if t =ackso S, then

for every substitution 0, t0 > ycxgo 6. O

8.7 Related Work

In general, Knuth-Bendix orders and recursive path orders are incomparable in
the sense that there are rewrite (equational) systems that can be oriented by
Knuth-Bendix orders but cannot be oriented by recursive path orders, and vice
versa. To compare Knuth-Bendix orders with orders based on polynomial in-
terpretations (or combinations of polynomial interpretations with recursive path
orders) let us note that usually it is difficult to find a suitable polynomial inter-
pretation which orients a given rewrite (equational) system. For Knuth-Bendix
orders, we can employ efficient algorithms (see Chapters 6,7).

An attempt to define an AC-compatible Knuth-Bendix order was undertaken
in [Steinbach 1990] for a special case when each AC-symbol + is of the weight
0 and is also a maximal symbol w.r.t. >. It is proposed to compare terms with
the top symbol + first by weight and then by comparing the multisets of their
arguments. Let us give an example demonstrating that the order defined in this
way lacks the monotonicity property.

Consider the weight function w such that w(+) = 0 and w(c) = w(d) =
w(g) = 1 and a precedence relation > such that + > ¢g. Let ¢t = ¢ + d and
s = g(c). Then [t| = |s|, and therefore ¢ >jckpo 5. Take any term r. Then
by monotonicity we must have r + ¢ + d >jcxso 7 + ¢g(c). But in fact we have
r 4+ g(c) =ackso T + ¢ + d, since |g(c)| > |c| and |g(c)| > |d|.

For future research let us mention the problems of constraint solving and
orientability for AC-compatible Knuth-Bendix orders. It is worth to note that
algorithms and complexity results for constraint solving for AC-RPO are pre-

sented in [Comon, Nieuwenhuis and Rubio 1995, Godoy and Nieuwenhuis 2001].
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Undecidability of first-order constraint solving in the presence of AC-symbols fol-
lows from the results in [Treinen 1990], where it is shown that already the X
fragment of the first-order theory of any trem algebra modulo associativity and
commutativity is undecidable for signatures that contain at least one constant,

one non-constant function symbol and one AC function symbol.



Chapter 9
Conclusions

In this thesis we have presented results of our study of decision problems for
Knuth-Bendix orders that have applications in automated deduction. Let us

summarise our main results and point out some related open problems.

Constraint solving. Ordering constraints are crucial for pruning search space
in theorem provers. As a consequence algorithms for solving various ordering
constraints are of great importance. In this thesis we have shown that the problem
of solving Knuth-Bendix ordering constraints is decidable and NP—complete. We
have presented an algorithm for solving Knuth—Bendix ordering constraints with
an optimal complexity bound. Our algorithm extensively uses nondeterministic
choices. It would be interesting to investigate how this nondeterminism can be
reduced. Another problem to study is solving Knuth-Bendix ordering constraints
under the extended signature semantics.

Constraints consisting of single inequalities are commonly used in automated
theorem proving. We have presented a polynomial-time algorithm for solving
Knuth-Bendix ordering constraints consisting of single inequalities. We believe
that this algorithm can be efficiently implemented. It can also be used to approx-
imate solving general Knuth-Bendix ordering constraints.

We have also been studying the constraint solving problem for first-order con-
straints. We have shown the decidability of the first-order Knuth-Bendix ordering
constraints over unary signatures. Our decision procedure uses interpretation of
unary terms as trees and uses decidability of the weak monadic second-order the-
ory of binary trees. Although decision procedures for weak monadic second-order

theory of binary trees behave reasonably well in practice, theoretical lower bound
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for complexity of this problem is nonelementary. An exact complexity for the
problem of solving first-order Knuth-Bendix ordering constraints over unary sig-
natures remains unknown. A more general open problem is the decidability and

complexity of full first-order theory of Knuth-Bendix orders.

Orientability. Orientability by simplification orders is useful in term rewriting
for showing termination of term rewriting systems, and in theorem proving for
finding effective strategies for particular problems and theories. In automated
systems which are dealing with equality it is desirable to have an efficient algo-
rithm for orientability of systems consisting of term rewrite rules and equalities.
We have shown that such an algorithm exists for Knuth-Bendix orders. In par-
ticular, we present a polynomial-time algorithm which checks for a given system
of term rewriting rules and equalities whether there exists a Knuth-Bendix order
which orients this system, and if such an order exists, the algorithm finds param-
eters of this order. To complete the complexity analysis of this problem we have
shown that the orientability problem for Knuth-Bendix orders is P-complete even
for systems consisting only of rewrite rules or only of equalities. A direction for
future research is to integrate our orientability algorithm into existing theorem

provers and assess its usefulness experimentally.

AC-compatible Knuth-Bendix orders. Axioms of associativity and commu-
tativity occur in many important theories. Unfortunately these axioms are very
difficult to deal with since they are extremely prolific due to non-orientability of
the commutativity axiom. The main approach to overcome this problem is to in-
tegrate AC-reasoning into inference systems, which requires total AC-compatible
simplification orders. The importance of AC-compatible orders triggered a huge
amount of research devoted for designing such orders, mostly by modifying re-
cursive path orders. We have shown that it is possible to modify Knuth-Bendix
orders to AC-compatible orders. Moreover, these orders preserve attractive prop-
erties of original Knuth-Bendix orders such as a polynomial-time algorithm for
term comparison and computationally efficient approximations based on weight
comparisons. We believe that the algorithm for comparing terms in these orders
can be efficiently implemented. For future research let us mention the problems

of constraint solving and orientability for AC-compatible Knuth-Bendix orders.
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