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Abstrat

Ordering restritions play a ruial role in automated dedution. In partiular,

orders are used extensively for pruning searh spae in automated theorem provers

and for rewriting-based reasoning and omputation. There are two lasses of

orders that are widely used in automated dedution: Knuth-Bendix orders and

various versions of reursive path orders. Despite the fat that Knuth-Bendix

orders were disovered earlier than reursive path orders, and sine then have

been used in many state-of-the-art automated theorem provers; the deidability

and omplexity of many important problems related to these orders remained

open. In this thesis we try to lose this gap and provide various deidability and

omplexity results for a number of important deision problems related to Knuth-

Bendix orders. We prove the deidability and NP-ompleteness of the problem of

solving Knuth-Bendix ordering onstraints. In the ase of onstraints onsisting

of single inequalities we present a polynomial-time algorithm. We also prove the

deidability of the problem of solving general �rst-order Knuth-Bendix ordering

onstraints over unary signatures. Another problem we study is the orientability

problem by Knuth-Bendix orders. We present a polynomial-time algorithm for

orientability of systems onsisting of term rewrite rules and equalities by Knuth-

Bendix orders, and prove that this problem is P-omplete. Finally, we show that

it is possible to extend Knuth-Bendix orders to AC-ompatible orders preserving

attrative properties of Knuth-Bendix orders.
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Chapter 1

Introdution

Automated dedution is an important branh of Computer Siene, whih has

appliations in various areas inluding spei�ation and veri�ation of software

and hardware, synthesis of safe programs, database systems, omputer algebra

and others. One of the most popular methods used in automated dedution

is resolution-based theorem proving. It turns out that this method is powerful

enough for many appliations, yet it an be implemented eÆiently. Resolution-

based theorem proving was introdued by Robinson in his seminal paper [Robinson

1965℄. Beause of its pratial importane, a huge amount of researh has been

devoted to theoretial improvements of this method, likewise to eÆient imple-

mentation issues. Introdution of ordering restritions has been one of the main

breakthroughs in resolution-based theorem proving and in equational reasoning.

In this work we are mainly foused on theoretial problems related to ordering

restritions that an help to improve performane of resolution-based theorem

provers. Major researh diretions involving orders for automated dedution in-

lude

� solving ordering onstraints,

� orientability problems,

� studying orders ompatible with various equational theories, and

� eÆient ordering algorithms.

There are two lasses of orders that are widely used in automated dedution:

Knuth-Bendix orders [Knuth and Bendix 1970℄ and various versions of reursive
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path orders [Dershowitz 1982℄. Both Knuth-Bendix orders and reursive path or-

ders are used in most of the state-of-the-art theorem provers, for example Vampire

[Riazanov and Voronkov 1999℄, E [Shulz 1999℄, Waldmeister [Hillenbrand, Buh,

Vogt and L�ohner 1997℄ and SPASS [Weidenbah 2001℄. During the last two

deades reursive path orders have been intensively studied and many important

results have been obtained by various researhers. Despite the fat that Knuth-

Bendix orders were disovered earlier than reursive path orders and sine then

used in most of automated theorem provers, almost nothing had been known

about properties of these orders.

In this work we try to lose this gap and provide various deidability and

omplexity results for a number of important problems related to Knuth-Bendix

orders. Let us draw some onnetions between known results in the area and

results of this thesis. More details about appliations of orders in automated

dedution an be found in Chapter 2.

Constraint solving. Using solvability of ordering onstraints we an dramati-

ally redue the number of redundant inferenes in a resolution-based prover. As

a onsequene, the problem of solving ordering onstraints for the known simpli�-

ation orders is one of the important problems in the area. There exists extensive

literature on solving reursive path ordering onstraints: [Jouannaud and Okada

1991, Comon 1990, Nieuwenhuis 1993, Nieuwenhuis and Rivero 1999, Narendran,

Rusinowith and Verma 1998, Narendran and Rusinowith 2000℄, but until re-

ently no algorithms for solving Knuth-Bendix ordering onstraints were known.

We show

� The deidability and NP{ompleteness of the problem of solving Knuth-

Bendix ordering onstraints (see Chapter 4).

� The polynomial{time omputability of the problem of solving Knuth-Bendix

ordering onstraints onsisting of single inequalities (see Chapter 6).

� The deidability of �rst-order Knuth-Bendix ordering onstraints over unary

signatures (see Chapter 5).

These results are reported in [Korovin and Voronkov 2000, Korovin and Voronkov

2001a, Korovin and Voronkov 2001b, Korovin and Voronkov 2002, Korovin and

Voronkov 2003b℄.
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Orientability. Usually an order is an important parameter of a dedution sys-

tem that an be hosen aording to the problem to solve. The hoie of an

order is espeially important for problems ontaining equality and problems re-

lated to term rewrite systems and an be restated as a problem of orientability

of equational (term rewrite) systems. In some ases the user an de�ne man-

ually the order that the system should use on a given problem. Of ourse it

would be desirable to automate the proess of hoosing an appropriate order.

In general this problem is bound to be omputationally diÆult, and hene we

an try to solve this problem for some known lasses of orders. The orientability

problem for reursive path orders has been studied and shown to be NP{hard

[Krishnamoorthy and Narendran 1985, Lesanne 1984℄. We study orientability

problem for Knuth-Bendix orders and show the following.

� The problem of the existene of a Knuth-Bendix order whih orients a

given system of equalities and term rewrite rules an be solved in the time

polynomial in the size of the system. Moreover, if the system of equalities

and rewrite rules is orientable by a Knuth-Bendix order, we an �nd suh

an instane in polynomial time (see Chapters 6,7).

� The problem of orientability of systems of equalities and rewrite rules by a

Knuth-Bendix order is P-omplete. Moreover, it is P-hard even for systems

onsisting only of term rewrite rules or only of equalities (see Chapters 6,7).

These results are reported in [Korovin and Voronkov 2001b, Korovin and

Voronkov 2003, Korovin and Voronkov 2003d℄. Let us note that an algorithm

for orientability of term rewriting systems by a weaker version of Knuth-Bendix

order has been presented in [Martin 1987, Dik, Kalmus and Martin 1990℄.

Orders ompatible with assoiativity{ommutativity. Among various equa-

tional theories, theories axiomatized by the axioms of assoiativity and ommu-

tativity, so-alled AC-theories, play a speial role. Suh theories very often our

in appliations and require speial treatment in automated systems. In suh sys-

tems AC-ompatible simpli�ation orders is a ruial ingredient. Importane of

AC-ompatible simpli�ation orders triggered a huge amount of researh aimed to

design suh orders: [Dershowitz, Hsiang, Josephson and Plaisted 1983, Bahmair

and Plaisted 1985, Gnaedig and Lesanne 1986, Cherifa and Lesanne 1987, Ka-

pur, Sivakumar and Zhang 1990, Narendran and Rusinowith 1991, Bahmair
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1992, Rubio and Nieuwenhuis 1993, Kapur, Sivakumar and Zhang 1995, Marh�e

1995, Kapur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio

2002℄. Usually, AC-ompatible simpli�ation orders are designed from known

simpli�ation orders. Reently, a lot of work has been done to modify reursive

path orders to obtain AC-ompatible simpli�ation orders AC-total on ground

terms [Kapur et al. 1990, Rubio and Nieuwenhuis 1993, Kapur et al. 1995, Ka-

pur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio 2002℄.

Although Knuth-Bendix orders are widely used in automated dedution, to our

knowledge no AC-ompatible simpli�ation variant of Knuth-Bendix orders have

been known. In Chapter 8 we de�ne a family of AC-ompatible Knuth-Bendix or-

ders. These orders enjoy attrative features of the standard Knuth-Bendix orders,

suh as

� a polynomial-time algorithm for term omparison, and

� omputationally eÆient approximations.

These results are reported in [Korovin and Voronkov 2003a℄.



Chapter 2

Motivation

In this hapter we briey introdue resolution and paramodulation aluli. The

main goal of our presentation is to illustrate how results of this thesis an be

applied in automated dedution. Thus, all results in this hapter are well-known

and the reader wishing to study this subjet in detail an �nd a omprehensive

treatment of these topis in e.g. [Bahmair and Ganzinger 2001, Baader and

Nipkow 1998, Nieuwenhuis and Rubio 2001℄.

This hapter is organized as follows. In Setion 2.2 we introdue a simple

version of resolution-based inferene system and disuss the eÆieny problems.

In Setion 2.3 we show how these problems an be takled with the help of simple

onstraints. In Setion 2.4 we extend resolution into resolution with onstrained

lauses. In Setion 2.5 we introdue the subsumption rule and show how �rst-

order onstraints an be used. In Setion 2.6 we introdue equational reasoning

and term rewriting, and disuss the role of orientability. In Setion 2.7 we show

how the resolution system an be extended with equality and the use of onstraint

solving and orientability for this system. Finally, in Setion 2.8 we show how

to integrate nonorientable equations like ommutativity into term rewriting and

paramodulation aluli with the help of E-ompatible simpli�ation orders.

2.1 Introdution

In pratial appliations we an speify properties of systems suh as programs

or hardware devies using �rst-order formulas. Usually we want to be sure that

this spei�ation satis�es some required properties. Often problems of this kind

an be reformulated as the validity problem for �rst-order formulas. In order to
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prove validity of �rst-order formulas various dedution aluli have been devised.

Roughly speaking, dedution aluli allow us to prove validity of formulas using

simple transformations (derivations). Two main properties of a dedution al-

ulus are soundness and ompleteness. Soundness ensures that we dedue only

valid formulas and ompleteness guarantees that if a given formula is valid then

we an prove it in a �nite number of steps.

Another important property of a dedution alulus is that it an be imple-

mented eÆiently. This is one of the main onerns in the area of automated

dedution. It turns out that it is a very diÆult task to devise an eÆient al-

ulus for �rst-order logi. One of the most suessful attempts is the resolution

alulus introdued by Robinson [1965℄. The resolution alulus and its re�ne-

ments form a basis for most of the ontemporary theorem provers for �rst-order

logi. Let us briey desribe this alulus.

2.2 Resolution-based theorem proving

We assume that the reader is familiar with the syntax and semantis of �rst-

order logi. We onsider formulas over a �nite language onsisting of prediate

and funtion symbols and we assume that the language is arbitrary but �xed.

Also w.l.o.g. we assume that our language ontains at least one onstant.

Let us sketh how the resolution alulus an be applied to prove valid-

ity of �rst-order formulas. To prove the validity of a �rst-order formula we

prove the unsatis�ability of its negation. To prove the unsatis�ability of a

formula we �rst eliminate all existential quanti�ers, by a transformation pre-

serving satis�ability/unsatis�ability of this formula (for eÆient algorithms for

suh transformations we refer to [Baaz, Egly and Leitsh 2001, Nonnengart and

Weidenbah 2001℄). Now we an restrit ourself to universally quanti�ed formu-

las. The key theorem, whih is used to prove ompleteness of resolution aluli,

is Herbrand's theorem whih states the following. Consider a formula � = 8�x (x)

where  (�x) is a quanti�er{free formula. Then, � is unsatis�able if and only if

there exists a �nite number of tuples of terms

�

t

1

; : : : ;

�

t

n

without variables suh

that the formula  (

�

t

1

)^ : : :^ (

�

t

n

) is unsatis�able. Let us note that this theorem

gives us a semi{deision proedure for proving validity of �rst-order formulas,

sine we an hek e�etively satis�ability of variable{free formulas. Of ourse,

suh a proedure would be highly ineÆient in pratie, that is the reason why
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the resolution alulus was devised.

Now we are ready to introdue the resolution alulus. The resolution alulus

involves formulas of a speial kind, so-alled lauses. A lause is a disjuntion of

literals, where a literal is either an atomi or a negated atomi formula. Initially

we have a set of lauses whih are impliitly universally quanti�ed. The goal is to

prove that this set is unsatis�able, or in other words to dedue the empty lause.

The inferene system onsists of two rules: the resolution rule and the fatoring

rule.

Resolution:

A _ C :B _D

(C _D)�

where � is the most general uni�er of the atoms A and B.

Fatoring:

A _B _ C

(B _ C)�

where � is the most general uni�er of the atoms A and B.

This inferene system was proved to be refutation omplete, i.e., if we have an

unsatis�able set of lauses, then there is a proof of the empty lause using these

inferene rules. Usually the proof searh is implemented via a saturation proess,

i.e., exhaustively appliation of inferenes to the previously derived lauses. There

are three possible outomes of a saturation proess. We derive the empty lause

whih means that the initial set of lauses is unsatis�able. Or, the proedure stops

without deduing the empty lause whih means that the initial set of lauses is

satis�able. The third possibility is that the proedure does not terminate whih

means that the initial set of lauses is satis�able. Only the �rst two outomes

are useful for appliations. Consequently we want to restrit nontermination of

the proedure without ompromising ompleteness. Although we an not avoid

nontermination of resolution proess on all problems, due to undeidability of

�rst-order logi, we an narrow the lass of suh problems.

Let us onsider the following simple example.

Example 2.2.1 Consider the following set of lauses S = fB(x)_A(f(x));:A(x)_

A(f(x))g. It is easy to see that S is satis�able, nevertheless the resolution proess

does not terminate.

B(x) _ A(f(x)) :A(x) _ A(f(x))

B(x) _ A(f(f(x))) :A(x) _ A(f(x))

B(x) _ A(f(f(f(x)))) :A(x) _ A(f(x))

� � �
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It turns out that even for unsatis�able sets of lauses, the straightforward ap-

proah of applying inferene rules is very ineÆient in the sense that we generate

a huge number of unneessary inferenes. Therefore, one of the main problems in

the area is how to restrit appliability of the inferene rules while preserving the

ompleteness of the inferene system. One of the most prominent approahes to

this problem is based on various ordering restritions on appliability of inferene

rules. Ordering restritions and related problems will be the main topi for the

rest of this hapter.

2.3 Resolution and onstraints

Ordering re�nements were introdued into resolution in [Slagle 1967℄, who at-

tributes the idea to [Reynolds 1965℄. In [Slagle 1967℄ orders on literals in the

lause were used to restrit appliability of resolution and fatoring rules. This

idea turned out to be very produtive (see e.g. [Bahmair and Ganzinger 2001℄

for a omprehensive reent survey). In partiular, if we onsider a simpli�ation

order � (see De�nition 3.3.1) on the set of ground atoms, then the following

resolution system with ordering restritions is omplete. (To simplify the presen-

tation we omit restritions based on seletion funtions and refer to [Bahmair

and Ganzinger 2001℄ for the general ase.)

Resolution:

A _ C :B _D

(C _D)�

where � is the most general uni�er of the atoms A and B.

Restrition of appliability: For every atom C

0

in C there exists a ground

substitution  suh that A� � C

0

�. In other words, we apply this in-

ferene rule only if the ordering onstraint A�(�x) � C

0

�(�x) is satis�able.

Likewise, for every atom D

0

in D there exists a ground substitution � suh

that B�� � D

0

��. So, in addition we require that the ordering onstraint

B�(�x) � D

0

�(�x) is satis�able.

Fatoring:

A _B _ C

(B _ C)�

where � is the most general uni�er of the atoms A and B.

Restrition of appliability: For every atom C

0

in C there exists a ground

substitution  suh that A� � C

0

�. In other words, we apply this infer-

ene rule only if the ordering onstraint A�(�x) � C

0

�(�x) is satis�able.
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These ordering restritions are powerful but to use them we need algorithms for

solving ordering onstraints, (see Chapter 3 for the de�nition of onstraints).

There are two lasses of orders extensively used in automated dedution, namely

Knuth-Bendix orders and reursive path orders. The deidability of reursive path

ordering onstraints is shown in [Comon 1990℄ and omplexity results are given

in [Jouannaud and Okada 1991, Nieuwenhuis 1993, Comon and Treinen 1994℄. In

Chapter 4 we prove the deidability of Knuth-Bendix ordering onstraints and

show that this problem is NP-omplete for onjuntive onstraints (as orollary

it is NP-omplete for quanti�er free onstraints). It is interesting to note that

for Knuth-Bendix onstraints onsisting of a single inequality, as used above in

ordered resolution, there is an eÆient polynomial-time algorithm solving them,

presented in Chapter 6. This is in ontrast with reursive path orders, for whih

it is shown that the problem of solving onstraints onsisting of a single inequality

is NP-omplete [Comon and Treinen 1994℄.

Let us reonsider Example 2.2.1. Now we apply ordered resolution instead

of unrestrited resolution. For a suitable order we an have that the onstraint

A(f(x)) � B(x), is unsatis�able and therefore the proedure stops returning the

answer \satis�able", in ontrast to the unrestrited resolution. (An example of

suh an order is a Knuth-Bendix order � with parameters fjBj = 3; jAj = 1; jf j =

1;B � A� fg see De�nition 3.3.8 of Knuth{Bendix orders.)

Here we also an notie that in addition to the onstraint satisfation problem,

there is a problem of hoosing an appropriate order to minimize the number of

appliable rules. This problem is related to the orientability problem, whih is

shown to be deidable in polynomial time for Knuth-Bendix orders see Chapters

6,7.

It turns out that it is possible to restrit resolution even further by introduing

onstrained lauses, whih will be disussed in the next setion.

2.4 Inherited onstraints

In order to restrit resolution further, instead of ordinary lauses we onsider

onstrained lauses whih are of the form C(�x) j �(�x), where C(�x) is a lause

and �(�x) is an ordering onstraint. Usually a lause is viewed as a representation

of all its ground instanes C(�x)�, then a onstrained lause C(�x) j �(�x) an be

viewed as a representation of all ground C(�x)� suh that the onstraint �(x)�
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is valid. The main bene�t of using onstrained lauses is that we an inherit

onstraints along the derivation. Now the resolution rule an be replaed with

the following rule.

Resolution with inherited onstraints:

C _ A j T :B _D j T

0

(C _D)� j (OC ^ T ^ T

0

)�

where � is the most general uni�er of the atoms A and B and OC is the ordering

onstraint imposed by this inferene. Now a lause C(�x) j �(�x) is redundant if

onstraint �(�x) is unsatis�able.

Various types of onstraint lauses are introdued and ompleteness results are

proved in [Huet 1972, B�urkert 1990, Kirhner, Kirhner and Rusinowith 1990,

Nieuwenhuis and Rubio 1992, Nieuwenhuis and Rubio 1995℄. Again, in order

to gain from onstrained lauses, we need algorithms for heking solvability

of ordering onstraints (see Chapter 4 for a nondeterministi polynomial time

algorithm for this problem for Knuth-Bendix orders).

2.5 First-order onstraints

In resolution-based theorem proving there are important simpli�ations whih

allow us to remove lauses from the searh spae. It turns out that in order

to express appliability onditions for these simpli�ations, we need to onsider

onstraints whih involve �rst-order quanti�ers. As an example we onsider sub-

sumption.

Subsumption: ([Voronkov 2000℄) We say that a onstrained lause C(�x) j '(�x)

subsumes a onstrained lause D(�x) j  (�x) if the following holds:

8x( (x)! 9y('(y) ^ C(y) � D(x))):

If the lause D(�x) j  (�x) is subsumed by a lause C(�x) j '(�x) then it

an be shown that the lause D(�x) j  (�x) is redundant and an be removed

from the searh spae. In order to hek whether one lause is subsumed by

another we need to solve ordering onstraints involving alternation of quanti-

�ers. Unfortunately the �rst-order theory of reursive path orders is undeid-

able [Treinen 1990, Comon and Treinen 1997℄. Reently, it was shown that

in the ase of the signatures onsisting of unary funtion symbols and on-

stants the �rst-order theory of reursive path orders is deidable [Narendran and
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Rusinowith 2000℄. In Chapter 5 we show that the �rst-order theory of the

Knuth{Bendix orders is deidable if we onsider signatures onsisting of unary

funtion symbols and onstants.

Another possible appliation of solvability of �rst-order ordering onstraints

is simpli�ation of onstraints. For example, onsider a onstrained lause C(�x) j

'(�x; �y). It might be the ase that the variables �y do not our in the lause C(�x)

and therefore we want to simplify the onstraint '(�x; �y) to a onstraint '

0

(�x)

whih does not ontain variables from �y. From the deidability proedure for

�rst-order Knuth{Bendix ordering onstraints over unary signatures, we an see

that there is a representation of onstraints where suh redundant variables an

be eliminated.

2.6 Equational reasoning and term rewriting

Equational reasoning plays an important role in mathematis and omputer si-

ene. Most problems ourring in pratial appliations involve reasoning with

equality.

Formally, we are studying properties of strutures de�ned using identities.

Although the language is restritive we still an de�ne a lot of interesting and

important lasses of strutures suh as groups, rings, latties, et.. Let us onsider

axioms of group theory:

� assoiativity axiom: (x Æ y) Æ z ' x Æ (y Æ z) ,

� left-unit axiom: e Æ x ' x,

� left-inverse axiom: i(x) Æ x ' e.

In many situations we are interested in the following question: given a set of

axioms and an equality t ' s, is t ' s valid in all strutures satisfying these

axioms (e.g. is i(x Æ y) = i(y) Æ i(x) valid in all groups)? In other words, does

the given equality logially follow from the axioms? One way to hek it, is to

transform terms t and s by replaing equal subterms using the axioms, and wait

until t will be syntatially equal to s. In fat, this method is sound and omplete

by Birkho�'s theorem (see e.g. [Baader and Nipkow 1998℄), i.e., if the equality

t ' s follows from the axioms, then exhaustively applying transformations as

above we will dedue syntatially idential terms in a �nite number of steps.
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Unfortunately this method has two major drawbaks. First, for a given set of

axioms we annot predit whether the algorithm terminates for every equality

t ' s. More importantly, this algorithm is hopelessly ineÆient. For example

if we want to prove that (x Æ i(y)) Æ y ' x follows from the axioms of group

theory, then among other dedued equalities we obtain f(x Æ (e Æ i(y))) Æ y '

x; (x Æ i(y)) Æ (e Æ y) ' e Æx; (x Æ i(e Æ y)) Æ (e Æ y) ' x) : : :g (using left-unit axiom),

whih have nothing to do with the atual proof.

The main approah to overome these problems is as follows. We represent

axioms as rewrite rules and apply them only in one diretion. Now in plae of

axioms we have term rewrite rules. For example a possible term rewriting system

for groups is as follows.

� assoiativity rule: (x Æ y) Æ z ! x Æ (y Æ z) ,

� left-unit rule: e Æ x! x,

� left-inverse rule: i(x) Æ x! e.

The idea is to redue a given term into a normal form using these rewrite rules.

Then, if our term rewriting system satis�es ertain properties, we an guarantee

that this rewriting proess will always terminate and produe a unique normal

form for eah term. As a onsequene, the problem of heking whether a given

equality follows from the axioms beomes simple: we produe normal forms of

orresponding terms and hek syntati identity of normal forms. This approah,

alled term rewriting, was introdued in the seminal paper of Knuth and Bendix

[1970℄ and has been intensively studied and developed during the last 30 years.

For example, onsider again the equality (xÆi(y))Æy ' x. The only appliable

rule is the assoiativity rule whih produes x Æ (i(y) Æ y) ' x, at the next step

the only appliable rule is the left-inverse rule whih produes x Æ e ' x, now

the only appliable rule is the left-unit rule whih proves the equality produing

x ' x. Although the term rewriting system above is sound, it is inomplete, i.e.,

not all equalities whih follow from the axioms of group theory an be proved

by this term rewriting system. For example x Æ i(x) ' e is a logial onsequene

of group theory, but annot be proved by this term rewriting system (none of

the rules is appliable). Therefore a natural question to ask is what are the

properties of term rewriting systems whih guarantee that the term rewriting

system is omplete, i.e., an prove all logial onsequenes? These properties
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are termination and onuene. Termination guarantees that there is no in�nite

sequenes of rewritings and onuene guarantees that if we an rewrite a given

term into two di�erent ones then we an join these rewrites. If a term rewriting

system is onuent and terminating, then every term an be rewritten into a

unique normal form. As a onsequene, every equality an be proved or disproved

by rewriting. Therefore, termination is one of the ruial properties of term

rewriting systems. Moreover, it turns out that onuene is deidable if our term

rewriting system is terminating. In general, termination of rewriting systems is

undeidable (see e.g. [Baader and Nipkow 1998℄), but in many pratial ases we

an prove termination using orientability of term rewriting systems by redution

orders. In fat, if our term rewriting system an be oriented using a redution

order then it is terminating. Let us de�ne the orientability problem. Let � be

any redution order on ground terms and l ! r be a rewrite rule. We say that �

orients l ! r, if for every ground instane l

0

! r

0

of l ! r we have l

0

� r

0

. We

say that � orients a term rewriting system R if it orients every rewrite rule in R.

Orientability problem (TRS): Given a term rewriting system R hek whether

there exists a redution order � whih orients R.

Knuth-Bendix orders and reursive path orders are two major lasses of orders

that an be used to show termination of term rewriting systems. For reursive

path orders the orientability problem is omputationally diÆult, in partiular it

is NP-hard and o-NP-hard [Krishnamoorthy and Narendran 1985, Comon and

Treinen 1994℄. We show that for Knuth-Bendix orders the orientability prob-

lem an be solved in polynomial-time, in partiular we show that this problem

is P-omplete (Chapter 6). Let us note that there are powerful extentions of

termination analysis based on orientability, by onsidering dependeny relation

between term rewrite rules, fousing only on rules that an start a nonterminating

sequene of rewrites (see [Arts and Giesl 2000℄).

The term rewriting tehnique for equational reasoning an be integrated into

resolution-based theorem proving as shown in the next setion. Let us men-

tion that term rewriting systems are already expressive enough to be used in

veri�ation (see e.g. [Arts and Giesl 2001, Hoe and Arvind 1999℄) where er-

tain spei�ations are represented as term rewriting systems. Again, termination

plays a ruial role there.
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2.7 Introduing equality into resolution

The equality prediate is used in many appliations and onsequently it is impor-

tant to introdue it into resolution alulus. One way to do this is by introduing

equality axioms. Indeed, the equality prediate ' an be axiomatized by the

following set of axioms

� reexivity axiom: x ' x;

� symmetry axiom: x ' y � y ' x;

� transitivity axiom: x ' y ^ y ' z � x ' z;

� funtion substitution axioms: x

1

' y

1

^ : : : ^ x

n

' y

n

� f(x

1

; : : : ; x

n

) '

f(y

1

; : : : ; y

n

), for every funtion symbol f ;

� prediate substitution axioms: x

1

' y

1

^ : : : ^ x

n

' y

n

^ P (x

1

; : : : ; x

n

) �

P (y

1

; : : : ; y

n

), for every prediate symbol P .

Suppose that we want to prove a theorem ontaining equality, then we an try

to dedue it from the equality axioms above using resolution system. However,

this would lead to a ombinatorial explosion due to the universal appliability of

the equality axioms.

In order to overome these problems it has been suggested to build equality

into resolution alulus via speial rules. Suh a rule, alled paramodulation, was

introdued in [Robinson and Wos 1969℄.

Paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Robinson and Wos [1969℄ proved ompleteness of the system onsisting of res-

olution, fatoring and paramodulation in the presene of some addition axioms,

alled funtion reexivity axioms. Later Brand [1975℄ proved that resolution,

fatoring and paramodulation is omplete even without funtion reexivity ax-

ioms. Nevertheless, unrestrited appliation of paramodulation is still very inef-

�ient. Reent researh has been aiming at various restritions of appliability of

paramodulation. One of the most prominent approahes is introduing ordering

restritions where we replae \bigger" terms by \smaller" ones, with respet to

the given simpli�ation order. The main idea goes bak to term rewriting. Given
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a simpli�ation order �, we an replae paramodulation with ordered paramod-

ulation as follows.

Ordered paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Restrition of appliability:

� s

0

is not a variable;

� there exists a ground substitution  suh that s� � t�.

Ordered paramodulation was introdued and studied in [Peterson 1983, Hsiang

and Rusinowith 1986℄ where ompleteness results are proved. Let us refer to

[Nieuwenhuis and Rubio 2001℄ for a reent omprehensive survey of state-of-the-

art re�nements of the paramodulation alulus.

Here we an observe that if an order � is suh that for all ground substitutions

� we have s� � t� then we an apply paramodulation rule only when we replaing

instanes of s by instanes of t but not vie versa. This is a desirable restrition

of appliability. Now we are faing a problem of how to hoose an order suh that

equalities ourring in the set of lauses would be oriented by this order. This

is the orientability problem for sets of equalities, whih an be stated as follows.

We say that � orients an equality s ' t, if it orients either the rewrite rule s! t

or the rewrite rule t! s. The orientability problem for systems of equalities is a

problem of determining whether there exists a simpli�ation order whih orients a

given system of equalities. A straightforward algorithm for heking orientability

of systems of equalities would be to try all possible orientations of equalities and

apply an orientability algorithm for term rewriting systems. Suh an algorithm

would require to test an exponential number of possible orientations of equalities.

In Chapter 7 we show how to overome this problem for Knuth-Bendix orders,

presenting a polynomial time algorithm for heking orientability of systems of

equalities. In some ases orientation of some subsystem of equalities is desirable to

be �xed in advane. For example, if we know whih orientation of the group theory

axioms an lead to a onvergent term rewriting system, we might require that

this subsystem be oriented in this partiular way. So the general statement of the

orientability problem is as follows: given a system of equalities and term rewrite

rules, determining whether there exists a simpli�ation order whih orients this



2.7 Introduing equality into resolution 24

system. In Chapter 7 we show that this problem an also be solved in polynomial

time for Knuth-Bendix orders.

A further re�nement of ordered paramodulation is maximal paramodulation.

Maximal paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Restrition of appliability:

1. s

0

is not a variable;

2. there exists a ground substitution  suh that s� � t�;

3. L[s

0

℄� is maximal w.r.t. � in (L[s

0

℄ _ C

2

)�;

4. (s ' t)� is maximal w.r.t. � in (s ' t _ C

1

)�.

Similar to resolution we an inherit onstraints along the derivations without

loosing ompleteness (see [Nieuwenhuis and Rubio 1995℄). This imposes stronger

restritions on appliability of rules. Thus, we an make use of both orientability

and onstraint solving algorithms.

The rules desribed so far were inferene rules, so every appliation of suh a

rule produes a new lause, therefore enlarging the searh spae. For eÆieny

reasons, another type of rules, so-alled simpli�ation rules, are of great impor-

tane. Simpli�ation rules allow us to replae lauses with \simpli�ed" ones. One

of the most popular simpli�ation rules for equality reasoning is demodulation.

Demodulation:

s ' t L[s

0

℄ _ C

(L[t℄ _ C)�

;

where s

0

= s�.

Appliability: s� � t� for every ground substitution .

After appliation of the demodulation the lause in the frame will be removed

from the searh spae. As a onsequene we want to orient equations in order to

simplify lauses. For this, we an again employ an orientability algorithm.
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2.8 Building in equational theories

One disappointing feature of the term rewriting approah is that some important

axioms like ommutativity an be oriented by no simpli�ation ordering. To ope

with this problem rewriting modulo theories has been devised, where we rewrite

equivalene lasses generated by equational theory rather than individual terms.

A general approah is to partition a given set of equational axioms into a set

of rewrite rules R whih indues a rewrite relation on terms !

R

, and a set of

equations E whih indues an equivalene relation on terms =

E

. We say that a

term t R=E-rewrites in one step to a term t

0

(and denote this by t !

R=E

t

0

) if

there exists a term s E-equivalent to t and a term s

0

E-equivalent to t

0

suh that

t rewrites to t

0

by !

R

. In other words t!

R=E

t

0

if t =

E

s[l�℄ and t

0

=

E

s[r�℄ for

a term s and a rewrite rule l ! r in R. We say that a term t is in a normal form

if we annot R=E-rewrite it. Now we an try to deide equational onsequenes

of the the given set of axioms by normalizing terms w.r.t. R=E-rewriting and

hek whether the obtained normal forms are equivalent modulo E. For this,

similar to the ordinary rewriting, R=E-rewriting has to be terminating and every

two terms equal w.r.t. our axioms should rewrite to the same normal form. We

an prove termination of R=E-rewriting using simpli�ation orders whih satisfy

an additional property, alled E-ompatibility. We say that an order � is E-

ompatible if it satis�es the following property: if s � t, s =

E

s

0

and t =

E

t

0

, then

s

0

� t

0

. The order � is alled E-total , if for all ground terms s; t, if s 6=

E

t, then

either s � t or t � s. Designing E-ompatible simpli�ation orders has been an

ative researh area.

Among various equational theories, theories axiomatized by the axioms of as-

soiativity and ommutativity, so-alled AC-theories, play a speial role. Suh

theories very often our in appliations and require speial treatment in auto-

mated systems. AC-reasoning based on AC-rewriting has been integrated into

paramodulation framework in [Rusinowith and Vigneron 1995, Nieuwenhuis and

Rubio 1997℄. A ruial ingredient in these approahes is an AC-ompatible AC-

total simpli�ation order. Existene of an AC-ompatible AC-total simpli�ation

order has been an open problem for many years and was �nally solved by Naren-

dran and Rusinowith [1991℄ who applied this order to show that any ground AC-

theory an be represented as a �nite onvergent rewriting system. Unfortunately

this order was de�ned only for ground terms whih restrits its appliability.
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Reently there has been a huge amount of researh devoted to designing AC-

ompatible AC-total simpli�ation orders, mainly by modifying reursive path

orders. Sine Knuth-Bendix orders are widely used in automated dedution, it is

important to �nd AC-ompatible variants of it. In Chapter 8 we present a family

of AC-ompatible Knuth-Bendix orders. These orders enjoy attrative features of

the standard Knuth-Bendix orders, suh as polynomial-time algorithm for term

omparison and omputationally eÆient approximations based on weight om-

parisons.



Chapter 3

Ordering restritions:

preliminaries

In this hapter we introdue basi de�nitions like orders on sets and multisets

(Setion 3.2), orders on terms (Setion 3.3) and �nally notion of ordering on-

straints (Setion 3.4) where we also overview some known results on solving or-

dering onstraints.

3.1 Term algebras

The main objets we will be working with are terms over a �nite signature. A

signature is a �nite set of funtion symbols with assigned arities (nonnegative

integers) e.g. � = fg(; ); h(); g is a signature with funtion symbols g of arity

two, (suh symbols also alled binary symbols), h of arity one,(also alled unary

symbols) and  of arity zero (also alled onstants). We will denote a signature

by �. Terms of the signature � over a set of variables X are de�ned by indution

as follows, onstants and variables are terms, and for eah funtion symbol g 2 �

of a positive arity n and terms t

1

; : : : t

n

we have g(t

1

; : : : ; t

n

) is a term. Terms

whih ontain no variables are alled ground terms.

Definition 3.1.1 (substitution) A substitution � is a mapping from the set of

variables X to the set of terms. This mapping an be extended from variables

to terms in the following anonial way. For every onstant , �() =  and

for every nononstant term g(t

1

; : : : ; t

n

), �(g(t

1

; : : : ; t

n

)) = g(�(t

1

); : : : ; �(t

n

)). In

the sequel we onsider substitutions whih are identity on all but �nitely many
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variables. An appliation of a substitution � to a term t will be denoted by t�. �

Definition 3.1.2 Let � be a �nite signature whih ontains at least one on-

stant. The �{term algebra TA(�) is an algebra with the domain of the set of

all ground �{terms and the following interpretation: onstants interpreted by

onstants from the domain and the value of a funtion g on terms

�

t is the term

g(

�

t). �

When the signature is lear from the ontext, then we say the term algebra instead

of the �{term algebra.

Some authors all the �{term algebra as an absolutely free algebra (in the

lass of all �{algebras), it means that there exists a unique homomorphism from

the term algebra into any �{algebra.

In the future we always assume that our signature ontains at least one on-

stant symbol.

3.2 Orders on sets

Definition 3.2.1 A partially ordered set (A;�) is a set A with a binary relation

� whih is reexive, transitive and antisymmetri. An order is alled linear or

total if for any two elements a; b 2 A either a � b or b � a. We say that a is

stritly greater than b, denoting a > b, if a � b and b 6� a. An order is alled

well-founded if there is no in�nite dereasing hain a > b > � � �. �

Let us de�ne multisets whih is a generalization of sets (for the properties of

multisets see [Baader and Nipkow 1998℄).

Definition 3.2.2 A multiset M over a set A is a funtion M : A! N . �

A multiset is �nite if there are only �nitely many x suh that M(x) > 0. We will

onsider only �nite multisets. We adopt a standard set notation for multisets

for example

_

fa; a; b

_

g denotes the multiset M = fa ! 2; b ! 1g and we write

a

_

2 M if M(a) > 0. The union, intersetion and multiset di�erene are de�ned

as follows: (M

1

[M

2

)(x) =M

1

(x) +M

2

(x), (M

1

\M

2

)(x) = min(M

1

(x);M

2

(x))

and (M

1

_

�M

2

)(x) = max(0;M

1

(x)�M

2

(x)).

One of the important properties of multisets is as follows: if have a total, well{

founded order on a set A then we an extend this order into a total, well{founded

order on the multisets over A.
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Definition 3.2.3 Given a strit order > on a set A, we de�ne the orresponding

multiset order on all multisets over A as follows: M >

mul

N if there exist multisets

X; Y suh that the following holds:

� ; 6= X �M , and

� N = (M nX) [ Y , and

� 8y 2 Y 9x 2 X x > y.

�

We also all >

mul

as a multiset extension of >. The multiset orders were intro-

dued by Dershowitz and Manna [1979℄.

Proposition 3.2.4 If > is a strit order then >

mul

is a strit order. If > is a

well{founded order then >

mul

is a well{founded order. �

For a proof let us refer to [Baader and Nipkow 1998℄.

3.3 Orders on terms

One of the most general lasses of orders on terms whih is used in automated

dedution is so-alled simpli�ation orders introdued by Dershowitz [1979℄.

Definition 3.3.1 A strit order > on TA(�) is alled a simpli�ation order if

it has the following properties:

� > ismonotone (or ompatible with �{operations): for all s

1

; s

2

2 TA(�) and

n{ary funtion symbol g 2 �, s

1

> s

2

implies g(t

1

; : : : ; t

i�1

; s

1

; t

i+1

; : : : ; t

n

) >

g(t

1

; : : : ; t

i�1

; s

2

; t

i+1

; : : : ; t

n

) for all i, 1 � i � n, and all t

1

; : : : ; t

i�1

; t

i+1

; : : : ; t

n

2

TA(�).

� > has a subterm property : if r[s℄ 6= s, then r[s℄ > s.

�

One of the main properties of simpli�ation orders is that every simpli�ation

order is well-founded [Dershowitz 1979℄.

There are two sublasses of simpli�ation orders that are widely used beause

of a possibility to generate them automatially for a given set of lauses. They

are: Knuth-Bendix orders and reursive path orders.
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Let us start from the de�nition of reursive path orders. Reursive path orders

are generalization of lexiographi path orders introdued by Kamin and L�evy

[1980℄ and multiset path orders introdued by Dershowitz [1982℄.

Definition 3.3.2 Let us �x a strit order� on �. The lexiographi path order

>

lpo

on TA(�) indued by� is de�ned as follows: g(s

1

; : : : ; s

n

) >

lpo

h(t

1

; : : : ; t

m

)

if one of the following onditions holds:

� s

i

�

lpo

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and g(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ; m.

� g = h and g(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ; m and there exists j,

1 � j � m, suh that s

1

= t

1

; : : : ; s

j�1

= t

j�1

and s

i

>

lpo

t

i

.

�

Lexiographi path orders are simpli�ation orders (for a proof see [Baader

and Nipkow 1998℄).

Remark 3.3.3 If our signature ontains at least two non-onstant funtion sym-

bols then there are terms with an in�nite number of di�erent terms below them

with respet to the lexiographial path order.

Proof. We illustrate the proof for the ase � = fg(); h(); g and g � h the

general ase is similar. It is easy to hek that all terms h

n

() are stritly less

than the term g() for any natural number n. �

One of the main usage of orders in automated dedution is to replae \big"

terms by \smaller" terms. This remark shows that \small" terms in the sense of

lexiographi path orders an be arbitrarily large in the physial representation.

We will see later, Lemma 3.3.9, that for a rather large lass of Knuth-Bendix

orders the number of terms below any �xed term is �nite.

Let us onsider multiset path orders introdued by Dershowitz [1982℄. These

orders are de�ned on the equivalene lasses over the multiset equivalene. The

multiset equivalene =

mul

is the least equivalene relation suh that if we have

that a term t is in the equivalene lass, then any term obtained by permutation

of immediate subterms of t is in the same equivalene lass.
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Definition 3.3.4 Let us �x a strit order� on �. The multiset path order >

mpo

on TA(�) indued by � is de�ned as follows g(s

1

; : : : ; s

n

) >

mpo

h(t

1

; : : : ; t

m

) if

one of the following onditions holds:

� s

i

>

mpo

h(t

1

; : : : ; t

m

) or s

i

=

mul

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and g(s

1

; : : : ; s

n

) >

mpo

t

i

for all i = 1; : : : ; m.

� g = h and

_

fs

1

; : : : ; s

n

_

g >

mul

_

ft

1

; : : : ; t

n

_

g.

�

Reursive path orders on terms is a ombination of lexiographial path orders

and multiset path orders. We divide our signature � into two disjoint sets �

lex

and

�

mul

. The multiset equivalene =

mul

on TA(�

lex

[�

mul

) is de�ned w.r.t. funtion

symbols in �

mul

. That is, =

mul

is the least equivalene relation suh that if we

have that a term t, with top funtion symbol in �

mul

, is in the equivalene lass,

then any term obtained by permutation of immediate subterms of t is in the same

equivalene lass.

Definition 3.3.5 Let us �x a strit order � on �.

The reursive path order >

rpo

on TA(�) indued by � is de�ned as follows:

g(s

1

; : : : ; s

n

) >

rpo

h(t

1

; : : : ; t

m

) if one of the following onditions holds:

� s

i

>

rpo

h(t

1

; : : : ; t

m

) or s

i

=

mul

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and h(s

1

; : : : ; s

n

) >

rpo

t

i

for all i = 1; : : : ; m.

� g = h, g 2 �

lex

and g(s

1

; : : : ; s

n

) >

rpo

t

i

for all i = 1; : : : ; m and there exists

j, 1 � j � m, suh that s

1

= t

1

; : : : ; s

j�1

= t

j�1

and s

i

>

rpo

t

i

.

� g = h, g 2 �

mul

and

_

fs

1

; : : : ; s

n

_

g >

mul

_

ft

1

; : : : ; t

n

_

g.

�

Lexiographi and multiset path orders are the speial ases of reursive path

orders, when we �x �

lex

= �, �

mul

= � respetively. Reursive path orders

on terms, modulo the multiset equivalene, are well{founded, ompatible with

�{operations, and total.

Let us now de�ne Knuth-Bendix orders on TA(�) [Knuth and Bendix 1970℄.

Knuth-Bendix orders is a family of orders parameterized by two parameters: a

weight funtion and a preedene relation.
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Definition 3.3.6 (weight funtion) We all a weight funtion on � any fun-

tion w : �! N suh that (i) w(a) > 0 for every onstant a 2 �, (ii) there exist at

most one unary funtion symbol f 2 � suh that w(f) = 0. Given a weight fun-

tion w, we all w(g) the weight of g. The weight of any ground term t, denoted

jtj, is de�ned as follows: for every onstant  we have jj = w() and for every

funtion symbol g of a positive arity we have jg(t

1

; : : : ; t

n

)j = w(g)+jt

1

j+: : :+jt

n

j.

�

Definition 3.3.7 (preedene relation) A preedene relation on � is any total

order � on �. A preedene relation � is said to be ompatible with a weight

funtion w if, whenever f is a unary funtion symbol f of weight zero, f is the

greatest element w.r.t. �. �

These onditions on the weight funtion and preedene relation ensure that

every Knuth-Bendix order is a simpli�ation order total on ground terms (see,

e.g. [Baader and Nipkow 1998℄).

Let us onsider a weight funtion w on � and a preedene relation� on �,

ompatible with w.

Definition 3.3.8 The Knuth-Bendix order on TA(�) is the binary relation

�

KBO

de�ned as follows. For any ground terms t = g(t

1

; : : : ; t

n

) and s =

h(s

1

; : : : ; s

k

) we have t �

KBO

s if one of the following onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and

t

i

�

KBO

s

i

.

�

Note that every Knuth-Bendix order is a total monotoni well-founded order,

see, e.g. [Baader and Nipkow 1998℄.

For a unary funtion symbol f and a term t, let f

m

(t) denote a term obtained

by m appliations of f to t. Let us prove the following simple properties of weight

funtions whih we will use later.

Lemma 3.3.9 Every weight funtion satis�es the following properties.
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1. The weight of every term is positive.

2. If � ontains the unary funtion symbol of the weight 0, then, for every

weight, either there are no terms of that weight or there are in�nitely many.

3. If a term s is a subterm of t then either jtj > jsj or jtj = jsj and t has the

form f

m

(s) for some m � 0, where f is the unary funtion symbol of the

weight 0.

4. If � ontains no unary funtion symbol of the weight 0, then for every

natural number n there is only a �nite number of terms of the weight n.

Proof. First property follows from the fat that the weight of every onstant is

positive.

Denote the unary funtion symbol of the weight 0 as f . Then the seond

property follows from the fat that if we have a term t then for every m 2 N the

term f

m

(t) has the same weight as t.

To prove the last two properties let us show that if we onsider a nononstant

term t with a top funtion symbol di�erent from f then the weight of t is stritly

greater than the weight of any of its immediate subterms.

Indeed, if we onsider a term t = g(t

1

; : : : ; t

n

) where g is di�erent from f ,

then jg(t

1

; : : : ; t

n

)j = w(g) + jt

1

j+ � � �+ jt

n

j and all possible ases are as follows:

� either w(g) > 0 and jtj > jt

1

j+� � �+jt

n

j and therefore jtj > jt

i

j for 1 � i � n,

or

� w(g) = 0 and n > 1 so we have jtj = jt

1

j + : : : + jt

n

j, and sine the weight

of every term is positive we have that jtj > jt

i

j for 1 � i � n.

From this, the third property follows immediately. To show the last property

onsider a signature without the unary funtion symbol of zero weight. From the

observation above we have that in this ase eah term has depth less or equal

than its weight. Sine there are only �nite number of terms of a �xed depth we

onlude that for eah weight there is only a �nite number of terms of this weight.

�

From this lemma it follows that if our signature ontains no unary funtion

symbol of weight zero then there is only a �nite number of terms below eah term.

The following example shows that if our signature ontains the unary funtion
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symbol of the weight 0 and a binary funtional symbol then there exists a term

t with an in�nite number of terms below it of the same weight as t.

Example 3.3.10 Let � = ff(); g(; ); 

1

g and f � g � 

1

and w(f) = 0. Then

g(f(

1

); 

1

) �

KBO

g(

1

; f

n

(

1

)) for any natural number n. Moreover we have that

w(g(f(

1

); 

1

)) = w(g(

1

; f

n

(

1

))) for any natural number n. �

3.4 Ordering onstraints

In this setion we desribe types of ordering onstraints that we will work with.

Let us �x a signature � whih indues the term algebra TA(�) and let us

�x an order on this term algebra. We denote TA

>

(�) the struture of the term

algebra with the order > and we all this struture an ordered term algebra.

Definition 3.4.1 A onjuntive ordering onstraint (or just a onstraint ) is a

onjuntion of atomi formulas of the language of TA

>

(�). �

For example, if we have � = fh(; ); g(); g then h(x; g(y)) > ^g(x) > h(g(z); y)^

g(g(y)) = g(g()) is a onstraint with free variables x; y.

Definition 3.4.2 A quanti�er{free onstraint is a quanti�er{free formula of the

language of TA

>

(�). �

For example, if we have � = fh(; ); g(); g then (h(g(y); z) > z)! :(z = g(m) _

z > g()) is a quanti�er{free onstraint.

Definition 3.4.3 A �rst{order onstraint is a �rst order formula of the language

of TA

>

(�). �

For example, if we have � = fh(; ); g(); g then 8y9z(h(g(y); x) > z ^ y > ) is a

�rst{order onstraint.

A onstraint �(�x) is satis�able in the ordered term algebra TA

>

(�) if TA

>

(�) j=

9�x�(�x) i.e. there exist ground terms

�

t suh that the sentene �(

�

t) is valid in our

ordered term algebra. Let us �x an ordered term algebra TA

>

(�) then the on-

straint satis�ability problem is a problem to deide for a given onstraint whether

it satis�able in TA

>

(�) or not. A solution to a onstraint is a substitution whih

makes this onstraint valid. It is lear, that the quanti�er{free (�rst{order) on-

straint satis�ability problem is equivalent to the problem of the deidability of

the existential (�rst{order) theory of the ordered term algebra.
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3.5 Solving ordering onstraints

In this setion we overview some results on solving reursive path ordering on-

straints.

Term algebras are rather well-studied strutures. Ma

�

lev [1961℄ was the �rst to

prove the deidability of the �rst-order theory of term algebras. Other methods

of proving deidability were developed by Comon and Lesanne [1989℄, Kunen

[1987℄, Belegradek [1988℄ and Maher [1988℄. The omplexity of the �rst-order

theory of any term algebra over a signature ontaining a binary funtion symbol

is nonelementary, i.e. not bounded by any tower of exponents 2

�

�

�

2

n

(see [Ferrante

and Rako� 1979℄).

If we introdue a binary prediate into a term algebra, then one an obtain

a riher theory. Term algebras with the subterm prediate have an undeidable

�rst{order theory and a deidable existential theory [Venkataraman 1987℄.

Let us onsider term algebras with lexiographi path orders.

Theorem 3.5.1 [Comon 1990℄ The quanti�er{free onstraint satis�ability prob-

lem for lexiographi path orders is deidable. �

Later, it was shown that this problem is NP{omplete.

Theorem 3.5.2 [Nieuwenhuis 1993℄ The quanti�er{free onstraint satis�ability

problem for lexiographi path orders is NP{omplete. �

Let us prove a simple result (similar to the result from [Nieuwenhuis 1993℄)

from whih NP-hardness will follow.

Proposition 3.5.3 For any struture S with at least two elements the following

holds.

1. The problem of deiding whether a given existential formula is valid in S is

NP-hard.

2. The problem of deiding whether a given �rst-order formula is valid in S is

PSPACE-hard.

Proof. It is well-known that the problem of satis�ability of propositional formu-

las is NP-omplete and the problem of satis�ability of quanti�ed propositional

formulas is PSPACE-omplete (see e.g. [Papadimitriou 1994℄). We show how
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to redue satis�ability of propositional formulas to satis�ability of quanti�er-free

onstraints in S and satis�ability of quanti�ed propositional formulas to to sat-

is�ability of �rst-order onstraints in S.

We transform any propositional formula P into a quanti�er-free onstraint C

as follows. For any propositional variable X ourring into P we �x a pair of

new variables x

1

; x

2

. Any ourrene of a propositional variable X we replae

with the formula x

1

= x

2

. It is easy to hek that the obtained onstraint C is

satis�able in S if and only if P is satis�able.

For quanti�ed propositional formulas, in addition to the previous transfor-

mations, we replae eah propositional quanti�er 9X with �rst-order quanti�ers

9x

1

9x

2

, likewise 8X we replae with 8x

1

8x

2

. It is easy to hek that the obtained

�rst-order onstraint is satis�able in S if and only if the initial propositional quan-

ti�ed formula is satis�able. �

Corollary 3.5.4 If a term algebra ontains at least two elements then the

quanti�er-free onstraint satis�ability problem is NP-hard and �rst-order on-

straint satis�ability problem is PSPACE-hard, for any order. �

It turns out that for lexiographi path orders even the problem of satis�ability

of the atomi formulas is NP-omplete [Comon and Treinen 1994℄.

Although the onstraint satis�ability problem for lexiographi path orders is

in NP, a pratial algorithm was presented only in [Nieuwenhuis and Rivero 1999℄.

Let us onsider �rst{order lexiographi path ordering onstraints. Treinen

[1990℄ proved the undeidability of the onstraint satis�ability problem for a gen-

eralization of lexiographial path orders. He used a redution of the Post or-

respondene problem to the �rst{order onstraint satis�ability problem. Later,

Comon and Treinen [1997℄ proved that the onstraint satis�ability problem for

lexiographi path orders is undeidable again using a redution of the Post or-

respondene problem.

Theorem 3.5.5 [Comon and Treinen 1997℄ Let us �x a signature � and an

order � on � suh that there exists a binary funtion h minimal with respet to

�.This order indues a lexiographi order � on TA(�) suh that the �rst-order

theory of the ordered term algebra TA

�

(�) is undeidable. �

It turns out that if we onsider a signature whih onsists only of onstants
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and unary funtion symbols then the problem of satis�ability of �rst{order lexio-

graphi path ordering onstraints is deidable [Narendran and Rusinowith 2000℄.

Let us onsider reursive path ordering onstraints. The quanti�er-free on-

straints satis�ability problem is shown to be deidable [Jouannaud and Okada

1991℄ and NP{omplete [Narendran et al. 1998℄. To our knowledge it is unknown

whether the satis�ability problem of �rst-order multiset path ordering onstraints

is deidable or not.



Chapter 4

Knuth-Bendix onstraint solving

is NP-omplete

This hapter is based on papers [Korovin and Voronkov 2000, Korovin and

Voronkov 2001a℄.

In this hapter we present a nondeterministi polynomial-time algorithm for

solving Knuth-Bendix ordering onstraints, and hene show that the problem

is ontained in NP for every term algebra with a Knuth-Bendix order. As a

onsequene, we obtain that the existential �rst-order theory of any term algebra

with a Knuth-Bendix order is NP-omplete too. Let us note that the problem of

solvability of a Knuth-Bendix ordering onstraints onsisting of a single inequality

an be solved in polynomial time see Chapter 6.

This hapter is strutured as follows. In Setion 4.2 we introdue the notion

of isolated form of onstraints and show that every onstraint an be e�etively

transformed into an equivalent disjuntion of onstraints in isolated form. This

transformation is represented as a nondeterministi polynomial-time algorithm

omputing members of this disjuntion. After this, it remains to show that

solvability of onstraints in isolated form an be deided by a nondeterminis-

ti polynomial-time algorithm. In Setion 4.3 we present suh an algorithm using

transformation to systems of linear Diophantine inequalities over the weights of

variables. Finally, in Setion 4.4 we omplete the proof of the main result and

present some examples.
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4.1 Preliminaries

In this hapter, f will always denote a unary funtion symbol of the weight 0.

In the sequel we assume a �xed weight funtion w on � and a �xed preedene

relation � on �, ompatible with w.

The main result of this hapter is the following.

Theorem 4.4.2: The existential �rst-order theory of any

term algebra with the Knuth-Bendix order in a signature

with at least two symbols is NP-omplete.

To prove this result, we introdue a notion of Knuth-Bendix ordering on-

straint and show the following.

Theorem 4.4.1: For every Knuth-Bendix order, the

problem of solving ordering onstraints is ontained in

NP.

We also show that the systems of linear Diophantine equations and inequalities

an be represented as ordering onstraints for some Knuth{Bendix orders, and

as a orollary we obtain the following.

Theorem 4.4.4: For some Knuth-Bendix orders, the

problem of solving ordering onstraints is NP-omplete.

Some authors [Martin 1987, Baader and Nipkow 1998℄ de�ne Knuth-Bendix

orders with real-valued weight funtions. We do not onsider suh orders here,

beause for real-valued funtions even the omparison of ground terms an be un-

deidable (see Example 4.4.7 in Setion 4.4). Sometimes it is useful to onsider

onstraint solving problem for the so-alled extended signature semantis, where

we look for solutions to the onstraints in some possible extension of the signature.

For reursive path orders this problem is studied in [Nieuwenhuis 1993, Nieuwen-

huis and Rivero 1999℄. A possible diretion for future researh is to apply the

methods of this hapter for solving Knuth-Bendix ordering onstraints in the

extended signature semantis.

The proof of Theorem 4.4.2 will be given after a series of lemmas. The idea

of the proof is as follows. First, we will make TA(�) into a two-sorted struture

by adding the sort of natural numbers, and extend its signature by

1. the weight funtion j � j on ground terms;
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2. the addition funtion + on natural numbers;

3. the Knuth-Bendix order �

KBO

on ground terms.

Given an existential formula of the �rst-order theory of a term algebra with

the Knuth-Bendix order, we will transform it step by step into an equivalent

disjuntion of existential formulas of the extended signature. The main aim of

these steps is to replae all ourrenes of�

KBO

by linear Diophantine inequalities

on the weights of variables. After suh a transformation we will obtain existential

formulas onsisting of linear Diophantine inequalities on the weight of variables

plus statements expressing that, for some �xed natural number N , there exists at

least N terms of the same weight as jxj, where x is a variable. We will show how

these statements an be expressed using systems of linear Diophantine inequalities

on the weights of variables and then use the fat that the deidability of systems

of linear Diophantine equations is in NP.

We denote by TA

+

(�) the following struture with two sorts: the term al-

gebra sort and the arithmetial sort . The domains of the term algebra sort and

the arithmetial sort are the sets of ground terms of � and natural numbers,

respetively. The signature of TA

+

(�) onsists of

1. all symbols of � interpreted as in TA(�);

2. symbols 0; 1; >;+ having their onventional interpretation over natural num-

bers;

3. the binary relation symbol �

KBO

on the term algebra sort, interpreted as

the Knuth-Bendix order;

4. the unary funtion symbol j � j, interpreted as the weight funtion mapping

terms to numbers.

When we need to distinguish the equality = on the term algebra sort from the

equality on the arithmetial sort, we denote the former by =

TA

, and the latter

by =

N

.

We will prove that the existential theory of TA

+

(�) is in NP, from whih

the fat that the existential theory of any term algebra with the Knuth-Bendix

order belongs to NP follows immediately. We onsider satis�ability , validity ,

and equivalene of formulas with respet to the struture TA

+

(�). We all a
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onstraint in the language of TA

+

(�) any onjuntion of atomi formulas of this

language.

Lemma 4.1.1 The existential theory of TA

+

(�) is in NP if and only if so is the

onstraint satis�ability problem.

Proof. Obviously any instane A of the onstraint satis�ability problem an

be onsidered as validity of the existential sentene 9x

1

: : : x

n

A, where x

1

; : : : ; x

n

are all variables of A, so the \only if" diretion is trivial.

To prove the \if" diretion, take any existential formula 9x

1

; : : : ; x

n

A. This

formula is satis�able if and only if so is the quanti�er-free formula A. By onvert-

ing A into disjuntive normal form we an assume that A is built from literals

using ^;_. Replae in A

1. any formula :s �

KBO

t by s =

TA

t _ t �

KBO

s,

2. any formula :s =

TA

t by s �

KBO

t _ t �

KBO

s,

3. any formula :p > q by p =

N

q _ q > p,

4. any formula :p =

N

q by p > q _ q > p,

and onvert A into disjuntive normal form again. It is easy to see that we obtain

a disjuntion of onstraints. The transformation gives an equivalent formula sine

both orders �

KBO

and > are total.

It follows from these arguments that there exists a nondeterministi polynomial-

time algorithm whih, given an existential sentene A, omputes on every branh

a onstraint C

i

suh that A is valid if and only if one of the onstraints C

i

is

satis�able. �

A substitution � is alled grounding for an expression C (i.e., term or on-

straint) if for every variable x ourring in C the term �(x) is ground. Let � be

a substitution grounding for an expression C. We denote by C� the expression

obtained from C by replaing in it every variable x by �(x). A substitution �

is alled a solution to a onstraint C if � is grounding for C and C� is valid in

TA

+

(�).

In the sequel we will often replae a onstraint C(�x) by a formula A(�x; �y)

ontaining extra variables �y and say that they are \equivalent". By this we mean

that TA

+

(�) j= 8�x(C(�x)$ 9�yA(�x; �y)). In other words, the set of solutions to C

is exatly the set solutions to A projeted on �x.
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4.2 Isolated forms

We are interested not only in satis�ability of onstraints, but also in their solu-

tions. Our algorithm will onsist of equivalene-preserving transformation steps.

When the signature ontains no unary funtion symbol of the weight 0, the trans-

formation will preserve equivalene in the following strong sense. At eah step,

given a onstraint C(�x), we transform it into onstraints C

1

(�x; �y); : : : ; C

n

(�x; �y)

suh that for every sequene of ground terms

�

t, the onstraint C(

�

t) holds if and

only if there exist k and a sequene of ground terms �s suh that C

k

(

�

t; �s) holds.

In other words, the following formula holds in TA

+

(�):

C(�x)$ 9�y(C

1

(�x; �y) _ : : : _ C

n

(�x; �y)):

Moreover this transformations will be presented as a nondeterministi polynomial-

time algorithm whih omputes on every branh some C

i

(�x; �y), and every C

i

(�x; �y)

is omputed on at least one branh. When the signature ontains a unary fun-

tion symbol of the weight 0, the transformation will preserve a weaker form of

equivalene: some solutions will be lost, but solvability will be preserved. More

preisely, we will introdue a notion of an f -variant of a term and show that the

following formula holds:

C(�x)$ 9�y9�z(f-variant(�x; �z) ^ (C

1

(�z; �y) _ : : : _ C

n

(�z; �y))); (4.1)

where f-variant(�x; �z) expresses that �x and �z are f -variants.

In our proof, we will redue solvability of Knuth-Bendix ordering onstraints

to the problem of solvability of systems of linear Diophantine inequalities on

the weights of variables. Condition 1 in De�nition 3.3.8 of the Knuth-Bendix

order, jtj > jsj has a simple translation into a linear Diophantine inequality, but

onditions 2 and 3 do not have. So we will split the Knuth-Bendix order in

two partial orders: �

w

orresponding to ondition 1 and �

lex

orresponding to

onditions 2 and 3. Formally, we denote by t �

w

s the formula jtj > jsj and by

t �

lex

s the formula jtj =

N

jsj ^ t �

KBO

s. Obviously, t

1

�

KBO

t

2

if and only if

t

1

�

lex

t

2

_ t

1

�

w

t

2

. So in the sequel we will assume that �

KBO

is replaed by

the new symbols �

lex

and �

w

.

We use x

1

�

KBO

x

2

�

KBO

: : : �

KBO

x

n

to denote the formula x

1

�

KBO

x

2

^ x

2

�

KBO

x

3

^ : : : ^ x

n�1

�

KBO

x

n

, and similar for other binary symbols in
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plae of �

KBO

.

A term t is alled at if t is either a variable or has the form g(x

1

; : : : ; x

m

),

where g 2 �, m � 0, and x

1

; : : : ; x

m

are variables. We all a onstraint hained

if

1. it has a form t

1

#t

2

# : : :#t

n

, where eah ourrene of # is �

w

, �

lex

or

=

TA

;

2. eah term t

i

is at;

3. if some of the t

i

's has the form g(x

1

; : : : ; x

n

), then x

1

; : : : ; x

n

are some of

the t

j

's.

For example g(x; y) �

w

f(y) �

lex

y �

w

x =

TA

z is a hained onstraint.

Denote by ? the logial onstant \false".

Lemma 4.2.1 Any onstraint C is equivalent to a disjuntion C

1

_ : : : _ C

k

of

hained onstraints. Moreover, there exists a nondeterministi polynomial-time

algorithm whih, for a given C, omputes on every branh either ? or some C

i

;

and every C

i

is omputed on at least one branh.

Proof. First, we an apply attening to all terms ourring in C as follows. If

a nonat term g(t

1

; : : : ; t

m

) ours in C, take any i suh that t

i

is not a variable.

Then replae C by v = t

i

^ C

0

, where v is a new variable and C

0

is obtained

from C by replaing all ourrenes of t

i

by v. After a �nite number of suh

replaements all terms will beome at.

Let s; t be at terms ourring in C suh that no omparison s#t ours in

C. Using the valid formula s �

w

t _ s �

lex

t _ s =

TA

t _ t �

w

s _ t �

lex

s we an

replae C by the disjuntion of the onstraints

s �

w

t ^ C; s �

lex

t ^ C; s =

TA

t ^ C;

t �

w

s ^ C; t �

lex

s ^ C:

By repeatedly doing this transformation we obtain a disjuntion of onstraints

C

1

_ : : : _ C

k

in whih for every i 2 f1; : : : ; kg and every terms s; t ourring in

C

i

, some omparison onstraint s#t ours in C

i

.

To omplete the proof we show how to turn eah C

i

into a hained onstraint.

Let us all a yle any onstraint s

1

#s

2

# : : :#s

n

#s

1

, where n � 1. We an

remove all yles from C

i

using the following observation:
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1. if all # in the yle are =

TA

, then s

n

#s

1

an be removed from the onstraint;

2. if some # in the yle is �

w

or �

lex

, then the onstraint C

i

is unsatis�able.

After removal of all yles the onstraint C

i

an still be not hained beause it

an ontain transitive subonstraints of the form s

1

#s

2

# : : :#s

n

^ s

1

#s

n

, n � 2.

Then either C

i

is unsatis�able or s

1

#s

n

an be removed using the following

observations:

1. Case: s

1

#s

n

is s

1

�

w

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then s

1

�

w

s

n

follows from s

1

#s

2

# : : :#s

n

, otherwise s

1

#s

2

# : : :#s

n

implies js

1

j = js

n

j

and hene C

i

is unsatis�able.

2. Case: s

1

#s

n

is s

1

�

lex

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then C

i

is

unsatis�able. If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then C

i

is unsatis�able

too. Otherwise, all # in s

1

#s

2

# : : :#s

n

are either �

lex

or =

TA

, and at least

one of them is �

lex

. It is not hard to argue that s

1

�

lex

s

n

follows from

s

1

#s

2

# : : :#s

n

.

3. Case: s

1

#s

n

is s

1

=

TA

s

n

. If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then

s

1

=

TA

s

n

follows from s

1

#s

2

# : : :#s

n

, otherwise C

i

is unsatis�able.

It is easy to see that after the removal of all yles and transitive subonstraints

the onstraint C

i

beomes hained.

Note that the transformation of C into the disjuntion of onstraints C

1

_: : :_

C

k

in the proof an be done in nondeterministi polynomial time in the following

sense: there exists a nondeterministi polynomial-time algorithm whih, given C,

omputes on every branh either ? or some C

i

, and every C

i

is omputed on at

least one branh. �

We will now introdue several speial kinds of onstraints whih will be used in

our proofs below, namely arithmetial, triangle, simple, and isolated.

A onstraint is alled arithmetial if it uses only arithmetial relations =

N

and

>, for example jf(x)j > jaj+ 3.

A onstraint y

1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

is said to be in triangle form if

1. y

1

; : : : ; y

n

are pairwise di�erent variables, and

2. for all j � i the variable y

i

does not our in t

j

.
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The variables y

1

; : : : ; y

n

are said to be dependent in this onstraint.

A onstraint is said to be simple if it has the form

x

11

�

lex

x

12

�

lex

: : : �

lex

x

1n

1

^ : : : ^ x

k1

�

lex

x

k2

�

lex

: : : �

lex

x

kn

k

;

where x

11

; : : : ; x

kn

k

are pairwise di�erent variables.

A onstraint is said to be in isolated form if either it is ? or it has the form

C

arith

^ C

triang

^ C

simp

;

where C

arith

is an arithmetial onstraint, C

triang

is in triangle form, and C

simp

is

a simple onstraint suh that no variable of C

simp

is dependent in C

triang

.

Our deision proedure for the Knuth-Bendix ordering onstraints is designed

as follows. By Lemma 4.2.1 we an transform any onstraint into an equivalent

disjuntion of hained onstraints. Our next step is to give a transformation of

any hained onstraint into an equivalent disjuntion of onstraints in isolated

form. Then in Setion 4.3 we show how to transform any onstraint in isolated

form into an equivalent disjuntion of systems of linear Diophantine inequalities

on the weights of variables. Then we an use the result that the deidability of

systems of linear Diophantine inequalities is in NP.

Let us show how to transform any hained onstraint into an equivalent dis-

juntion of isolated forms. The transformation will work on the onstraints of

the form

C

hain

^ C

arith

^ C

triang

^ C

simp

; (4.2)

suh that

1. C

arith

; C

triang

; C

simp

are as in the de�nition of isolated form;

2. C

hain

is a hained onstraint;

3. eah variable of C

hain

neither ours in C

simp

nor is dependent in C

triang

.

We will all suh onstraints (4.2) working . Let us all the size of a hained

onstraint C the total number of ourrenes of funtion symbols and variables

in C. Likewise, the essential size of a working onstraint is the size of its hained

part C

hain

.
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At eah transformation step we will replae working onstraint (4.2) by a

disjuntion of working onstraints but of smaller essential sizes. Evidently, when

the essential size is 0, we obtain a onstraint in isolated form.

Let us prove some lemmas about solutions to onstraints of the form (4.2).

Note that any hained onstraint is of the form

t

11

#t

12

# : : :#t

1m

1

�

w

� � �

�

w

t

k1

#t

k2

# : : :#t

km

k

;

(4.3)

where eah # is either =

TA

or �

lex

and eah t

ij

is a at term. We all a row in

suh a onstraint any maximal subsequene t

i1

#t

i2

# : : :#t

im

i

in whih �

w

does

not our. So onstraint (4.3) ontains k rows, the �rst one is t

11

#t

12

# : : :#t

1m

1

and the last one t

k1

#t

k2

# : : :#t

km

k

. Note that for any solution to (4.3) all terms

in a row have the same weight.

Lemma 4.2.2 There exists a polynomial-time algorithm whih transforms any

hained onstraint C into an equivalent hained onstraint C

0

suh that the size

of C

0

is not greater than the size of C, either C

0

is ? or of the form (4.3), and

C

0

has the following property. Suppose some term of the �rst row t

1j

of C

0

is a

variable y. Then either

1. y has exatly one ourrene in C

0

, namely t

1j

itself; or

2. y has exatly two ourrenes in C

0

, both in the �rst row: some t

1n

has the

form f(y) for n < j, and w(f) = 0; moreover in this ase there exists at

least one �

lex

between t

1n

and t

1j

.

Proof. Note that if y ours in any term t(y) whih is not in the �rst row, then

C is unsatis�able, sine for any solution � to C we have jy�j > jt(y)�j, whih is

impossible. Suppose that y has another ourrene in a term t

1n

of the �rst row.

Consider two ases.

1. t

1n

oinides with y. Then either C has no solution, or part of the �rst row

between t

1n

and t

1j

has the form y =

TA

: : : =

TA

y. In the latter ase part

y =

TA

an be removed from the �rst row, so we an assume that no term

in the �rst row exept t

1j

is y.
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2. t

1n

is a nonvariable term ontaining y. Sine t

1n

and y are in the same row,

for every solution � to C we have jy�j = jt

1n

�j. Sine t

1n

is a at term, by

Lemma 3.3.9 the equality jy�j = jt

1n

�j is possible only if t

1n

is f(y), n < j

and there exists at least one �

lex

between t

1n

and t

1j

. Finally, if f(y) has

more than one ourrene in the �rst row, we an get rid of all of them but

one in the same way as we got rid of multiple ourrenes of y.

Note that the transformation presented in this proof an be made in polynomial

time. It is also not hard to argue that the transformation does not inrease the

size of the onstraint. �

We will now take a working onstraint C

hain

^C

arith

^ C

triang

^ C

simp

, whose

hained part satis�es Lemma 4.2.2 and transform it into an equivalent disjuntion

of working onstraints of smaller essential sizes in Lemma 4.2.5 below. More

preisely, these onstraints will be equivalent when the signature ontains no

unary funtion symbol of the weight 0. When the signature ontains suh a

symbol f , a weaker notion of equivalene will hold, see formula (4.1) on page 42.

A term s is alled an f -variant of a term t if s an be obtained from t by a

sequene of operations of the following forms: replaement of a subterm f(r) by

r or replaement of a subterm r by f(r). Evidently, f -variant is an equivalene

relation. Two substitutions �

1

and �

2

are said to be f -variants if for every variable

x the term x�

1

is an f -variant of x�

2

. In the proof of several lemmas below we will

replae a onstraint C(�x) by a formula A(�x; �y) ontaining extra variables �y and

say that C(�x) and A(�x; �y) are equivalent up to f . By this we mean the following.

1. For every substitution �

1

grounding for �x suh that TA

+

(�) j= C(�x)�

1

, there

exists a substitution �

2

grounding for �x; �y suh that TA

+

(�) j= A(�x; �y)�

2

,

and the restrition of �

2

to �x is an f -variant of �

1

.

2. For every substitution �

2

grounding for �x; �y suh that TA

+

(�) j= A(�x; �y)�

2

,

there exists a substitution �

1

suh that TA

+

(�) j= C(�x)�

1

and �

1

is an

f -variant of the restrition of �

2

to �x.

In other words, formula (4.1) on page 42 holds. Note that when the signature

ontains no unary funtion symbol of the weight 0, equivalene up to f is the

same as equality of terms in TA

+

(�).

Lemma 4.2.3 Let C = C

hain

^ C

arith

^ C

triang

^ C

simp

be a working onstraint

and �

1

be a solution to C. Let �

2

be an f -variant of �

1

suh that
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1. �

2

is a solution to C

hain

and

2. �

2

oinides with �

1

on all variables not ourring in C

hain

.

Then there exists an f -variant �

3

of �

2

suh that

1. �

3

is a solution to C and

2. �

3

oinides with �

2

on all variables exept for the dependent variables of

C

triang

.

Proof. Let us �rst prove that �

2

is a solution to both C

arith

and C

simp

. Sine

C

simp

and C

hain

have no ommon variables, it follows that �

1

and �

2

agree on all

variables of C

simp

, and so �

2

is a solution to C

simp

. Sine �

1

and �

2

are f -variants

and the weight of f is 0, for every term t we have jt�

1

j = jt�

2

j, whenever t�

1

is

ground. Therefore, �

2

is a solution to C

arith

if and only if so is �

1

. So �

2

is a

solution to C

arith

.

It is fairly easy to see that �

2

an be hanged on the dependent variables of

C

triang

obtaining a solution �

3

to C whih satis�es the onditions of the lemma.

�

This lemma will be used below in the following way. Instead of onsidering the

set �

1

of all solutions to C

hain

we an restrit ourselves to a subset �

2

of �

1

as

soon as for every solution �

1

2 �

1

there exists a solution �

2

2 �

2

suh that �

2

is

an f -variant of �

1

.

Let us all an f -term any term of the form f(t). By the f -height of a term

t we mean the number n suh that t = f

n

(s) and s is not an f -term. Note that

the f -terms are exatly the terms of a positive f -height. We all the f -distane

between two terms s and t the di�erene between the f -height of s and f -height

of t. For example, the f -distane between the terms f(a) and f(f(g(a; b))) is �1.

Let us now prove a lemma whih implies that any solution to C an be trans-

formed into a solution with a \small" f -height.

Lemma 4.2.4 Let C

hain

be a hained onstraint of the form

p

l

#p

l�1

# : : :#p

1

�

w

: : : ;

where eah # is either =

TA

or �

lex

. Further, let C

hain

satisfy the onditions of

Lemma 4.2.2 and � be a solution to C

hain

. Then there exists an f -variant �

0

of

� suh that
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1. �

0

is a solution to C

hain

and

2. for every k 2 f1; : : : ; lg, the f -height of p

k

�

0

is at most k.

Proof. Let us �rst prove the following statement

(4.4) The row p

l

#p

l�1

# : : :#p

1

has a solution �

1

, suh that (i) �

1

is an f -

variant of �, (ii) for every 1 < k � l the f -distane between p

k

�

1

and

p

k�1

�

1

is at most 1.

Suppose that for some k the f -distane between p

k

� and p

k�1

� is d > 1. Evidently,

to prove (4.4) it is enough to show the following.

(4.5) There exists a solution �

2

suh that (i) �

2

is an f -variant of �, (ii) the

f -distane between p

k

�

2

and p

k�1

�

2

is d � 1, and (iii) for every k

0

6= k

the f -distane between p

k

0

�

2

and p

k

0

�1

�

2

oinides with the f -distane

between p

k

0

� and p

k

0

�1

�.

Let us show (4.5), and hene (4.4). Sine � is a solution to the row, then for

every k

000

� k the f -distane between any p

k

000

� and p

k

� is nonnegative. Likewise,

for every k

00

< k � 1 the f -distane between any p

k�1

� and p

k

00

� is nonnegative.

Therefore, for all k

000

� k > k

00

, the f -distane between p

k

000

� and p

k

00

� is � d, and

hene is at least 2. Let us prove the following.

(4.6) Every variable x ourring in p

l

#p

l�1

# : : :#p

k

does not our in p

k�1

# : : :#p

1

.

Let x our in terms p

i

and p

j

suh that l � i � k and k � 1 � j � 1. Sine the

onstraint satis�es Lemma 4.2.2, then p

i

= f(x) and p

j

= x. Then the f -distane

between p

i

� and p

j

� is 1, but by our assumption it is at least 2, so we obtain a

ontradition. Hene (4.6) is proved.

Now note the following.

(4.7) If for some k

000

� k a variable x ours in p

k

000

, then x� is an f -term.

Suppose, by ontradition, that x� is not an f -term. Note that p

k

000

� has a positive

f -height, so p

k

000

is either x of f(x). But we proved before that the f -distane

between p

k

000

� and p

k�1

� is at least 2, so x must be an f -term.

Now, to satisfy (4.5), de�ne the substitution �

2

as follows:
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�

2

(x) =

(

�(x);

if x does not our in p

l

; : : : ; p

k

;

t; if x ours in p

l

; : : : ; p

k

and �(x) = f(t):

By (4.6) and (4.7), �

2

is de�ned orretly. We laim that �

2

satis�es (4.5). The

properties (i){(iii) of (4.5) are straightforward by our onstrution, it only remains

to prove that �

2

is a solution to the row, i.e. for every k

0

we have p

k

0

�

2

#p

k

0

�1

�

2

.

Consider the ase when k

0

> k. Sine � is a solution to the row, for eah k

00

� k

we have p

k

00

� is an f -term and hene p

k

00

is either a variable or a term f(x)

for some variable x. Therefore, by de�nition of �

2

we have p

k

0

� = f(p

k

0

�

2

) and

p

k

0

�1

� = f(p

k

0

�1

�

2

), so p

k

0

�

2

#p

k

0

�1

�

2

follows from p

k

0

�#p

k

0

�1

�. When k

0

< k we

have p

k

0

� = p

k

0

�

2

and p

k

0

�1

� = p

k

0

�1

�

2

, hene p

k

0

�

2

#p

k

0

�1

�

2

. The only remaining

ase is k = k

0

.

Assume k = k

0

. Sine the f -distane between p

k

� and p

k�1

� is d > 1, we

have p

k

� 6= p

k�1

�, and hene p

k

#p

k�1

must be p

k

�

lex

p

k�1

. Sine � is a solution

to p

k

�

lex

p

k�1

and sine �

2

is an f -variant of �, the weights of p

k

�

2

and p

k�1

�

2

oinide. But then p

k

�

2

�

lex

p

k�1

�

2

follows from the fat that the f -distane

between p

k

�

2

and p

k�1

�

2

is d� 1 � 1.

Now the proof of (4.5), and hene of (4.4), is ompleted. In the same way as

(4.4), we an also prove

(4.8) The onstraint C

hain

has a solution �

0

suh that (i) �

0

is an f -variant of

�, (ii) for every 1 < k � l the f -distane between p

k

�

1

and p

k�1

�

0

is at

most 1. (iii) the f -height of p

1

�

0

is at most 1; (iv) �

0

and � oinide on

all variables ourring in the rows below the �rst one.

It is easy to see that �

0

from (4.8) satis�es all onditions required by our lemma.

�

The following lemma is the main lemma of this setion.

Lemma 4.2.5 Let C = C

hain

^ C

arith

^ C

triang

^ C

simp

be a working onstraint

in whih C

hain

is nonempty. There exists a nondeterministi polynomial-time

algorithm whih transforms C into a disjuntion of working onstraints having

C

hain

of smaller sizes and equivalent to C up to f .

Proof. The proof is rather omplex, so we will give a plan of it. The proof

is presented as a series of transformations on the �rst row of C

hain

. These



4.2 Isolated forms 51

transformations may result in new onstraints added to C

arith

, C

triang

, and C

simp

.

First, we will get rid of equations s =

TA

t in the �rst row, by introduing quasi-

at terms, i.e. terms f

k

(t), where t is at. If the �rst row ontained no funtion

symbols, then we will replae the �rst row by new onstraints added to C

simp

and C

arith

, thus dereasing the size of the hained part. If there were funtion

symbols in the �rst row, we will ontinue as follows.

We will \guess" the values of some variables x of the �rst row, i.e. replae

them by some quasi-at term f

m

(g(�y)), where �y is a sequene of new variables.

After these steps, the size of the �rst row an, in general, inrease. Then we

will show how to replae the �rst row by new onstraints involving only variables

ourring in the row, but not funtion symbols. Finally, we will prove that the

number of variables from the new onstraints that remain in the hained part is

not greater than the original number of variables in the �rst row, and therefore

the size of the hained part dereases.

Formally, onsider the �rst row of C

hain

. Let this row be p

l

#p

l�1

# : : :#p

1

.

Then C

hain

has the form p

l

#p

l�1

# : : :#p

1

�

w

t

1

# : : :#t

n

. If l = 1, i.e., the �rst

row onsists of one term, we an remove this row and add jp

1

j > jt

1

j to C

arith

obtaining an equivalent onstraint with smaller essential size, that is, the size of

C

hain

. So we assume that the �rst row ontains at least two terms.

As before, we assume that f is a unary funtion symbol of the weight 0. By

Lemma 4.2.4, if some p

i

is either a variable x or a term f(x), it is enough to

searh for solutions � suh that the height of x� is at most l.

A term is alled quasi-at if it has the form f

k

(t) where t is at. We will now

get rid of equalities in the �rst row, but by introduing quasi-at terms instead

of the at ones. When we use notation f

k

(t) below, we assume k � 0, and f

0

(t)

will stand for t. We eliminate equalities from the �rst row in two steps. First we

will eliminate equalities among variables and f -terms transforming them into an

equivalent set of equalities in triangle form, then we eliminate all other equalities

in the �rst row.

Consider the set S of all equalities t =

TA

s ourring in the �rst row of C

hain

,

where s and t are either variables or at f -terms. We will transform S into an

equivalent system F in triangle form suh that all terms in F will be at. We

assume that before the transformation F is empty. First we replae all equalities

in S of the form f(x) =

TA

f(y) by x =

TA

y obtaining an equivalent system S

0

in whih all equalities are of the form x =

TA

t. Now, either S

0

is unsatis�able or
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there exists an equality x =

TA

t in S

0

, suh that x does not our in f -terms of

S

0

. We move suh an equality x =

TA

t into F and replae all ourrenes of x in

S

0

by t, obtaining S

00

. It is easy to see that the system F [ S

00

is equivalent to

S, all terms in F [ S

00

are at, F is in triangle form and the number of variables

ourring into S

00

is less than the number of variables ourring into S. Repeating

this proess we an eliminate all variables from S and obtain the required F in

polynomial time.

Now we remove from C

hain

all equalities ourring in S. Let us note that

variables of F an our in C

hain

only in the �rst row, and only in the terms

f

r

(y) for 0 � r � 1. Next we repeatedly replae all ourrenes of dependent

variables of F ourring in C

hain

obtaining an equivalent onstraint in hained

form with terms of the form f

k

(x) where k is bounded by the size of F . Finally

we move F into C

triang

.

After all these transformations we an assume that equalities f

k

(x) =

TA

f

m

(y)

do not our in the �rst row.

If the �rst row ontains an equality x =

TA

t between a variable and a term,

we replae this equality by t, replae all ourrenes of x by t in the �rst row, and

add x =

TA

t to C

triang

obtaining an equivalent working onstraint. Sine x an

our only in the terms of the form f

r

(x), it is easy to see that these replaements

an be done in polynomial time.

If the �rst row ontains an equality g(x

1

; : : : ; x

m

) =

TA

h(t

1

; : : : ; t

n

) where g

and h are di�erent funtion symbols, the onstraint is unsatis�able.

If the �rst row ontains an equality g(x

1

; : : : ; x

n

) =

TA

g(y

1

; : : : ; y

n

) we do

the following. If the term g(x

1

; : : : ; x

n

) oinides with g(y

1

; : : : ; y

n

), replae this

equality by g(x

1

; : : : ; x

n

). Otherwise, �nd the smallest number i suh that x

i

is

di�erent from y

i

and

1. add y

i

=

TA

x

i

to C

triang

;

2. replae all ourrenes of y

i

in C

hain

by x

i

.

We apply this transformation repeatedly until all equalities g(x

1

; : : : ; x

n

) =

TA

g(y

1

; : : : ; y

n

) disappear from the �rst row.

So we an now assume that the �rst row ontains no equalities and hene it

has the form q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

, where all of the terms q

i

are quasi-at.

If all of the q

i

are variables, we an move q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

to C

simp

and add jq

1

j > jt

1

j to C

arith

obtaining an equivalent working onstraint of smaller
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essential size. Hene, we an assume that at least one of the q

i

is a nonvariable

term.

Take any term q

k

in the �rst row suh that q

k

is either a variable x or a term

f

r

(x). Note that other ourrenes of x in C

hain

an only be in the �rst row, and

only in the terms of the form f

k

(x).

Consider the formula G de�ned as

_

g2��ffg

_

m=0:::l

x =

TA

f

m

(g(�y)): (4.9)

where �y is a sequene of pairwise di�erent new variables. Sine we proved that it

is enough to restrit ourselves to solutions � for whih the height of x� is at most

l, the formulas C and C ^G are equivalent up to f .

Using the distributivity laws, C ^ G an be turned into an equivalent dis-

juntion of formulas x =

TA

f

m

(g(�y)) ^ C. For every suh formula, replae x by

f

m

(g(�y)) in the �rst row, and add x =

TA

f

m

(g(�y)) to the triangle part. We do

this transformation for all terms in the �rst row of the form f

k

(z), where k � 0

and z is a variable. Now all the terms in the �rst row are of the form f

m

(g(�y)),

where g is di�erent from f and m � 0.

Let us show how to replae onstraints of the �rst row with equivalent on-

straints onsisting of onstraints on variables and arithmetial onstraints. Con-

sider the pair q

n

; q

n�1

. Now q

n

= f

k

(g(x

1

; : : : ; x

u

)) and q

n�1

= f

m

(h(y

1

; : : : ; y

v

))

for some variables x

1

; : : : ; x

u

; y

1

; : : : ; y

v

and funtion symbols g; h 2 � � ffg.

Then q

n

�

lex

q

n�1

is f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)). If k < m or (k = m

and h � g), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is equivalent to ?. If

k > m or (k = m and g � h), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is

equivalent to the arithmetial onstraint jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j whih

an be added to C

arith

. If k = m and g = h (and hene u = v), then

f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

))$ jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j ^

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

�

KBO

y

i

):

We an now do the following. Add jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j to C

arith

and

replae q

n

�

lex

q

n�1

with the equivalent disjuntion

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

�

KBO

y

i

):
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Then using the distributivity laws turn this formula into the equivalent dis-

juntion of onstraints of the form C^x

1

=

TA

y

1

^: : :^x

i�1

=

TA

y

i�1

^x

i

�

KBO

y

i

for all i = 1 : : : u. For eah of these onstraints, we an move, as before, the equal-

ities x =

TA

y one by one to the triangle part C

triang

, and make C

hain

^x

i

�

KBO

y

i

into a disjuntion of hained onstraints as in Lemma 4.2.1.

Let us analyze what we have ahieved. After these transformations, in eah

member of the obtained disjuntion the �rst row is removed from the hained part

C

hain

of C. Sine the row ontained at least one funtion symbol, eah member of

the disjuntion will ontain at least one ourrene of a funtion symbol less than

the original onstraint. This is enough to prove termination of our algorithm,

but not enough to present it as a nondeterministi polynomial-time algorithm.

The problem is that, when p

n

is a variable x or a term f(x), one ourrene of x

in p

n

an be replaed by one or more onstraints of the form x

i

�

KBO

y

i

, where

x

i

and y

i

are new variables. To be able to show that the essential sizes of eah

of the resulting onstraints is stritly less than the essential size of the original

onstraint, we have to modify our algorithm slightly.

The modi�ation will guarantee that the number of new variables introdued

in the hained part of the onstraint is not greater than the number of variables

eliminated from the �rst row. We will ahieve this by moving some onstraints to

the simple part C

simp

. The new variables only appear when we replae a variable

in the �rst row by a term f

k

(h(u

1

; : : : ; u

m

)) or by f

k

(h(v

1

; : : : ; v

m

)) obtaining a

onstraint f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)), whih is then replaed by

u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

�

KBO

v

i

: (4.10)

Let us all a variable u

i

(respetively, v

i

) new if f

k

(h(u

1

; : : : ; u

m

)) ourred in

the terms of the �rst row when we replaed a variable by a nonvariable term

ontaining h using formula (4.9). In other words, new variables are those that

did not our in the terms of the �rst row before our transformation, but appeared

in the terms of the �rst row during the transformation. All other variables are

alled old. After the transformation we obtain a onjuntion E of onstraints

of the form x

i

=

TA

x

j

or x

i

�

KBO

x

j

, where x

i

; x

j

an be either new or old.

Without loss of generality we an assume that this onjuntion of onstraints

does not ontain hains of the form x

1

# : : :#x

n

#x

1

where n � 2 and at least

one of the #'s is �

KBO

. Indeed, if E ontains suh a hain, then it is unsatis�able.

We will now show that the number of new variables an be restrited by
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moving onstraints on these variables into the triangle or simple part. Among

the new variables, let us distinguish the following three kinds of variables. A new

variable x is alled blue in E if E ontains a hain x =

TA

x

1

=

TA

: : : =

TA

x

n

,

where x

n

is an old variable. Evidently, a blue variable x auses no harm sine it

an be replaed by an old variable x

n

. Let us denote by � the inverse relation to

�

KBO

. A new variable x is alled red in E if it is not blue in E and E ontains

a hain x#x

1

# : : :#x

n

, where x

n

is an old variable, and all of the #'s are either

=

TA

, or �

KBO

, or �. Red variables are troublesome, sine there is no obvious

way to get rid of them. However, we will show that the number of red variables

is not greater than the number of replaed variables (suh as the variable x in

(4.9)). Finally, all new variables that are neither blue nor red in E are alled

green in E.

Getting rid of the green variables. We will now show that the green

variables an be moved to the simple part of the onstraint C

simp

. To this end,

note an obvious property: if E ontains a onstraint x#y and x is green, then

y is green too. We an now do the following with the green variables. As in

Lemma 4.2.1, we an turn all the green variables into a disjuntion of hained

onstraints of the form v

1

# : : :#v

n

, where # are =

TA

, �

w

, or �

lex

, and use the

distributivity laws to obtain hained onstraints v

1

# : : :#v

n

. Let us all this

onstraint a green hain. Then, if there is any equality v

i

=

TA

v

i+1

in the green

hain, we add this equality to C

triang

and replae this equality by v

i+1

in the

hain. Further, if the hain has the form v

1

�

lex

: : : �

lex

v

k

�

w

v

k+1

# : : :#v

n

, we

add v

1

�

lex

: : : �

lex

v

k

to C

simp

and jv

k

j > jv

k+1

j to C

arith

, and replae the green

hain by v

k+1

# : : :#v

n

. We do this transformation until the green hain beomes

of the form v

1

�

lex

: : : �

lex

v

k

. After this, the green hain an be removed from

E and added to C

simp

. Evidently, this transformation an be presented as a

nondeterministi polynomial-time algorithm.

The red variables. Let us show the following: in every term f

k

(h(u

1

; : : : ; u

m

))

in the �rst row at most one variable among u

1

; : : : ; u

m

is red. It is not hard to ar-

gue that it is suÆient to prove a stronger statement: if for some i the variable u

i

is red or blue, then all variables u

1

; : : : ; u

i�1

are blue. So suppose that u

i

is either

red or blue and u

i

#y

n

# : : :#y

1

is a shortest hain in E suh that y

1

is old. We

prove that the variables u

1

; : : : ; u

i�1

are blue, by indution on n. When n = 1 and

u

i

is red, E ontains either u

i

�

KBO

y

1

or y

1

�

KBO

u

i

, where y

1

is old. Without
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loss of generality assume that E ontains u

i

�

KBO

y

1

. Then (f. (4.10)) this equa-

tion appeared in E when we replaed f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)) by

u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

�

KBO

v

i

and y

1

= v

i

. But then E also on-

tains the equations u

1

=

TA

v

1

; : : : ; u

i�1

=

TA

v

i�1

, where the variables v

1

; : : : ; v

i�1

are old, and so the variables u

1

; : : : ; u

i�1

are blue. In the same way we an prove

that if u

i

is blue then u

1

; : : : ; u

i�1

are blue. The proof for n > 1 is similar, but

we use the fat that v

1

; : : : ; v

i�1

are blue rather than old.

To omplete the transformation, we add all onstraints on the red and the old

variables to C

hain

and make C

hain

into a disjuntion of hained onstraints as in

Lemma 4.2.1.

Getting rid of the blue variables. If E ontains a blue variable x, then it

also ontains a hain of onstraints x =

TA

x

1

=

TA

: : : =

TA

x

n

, where x

n

is an old

variable. We replae x by x

n

in C and add x =

TA

x

n

to the triangle part C

triang

.

When we ompleted the transformation on the �rst row, the row disappears

from the hained part C

hain

of C. If the �rst row ontained no funtion symbols,

the size of C

hain

will beome smaller, sine several variables will be removed from

it. If C

hain

ontained at least one funtion symbol, then after the transformation

the number of ourrenes of funtion symbols in C

hain

will derease. Some red

variables will be introdued, but we proved that their number is not greater than

the number of variables eliminated from the �rst row. Therefore, the size of

C

hain

stritly dereases after the transformation due to elimination of at least

one funtion symbol.

Again, it is not hard to argue that the transformation an be presented as

a nondeterministi polynomial-time algorithm omputing all members of the re-

sulting disjuntion of onstraints.

�

Lemmas 4.2.1 and 4.2.5 imply the following:

Lemma 4.2.6 Let C be a onstraint. Then there exists a disjuntion C

1

_: : :_C

n

of onstraints in isolated form equivalent to C up to f . Moreover, members of

suh a disjuntion an be found by a nondeterministi polynomial-time algorithm.

�

Our next aim is to present a nondeterministi polynomial-time algorithm solv-

ing onstraints in isolated form.
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4.3 From onstraints in isolated form to systems

of linear Diophantine inequalities

Let C be a onstraint in isolated form

C

simp

^ C

arith

^ C

triang

:

Our deision algorithm will be based on a transformation of the simple onstraint

C

simp

into an equivalent disjuntion D of arithmetial onstraints. Then, in

Setion 4.4 we show how to hek the satis�ability of the resulting formula D ^

C

arith

^ C

triang

by using an algorithm for solving systems of linear Diophantine

inequalities on the weights of variables.

To transform C

simp

into an arithmetial formula, observe the following. The

onstraint C

simp

is a onjuntion of the onstraints of the form

x

1

�

lex

: : : �

lex

x

N

having no ommon variables. To solve suh a onstraint we have to ensure that

there exist at least N di�erent terms of the same weight as x

1

(sine the Knuth-

Bendix order is total).

In this setion we will show that for eah N the statement \there exists at least

N di�erent terms of a weight w" an be expressed in the Presburger Arithmeti

as an existential formula of one variable w.

We say that a relation R(�x) on natural numbers is 9-de�nable, if there ex-

ists an existential formula of Presburger Arithmeti C(�x; �y) suh that R(�x) is

equivalent to 9�yC(�x; �y). We all a funtion r(�x) 9-de�nable if so is the relation

r(�x) = y. Note that omposition of 9-de�nable funtions is 9-de�nable.

Let us �x an enumeration g

1

; : : : ; g

S

of the signature �. We assume that the

�rst B symbols g

1

; : : : ; g

B

is a sequene of all symbols in � of arity � 2, and the

�rst F symbols g

1

; : : : ; g

F

is a sequene all nononstant symbols in �. The arity

of eah g

i

is denoted by arity

i

. In this setion we assume that B, F , S, and the

weight funtion w are �xed.

We all the ontents of a ground term t the tuple of natural numbers (n

1

; : : : ; n

S

)

suh that n

i

is the number of ourrenes of g

i

in t for all i. For example, if the

sequene of elements of � is g; h; a; b, and t = h(g(h(h(a)); g(b; b))), the ontents

of t is (2; 3; 1; 2).
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Lemma 4.3.1 The following relation exists(x; n

1

; : : : ; n

S

) is 9-de�nable: there

exists at least one ground term of � of the weight x and ontents (n

1

; : : : ; n

S

).

Proof. We will de�ne exists(x; n

1

; : : : ; n

S

) by a onjuntion of two linear Dio-

phantine inequalities.

The �rst equation is

x =

X

1�i�S

w(g

i

) � n

i

: (4.11)

It is not hard to argue that this equation says: every term with the ontents

(n

1

; : : : ; n

S

) has weight x.

The seond formula says that the number of onstant and nononstant fun-

tion symbols in (n

1

; : : : ; n

S

) is appropriately balaned for onstruting a term:

1 +

X

1�i�S

(arity

i

� 1) � n

i

= 0: (4.12)

�

Let us prove some lower bounds on the number of terms of a �xed weight.

We leave the following two lemmas to the reader. The �rst one implies that,

if there exists any ground term t of a weight x with at least N ourrenes of

nononstant symbols, inluding at least one ourrene of a funtion symbol of

an arity � 2, then there exists at least N di�erent ground terms of the weight x.

Lemma 4.3.2 Let x; n

1

; : : : ; n

S

be natural numbers suh that exists(x; n

1

; : : : ; n

S

)

holds, n

1

+ : : : + n

B

� 1 and n

1

+ : : : + n

F

� N . Then there exist at least N

di�erent ground terms with the ontents (n

1

; : : : ; n

S

). �

The seond lemma implies that, if there exists any ground term t of a weight

x with at least N ourrenes of nononstant funtion symbols, inluding at least

two di�erent unary funtion symbols, then there exists at least N di�erent ground

terms of the weight x.

Lemma 4.3.3 Let x; n

1

; : : : ; n

s

be natural numbers suh that exists(x; n

1

; : : : ; n

S

)

holds, n

1

+: : :+n

F

� N and at least two numbers among n

B+1

; : : : ; n

F

are positive.

Then there exists at least N di�erent ground terms with the ontents (n

1

; : : : ; n

S

).

�
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Let us note that if our signature onsists only of a unary funtion symbol of a

positive weight and onstants, then the number of di�erent terms in any weight

is less or equal to the number of onstants in the signature.

The remaining types of signatures are overed by the following lemma.

Lemma 4.3.4 Let � ontain a funtion symbol of an arity greater than or equal

to 2, or ontain at least two di�erent unary funtion symbols. Then there exist

two natural numbers N

1

and N

2

suh that for all natural numbers N and x suh

that x > N �N

1

+N

2

, the number of terms of the weight x is either 0 or greater

than N .

Proof. If � ontains a unary funtion symbol of the weight 0 then the number

of di�erent terms of any weight is either 0 or ! and the lemma trivially holds.

Therefore we an assume that our signature ontains no unary funtion symbol

of the weight 0. De�ne

W = maxfw(g

i

)j1 � i � Sg;

A = maxfarity

i

j1 � i � Sg;

N

1

= W �A;

N

2

= W

2

� (A+ 1) +W:

Take any N and x suh that x > N �N

1

+N

2

.

Let us prove that if there exists a term of the weight x then the number

of ourrenes of nononstant funtion symbols in this term is greater than N .

Assume the opposite, i.e. there exists a term t of the weight x suh that the

number of ourrenes of nononstant funtion symbols in t is M � N . Let

(n

1

; : : : ; n

S

) be the ontents of t and L denote the number of ourrenes of

onstants in t. Note that (4.12) implies L = 1 +

P

1�i�F

(arity

i

� 1) � n

i

. Then

using (4.11) we obtain

N �N

1

+N

2

< jtj =

P

1�i�S

w(g

i

) � n

i

� W �

P

1�i�S

n

i

=

W � (M + L) = W � (M + 1 +

P

1�i�F

(arity

i

� 1) � n

i

) �

W � (M + 1 + (A� 1)

P

1�i�F

n

i

) =W � (M + 1 + (A� 1) �M) =

W � (M � A+ 1) � W � (N � A+ 1) < N �N

1

+N

2

:

So we obtain a ontradition.

Consider the following possible ases.
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1. There exists a term of the weight x with an ourrene of a funtion symbol

of an arity greater than or equal to 2. In this ase by Lemma 4.3.2 the

number of di�erent terms of the weight x is greater than N .

2. There exists a term of the weight x with ourrenes of at least two di�erent

unary funtion symbols. In this ase by Lemma 4.3.3 the number of di�erent

terms of the weight x is greater than N .

3. All terms of the weight x have the form g

k

() for some unary funtion symbol

g and a onstant . We show that this ase is impossible. In partiular, we

show that for any nononstant funtion symbol h there exists a term of the

weight x in whih g and h our, therefore we obtain a ontradition with

the assumption.

We have x = w(g) � k + w(). Denote by H the arity of h. Let us de�ne

integers M

1

;M

2

;M

3

as follows

M

1

= w(g);

M

2

= k � w(h)� w() � (H � 1);

M

3

= w(g)(H � 1) + 1:

Let us prove that M

1

;M

2

;M

3

> 0 and there exists a term of the weight x

withM

1

ourrenes of h, M

2

ourrenes of g andM

3

ourrenes of  and

hene obtain a ontradition.

Sine g is unary, w(g) > 0, and so M

1

> 0. Sine H � 1, we have M

3

> 0.

Let us show that M

2

> 0, i.e. k > w(h) + w() � (H � 1). We have

k = (x� w())=w(g) > (N �N

1

+N

2

� w())=w(g) �

(N

2

� w())=w(g) = (W

2

� (A+ 1) +W � w())=w(g) �

(W

2

� (A+ 1))=w(g) � W � (A + 1) = W +W � A �

w(h) + w() � A > w(h) + w() � (H � 1):

It remains to show that there exists a term of the weight x with M

1

our-

renes of h, M

2

ourrenes of g and M

3

ourrenes of . To this end we

have to prove (f. (4.11) and (4.12))
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x = w(h) �M

1

+ w(g) �M

2

+ w() �M

3

;

1 + (H � 1) �M

1

+ (1� 1) �M

2

+ (0� 1)M

3

= 0:

This equalities an be veri�ed diretly by replaing M

1

;M

2

;M

3

by their

de�nitions and x by w(g) � k + w(). �

De�ne the binary funtion tnt (trunated number of terms) as follows: tnt(N;M)

is the minimum of N and the number of terms of the weight M and let us show

that tnt an be omputed in time polynomial ofN+M . To give a polynomial-time

algorithm for this funtion we need an auxiliary de�nition and a lemma.

Definition 4.3.5 Let (n

1

; : : : ; n

s

) and (m

1

; : : : ; m

s

) be two tuples of natural

numbers. We say that (n

1

; : : : ; n

s

) extends (m

1

; : : : ; m

s

) if n

i

� m

i

for 1 � i � s.

�

The depth of a term is de�ned by indution as usual: the depth of every

onstant is 1 and the depth of every nononstant term g(t

1

; : : : ; t

n

) is equal to

the maximum of the depth of the t

i

's plus 1.

Lemma 4.3.6 Let t

1

; : : : ; t

n

be a olletion of di�erent terms of the same depth

and Con be the ontents of a term suh that Con extends the ontents of all terms

t

i

, 1 � i � n. Then there exist at least n di�erent terms with the ontents Con.

Proof. Let us de�ne the notion of leftmost subterm of a term t as follows: every

onstant  has only one leftmost subterm, namely  itself, and leftmost subterms

of a nononstant term g(r

1

; : : : ; r

n

) are this term itself and all leftmost subterms

of r

1

. Evidently, for eah positive integer d and term t, t has at most one leftmost

subterm of the depth d.

It is not hard to argue that from the ondition of the lemma it follows that

for every term t

i

there exists a term s

i

with the ontents Con suh that t

i

is a

leftmost subterm of s

i

. But then the terms s

1

; : : : ; s

n

are pairwise di�erent, sine

they have di�erent leftmost subterms of the depth d. �

Lemma 4.3.7 Let the signature � ontain no unary funtion symbol of the weight

0 and ontain either a funtion symbol of an arity greater than or equal to 2 or on-

tain at least two di�erent unary funtion symbols. Then the funtion tnt(N;M)
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is omputable in time polynomial of M +N .

Proof. It is not hard to argue that for every ontents (n

1

; : : : ; n

S

) suh that

some of the n

i

's is greater than M , any term with these ontents has the weight

greater thanM . The number of di�erent ontents in whih eah of the n

i

's is less

than or equal toM isM

S

, i.e. it is polynomial inM , moreover, all these ontents

an be obtained by an algorithm working in time polynomial in M .

Therefore it is suÆient to desribe a polynomial-time algorithm whih for all

ontents (n

1

; : : : ; n

S

), where 1 � n

i

� M , returns the minimum of N and the

number of terms with these ontents.

Let us �x ontents Con = (n

1

; : : : n

S

) where 1 � n

i

� M . Using equations

(4.11) and (4.12), one an hek in polynomial time whether there exists a term

with the ontents Con, so we assume that there exists at least one suh term.

Our algorithm onstruts, step by step, sets T

0

; T

1

; : : :, of di�erent terms with

ontents whih an be extended to the ontents Con. Eah set T

i

will onsist

only of terms of the depth i.

1. Step 0. De�ne T

0

= ;.

2. Step i + 1. De�ne

T

i+1

= fg(t

1

; : : : ; t

m

) j g 2 �; t

1

; : : : ; t

m

2 T

1

[ : : : [ T

i

;

Con extends the ontent of g(t

1

; : : : ; t

m

); and

the depth of g(t

1

; : : : ; t

m

) is i+ 1g:

If T

i+1

has N or more terms, then by Lemma 4.3.6 there exists at least N

di�erent terms of the ontent Con, so we terminate and return N . If T

i+1

is

empty, we return as the result the minimum of N and the number of terms

with the ontent Con in T

1

[ : : : [ T

i+1

.

Let us prove some obvious properties of this algorithm.

1. If some T

i

ontains N or more terms, then there exists at least N terms

with the ontent Con. As we noted, this follows from Lemma 4.3.6.

2. At the end of step i + 1 the set T

1

[ : : : [ T

i+1

ontains all the terms with

the ontents Con of the depth � i + 1. This property obviously holds by

our onstrution.
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This property ensures that the algorithm is orret. To prove that it works in

time polynomial in M + N it is enough to note that eah step an be made in

time polynomial in N and the total number of steps is at most M + 1. �

Now we are ready to prove the main lemma of this setion.

Lemma 4.3.8 There exists a polynomial time of N algorithm, whih onstruts

an existential formula at least

N

(x) valid on a natural number x if and only if

there exists at least N di�erent terms of the weight x.

Proof. If the signature � ontains a unary funtion symbol of the weight 0 then

the number of di�erent terms in any weight is either 0 or !. Therefore we an

de�ne at least

N

(x) as 9n

1

: : :9n

S

exists(x; n

1

; : : : ; n

S

).

Let us onsider the ase when the signature � onsists of a unary funtion

symbol g of a positive weight and onstants. For every onstant  in � onsider

the formula G



(x) = 9k(w(g)k + w() = x). It is not hard to argue that G



(x)

holds if and only if there exists a term of the form g

k

() of weight x. Let P be

the set of all sets of ardinality N onsisting of onstants of � (the ardinality of

P is obviously polynomial in N). It is easy to see that

at least

N

(x)$

_

Q2P

^

2Q

G



(x):

It remains to onsider the ase when our signature ontains a funtion symbol

of an arity greater than or equal to 2, or ontains at least two di�erent unary

funtion symbols. By Lemma 4.3.4, there exist onstants N

1

and N

2

suh that

for any natural number x suh that x > N �N

1

+N

2

the number of terms of the

weight x is either 0 or greater than N . Let us denote N �N

1

+N

2

as M and the

set fM

0

jM

0

� M ^ tnt(N;M

0

) � Ng as W . By Lemmas 4.3.4, 4.3.7 we have

at least

N

(x)$ (9n

1

; : : : ; n

S

exists(x; n

1

; : : : ; n

S

) ^ x > M) _ (

_

M

0

2W

x =M

0

):

�

4.4 Main results

In this setion we omplete the proofs of the main results of this hapter.
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Theorem 4.4.1 For every Knuth-Bendix order, the problem of solving ordering

onstraints is ontained in NP.

Proof. Take a onstraint. By Lemma 4.2.5 it an be e�etively transformed

into an equivalent disjuntion of isolated forms, so it remains to show how to

hek satis�ability of onstraints in isolated form.

Suppose that C is a onstraint in isolated form. Reall that C is of the form

C

arith

^ C

triang

^ C

simp

: (4.13)

Let C

simp

ontain a hain x

1

�

lex

: : : �

lex

x

N

suh that x

1

; : : : ; x

N

does not

our in the rest of C

simp

. Denote by C

0

simp

the onstraint obtained from C

simp

by removing this hain. It is easy to see that C is equivalent to the onstraint

C

arith

^ C

triang

^ C

0

simp

^

^

i=2:::N

(jx

i

j =

N

jx

1

j) ^ at least

N

(jx

1

j):

In this way we an replae C

simp

by an arithmetial onstraint, so we assume that

C

simp

is empty. Let C

triang

have the form

y

1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

:

Let Z be the set of all variables ourring in C

arith

^ C

triang

. It is not hard to

argue that C

arith

^ C

triang

is satis�able if and only if the following onstraint is

satis�able:

C

arith

^ jy

1

j =

N

jt

1

j ^ : : : ^ jy

n

j =

N

jt

n

j ^

V

z2Z

at least

1

(jzj):

So we redued the deidability of the existential theory of term algebras with a

Knuth-Bendix order to the problem of solvability of systems of linear Diophantine

inequalities. Our proof an be represented as a nondeterministi polynomial-time

algorithm. �

This theorem implies the main result of this hapter. Let us all a signature

� trivial if it onsists of one onstant symbol. Evidently, the �rst-order theory

of the term algebra of a trivial signature is polynomial.

Theorem 4.4.2 The existential �rst-order theory of any term algebra of a non-

trivial signature with the Knuth-Bendix order is NP-omplete.
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Proof. The ontainment in NP follows from Theorem 4.4.1. NP-hardness is

proved in Proposition 3.5.3 by reduing propositional satis�ability to the existen-

tial theory of the term algebra (even without the order). �

Let us show that for some Knuth-Bendix orders even onstraint solving an

be NP-hard.

Example 4.4.3 Consider the signature � = fs; g; h; g, where h is binary, s; g

are unary, and  is a onstant. De�ne the weight of all symbols as 1, and use any

order � on � suh that g � s. Our aim is to represent any linear Diophantine

equation by Knuth-Bendix onstraints. To this end, we will onsider any ground

term t as representing the natural number jtj � 1.

De�ne the formula

equal weight(x; y)$

g(x) �

KBO

s(y) ^ g(y) �

KBO

s(x):

Obviously, for any ground terms r; t equal weight(r; t) holds if and only if jrj = jtj.

It is enough to onsider systems of linear Diophantine equations of the form

x

1

+ : : :+ x

n

+ k = x

0

; (4.14)

where x

0

; : : : ; x

n

are pairwise di�erent variables, and k 2 N . Consider the on-

straint

equal weight(s

k+2

(h(y

1

; h(y

2

; : : : ;

h(y

n�1

; y

n

))));

s

2n

(y

0

)):

(4.15)

It is not hard to argue that

(4.16) Formula (4.15) holds if and only if

jy

1

j � 1 + : : :+ jy

n

j � 1 + k = jy

0

j � 1:

Using (4.16), we an transform any system D(x

0

; : : : ; x

n

) of linear Diophantine

equations of the form (4.14) into a onstraint C(y

0

; : : : ; y

n

) suh that for every

tuple of ground terms t

0

; : : : ; t

n

, C(t

0

; : : : ; t

n

) holds if and only if so does D(jt

0

j�

1; : : : ; jt

n

j � 1).
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Similar, using a formula

greater weight(x; y)$

s(x) �

KBO

g(y)

one an represent systems of linear inequalities using Knuth{Bendix onstraints.

It is easy to see that this redution an be done in polynomial time, assuming

that oeÆients of linear Diophantine equations and inequalities are represented

in the unary notation. �

Sine it is well-known that solving linear Diophantine equations with oeÆ-

ients represented in the unary notation is NP-hard, we have the following theo-

rem.

Theorem 4.4.4 For some Knuth-Bendix orders, the problem of solving ordering

onstraints is NP-omplete. �

This result does not hold for all non-trivial signatures, as the following theorem

shows.

Lemma 4.4.5 There exists a polynomial time algorithm whih solves ordering

onstraints for any given term algebra over a signature onsisting of onstants

and any total ordering � on that term algebra.

Proof. Let � = f

1

; : : : ; 

n

g, w.l.o.g. we an assume that 

n

� 

n�1

� : : : � 

1

.

Let C be an ordering onstraint. First we get rid of equalities as follows. If

t =

TA

s ours in C and t is syntatially equal to s then we remove t =

TA

s from

C, if t is a variable then we replae all ourrenes of t in C by s and remove

t =

TA

s from C, otherwise t and s are di�erent onstants and C is unsatis�able.

Now C onsists of onjuntions of atomi formulas of the form t � s. We de�ne a

relation �

0

C

on terms as follows: t �

0

C

s if and only if t � s ours in C. Let �

C

denote a transitive losure of �

0

C

. It is easy to see, that using a polynomial time

algorithm for transitive losure, we an ompute the relation t �

C

s in polynomial

time. Note that if �

C

is not a strit order then the onstraint C is unsatis�able.

So we assume that �

C

is a strit partial order.

Now we replae all variables in C by onstants as follows. Take a variable x

suh that there is no variable less than x w.r.t. �

C

. There are two possible ases:

1. x is a minimal term w.r.t. �

C

, then we replae all ourrenes of x in C by



1

.
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2. there exist some onstants less than x w.r.t. �

C

, then let 

max

be the great-

est w.r.t. � onstant among suh onstants. If 

max

is the maximal onstant

in TA(�) then the onstraint C is unsatis�able, otherwise we replae all o-

urrenes of x by 

max+1

.

Repeating this proess we replae all variables in C in polynomial time. To om-

plete the proof of the lemma, it remains to show that transformations 1,2 above,

preserve satis�ability of onstraints without equality. To this end, we onsider a

onstraint C without equality and a solution � to C. If the transformation 1 is

appliable to C then it is easy to see that

�

0

(x) =

(



1

, if x is a minimal term w.r.t. �

C

,

�(x) otherwise.

is a solution to the onstraint obtained after applying the transformation 1 to C.

Similar one an show that the transformation 2 preserves satis�ability of on-

straints without equality. �

Corollary 4.4.6 There exists a polynomial time algorithm whih heks solv-

ability of ordering onstraints for any given Knuth{Bendix order on any term

algebra over a signature onsisting of onstants. �

As we mentioned in Setion 4.1, if we onsider real-valued Knuth-Bendix

orders then even omparison of ground terms might be undeidable. Let us show

it on the following example.

Example 4.4.7 Consider a non-omputable real number r suh that 0 < r < 1,

i.e. there is no algorithm whih given a positive integer n omputes r with the

preision 1=n, in other words �nds two natural numbers p; q suh that jr�p=qj <

1=n.

Now we onsider a signature onsisting of two unary symbols g; h and a

onstant  and onsider any Knuth{Bendix order �

KBO

on the orresponding

term algebra, suh that w(g) = 1 and w(h) = r. Let us show that omparison

of terms in this Knuth{Bendix order is undeidable. Consider a positive inte-

ger n. Then, it is easy to see that there exists a positive integer m suh that

g

m

() �

KBO

h

n

() �

KBO

g

m�1

(). Sine jg

m

()j 6= jh

n

()j 6= jg

m�1

()j, we have

jg

m

()j > jh

n

()j > jg

m�1

()j. From the de�nition of the weight funtion we have
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that m > rn > m� 1 and therefore m=n > r >

m�1

n

. Let us take p = m� 1 and

q = n, then we have jr � p=qj < 1=n. Therefore using omparison of terms we

an ompute r with the preision 1=n. This implies that omparison of terms for

this Knuth{Bendix order is undeidable. �



Chapter 5

First{order Knuth{Bendix

ordering onstraints for unary

signatures

This hapter is based on the paper [Korovin and Voronkov 2002℄.

5.1 Introdution

In resolution-based theorem proving there are important simpli�ations whih

allow us to remove lauses from the searh spae (for example subsumption). It

turns out that in order to express appliability onditions for these simpli�a-

tions, we need to onsider onstraints whih involve �rst-order quanti�ers (see

Chapter 2). Unfortunately the �rst-order theory of the reursive path orders is

undeidable [Treinen 1990, Comon and Treinen 1997℄. Only reently the deid-

ability of the �rst-order theory of reursive path orders over unary signatures has

been proven [Narendran and Rusinowith 2000℄. A signature is alled unary if it

onsists of unary funtion symbols and onstants.

In this hapter we prove the following result.

Theorem 5.3.2: The �rst-order theory of any Knuth-

Bendix order over any unary signature is deidable.

Our deision proedure uses interpretation of unary terms as trees and uses

deidability of the weak monadi seond-order theory of binary trees.



5.2 Interpretations 70

This hapter is strutured as follows. In Setion 5.2 we introdue the notion of

interpretation and show how it an be used to prove deidability of a given theory

by reduing this problem to deidability of some known theory. In Setion 5.3

we show how to interpret unary terms with any Knuth-Bendix order in the weak

monadi seond-order theory of binary trees, whih deidability is well-known.

In this hapter we will only onsider signatures onsisting of unary funtion

symbols and onstants.

5.2 Interpretations

Interpretations play an important role in mathematial logi, allowing us to de-

sribe the properties of a given struture based on the properties of another

struture.

We will use an interpretation of �rst-order strutures with the Knuth-Bendix

order, in the struture of two suessors onsidered in the weak monadi seond-

order language. The weak monadi seond-order language is a language losed

under _;^;:, whih extends �rst-order language with variables X; Y; : : : ranging

over �nite sets, inludes atomi formulas t 2 X where t is a �rst order term and

allows quanti�ers over the set variables.

Let us introdue a simple notion of interpretation whih we will use later to

show the deidability of the �rst-order theory of Knuth-Bendix orders over unary

signatures. For a more general theory of interpretations see, e.g., [Hodges 1993,

Ershov 1980, Rabin 1977℄. In the sequel we will use lower-ase letters x; y; z; : : : to

denote �rst-order variables and upper-ase letters X; Y; Z; : : : to denote seond-

order variables.

Definition 5.2.1 Let A be a struture in a �rst-order language L

A

and B be a

struture in a weak monadi seond-order language L

B

. We say that the struture

A is interpretable in the struture B if there exist a positive integer m and the

following formulas:

1. �

domain

(

�

X), where

�

X is a tuple of seond-order variables of the length m

suh that the set A

0

= f

�

S j B j= �

domain

(

�

S)g is non-empty;

2. �

g

(

�

X

1

; : : : ;

�

X

n

;

�

Y ) for eah funtion symbol g in the language L

A

, where the

arity of g is n and

�

X

1

; : : : ;

�

X

n

;

�

Y are tuples of seond-order variables of the
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length m, and this formula de�nes a funtion, denoted by g

0

, on A

0

, i.e., we

have

g

0

(

�

S

1

; : : : ;

�

S

n

) =

�

T , B j= �

g

(

�

S

1

; : : : ;

�

S

n

;

�

T );

3. �

P

(

�

X

1

; : : : ;

�

X

n

) for eah prediate symbol P in L

A

, where the arity of P is

n and

�

X

1

; : : : ;

�

X

n

are tuples of seond-order variables of the length m, and

this formula de�nes a prediate on A

0

, denoted by P

0

, i.e., we have

P

0

(

�

S

1

; : : : ;

�

S

n

), B j= �

P

(

�

S

1

; : : : ;

�

S

n

);

suh that the following ondition holds.

The struture with the domain A

0

, in whih every funtion symbol f is interpreted

by the funtion f

0

and every prediate symbol P is interpreted by P

0

, is isomorphi

to the struture A. �

We will use the following fundamental property of interpretability.

Proposition 5.2.2 If a struture A is interpretable in the struture B and the

theory of B (in the language L

B

) is deidable, then the theory of A (in the language

L

A

) is also deidable. �

The proof an be found, e.g. in [Hodges 1993, Ershov 1980, Rabin 1977℄.

5.3 Interpretation of the Knuth-Bendix order in

WS2S

We will use interpretations to show the deidability of the �rst-order theory of

Knuth-Bendix orders over unary signatures. We show how to interpret Knuth-

Bendix orders in the struture of two suessors in the weak monadi language.

Then, using the result [Thather and Wright 1968℄ on the deidability of the

weak monadi theory of two suessors, we onlude that the �rst-order theory

of Knuth-Bendix orders over unary signatures is deidable.

Let us briey reall the de�nition of the struture of two suessors (see, e.g.,

[Comon, Dauhet, Gilleron, Jaquemard, Lugiez, Tison and Tommasi 1997℄ for

details). The domain onsists of �nite binary strings inluding the empty string
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�. There are two funtions 0(x) and 1(x) whih add 0 and 1 respetively to the

end of the string. For example 0(101) = 1010. Instead of 0(t) and 1(t) we will

write, respetively, t �0 and t �1. The atomi formulas are equalities t = s between

�rst-order terms, and t 2 X where t is a �rst-order term. Formulas are built from

atomi formulas using logial onnetives ^;_;:, the �rst-order quanti�ers 9x; 8x

and seond-order quanti�ers over �nite sets 9X; 8X. We will use the following

standard shorthands: 9x 2 X�(x;X) for 9x(x 2 X^�(x;X)) and 8x 2 X�(x;X)

for 8x(x 2 X � �(x;X)). Binary strings an be seen as positions in binary trees,

and in the sequel we sometimes will use the word position instead of string.

Below we will use the following de�nable relations on sets with a straightfor-

ward meaning.

Emptiness:

X = ; $ 8x(x 62 X):

Intersetion:

X \ Y = Z $ 8x(x 2 Z $ (x 2 X ^ x 2 Y )):

Union:

X [ Y = Z $ 8x(x 2 Z $ (x 2 X _ x 2 Y )):

Partition:

Partition(X;X

1

; : : : ; X

n

)$ X =

[

1�i�n

X

i

^

^

1�i<j�n

X

i

\X

j

= ;:

Pre�xClosed:

Pre�xClosed(X)$ 8x((x � 0 2 X _ x � 1 2 X) � x 2 X):

Sets satisfying Pre�xClosed will be alled trees.

Pre�x order v:

x v y $ 8X((y 2 X ^ Pre�xClosed(X)) � x 2 X):

Likewise, we introdue
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x � y $ x v y ^ x 6= y:

Lexiographi order �

lex

:

x �

lex

y $ x v y

_

9z(z � 0 v x ^ z � 1 v y):

Likewise, we introdue

x <

lex

y $ x �

lex

y ^ x 6= y:

Maximal pre�x: Informally,MaxPref (m;X) says that m is a maximal element

in X w.r.t. the pre�x order.

MaxPref (m;X)$ m 2 X ^ 8z 2 X:(m � z):

Minimal pre�x: Informally, MinPref (m;X) says that m is a minimal element

in X w.r.t. the pre�x order.

MinPref (m;X)$ m 2 X ^ 8z 2 X:(z � m):

Maximal lexiographially: Informally, MaxLex (m;X) says that m is a max-

imal element in X w.r.t. the lexiographi order.

MaxLex (m;X)$ m 2 X ^ 8z 2 X:(m <

lex

z):

Assuming a �xed Knuth-Bendix order we will show how to interpret it in the

struture of two suessors using the weak monadi seond-order language.

Let us onsider a signature � = fg

1

; : : : ; g

s

g onsisting of unary funtion

symbols and onstants. From now on we assume that � is �xed and denote by

s the number of funtion symbols and onstants in it. We denote the set of

onstants in � by �



and the set of unary funtion symbols by �

g

. Let w be a

weight funtion on � and� be a preedene relation ompatible with w. Also f

will always denote the funtion symbol of weight zero. Denote the Knuth-Bendix

order indued by this weight funtion and preedene relation by �. Now we
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show how to interpret TA

�

(�) in the struture of two suessors using the weak

monadi language.

We de�ne the interpretation in three steps. First we map terms into labelled

trees and de�ne funtions and relations on them suh that the obtained struture

will be isomorphi to TA

�

(�). Then we show how labelled trees an be repre-

sented as s + 1-tuples of �nite sets of binary strings. Finally we show how to

de�ne these representations, and orresponding funtions and relations on them

in the struture of two suessor using weak monadi seond{order logi.

Coding of terms.

The labelled trees are binary trees labelled with the funtion symbols. We

want tree representation of terms to satisfy the following properties

1. The funtions of TA

�

(�) an be de�ned in the monadi seond-order lan-

guage.

2. The funtion symbols of the term algebra are represented in suh a way that

we an ompare weights of terms using the monadi seond-order language.

3. For the terms of equal weight we should be able to ompare their top fun-

tion symbols and then lexiographially ompare their subterms.

Let us start with an example. Consider a signature ff(); g(); h(); g, and a

weight funtion w suh that w(f) = 0; w(g) = 2; w(h) = w() = 1. Figure 5.1

shows how to onstrut a labelled tree representing the term f(h(f(f(g())))).

The labelled tree is built by traversing the tree inside-out, for example, the root

of the labelled tree is labelled with the onstant . We would like the rightmost

branh of the tree to have the length equal to the weight of the term. To this end,

we repeat every funtion symbol of a positive weight the number of times equal

to its weight. Sine the funtion symbol f has the weight 0, it is not inluded on

the rightmost branh. To represent this symbol, we make branhing to the left

at the orresponding points of the tree.

Before giving a formal de�nition of the representation of terms as labelled

trees, let us onsider trees as sets of binary strings. Any binary tree without

labels an be de�ned as a set of binary strings, namely the positions of the nodes

in the tree. For example, the tree of Figure 5.1 ontains the binary strings �
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g

g

f

f

h

f

Figure 5.1: The labelled tree representation of fhffg, w(f) = 0; w(g) =

2; w(h) = w() = 1

labelled with , strings 1 and 11 labelled as g, string 111 labelled by h, and

strings 110, 1100, and 1110 labelled by f .

Formally, for eah term t we de�ne a labelled binary tree Tree

t

and two posi-

tions Right

t

and Top

t

in this tree. The de�nition is by indution on t.

1. If t is a onstant  of a weight w, then Tree

t

onsists of the strings �; 1; : : : ; 1

w�1

,

labelled by , and Right

t

= Top

t

= 1

w�1

.

2. If t = f(t

0

), then Tree

t

is obtained from Tree

t

0

by adding the string Top

t

0

� 0

labelled by f , and we have Top

t

= Top

t

0

� 0, Right

t

= Right

t

0

.

3. If t = g(t

0

), where g has a positive weight w, then Tree

t

is obtained from

Tree

t

0

by adding the strings Right

t

0

� 1; : : : ;Right

t

0

� 1

w

labelled by g, and we

have Top

t

= Right

t

= Top

t

0

� 1

w

.

The mapping t 7! Tree

t

de�nes the embedding of terms into labelled trees.

Now it is easy to de�ne the funtions of the term algebra TA

�

(�) on the

labelled trees. We de�ne the value of a funtion g on the labelled tree represen-

tation of a term t to be equal to the labelled tree representation of the term g(t).

Likewise, we an de�ne the Knuth-Bendix order on suh trees. It is evident that

the obtained struture on the labelled trees is isomorphi to TA

�

(�).

Now we will show how to represent labelled trees by s + 1-tuples. Let T be

a labelled tree whose set of positions is X. Then we represent T as the tuple

hX;X

g

1

; : : : ; X

g

s

i, where eah set X

g

i

is the set of positions labelled by g

i

and X

is the set of all positions in this tree. If a term t is represented by a labelled tree

T , and T is represented by a tuple hX;X

g

1

; : : : ; X

g

s

i, we will also say that the

tuple hX;X

g

1

; : : : ; X

g

s

i represents the term t.
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To omplete our onstrution, we have to show how to de�ne in the seond-

order monadi language the set of tuples whih represent the terms of TA

�

(�),

and then show that all funtions and prediates of TA

�

(�) are de�nable on the

representation.

To this end we introdue some auxiliary de�nable prediates on sets of strings.

OneSu: Informally, OneSu(X) says that the set of strings X onsists of

strings of 1's, ontains the empty string, and is pre�x losed.

OneSu(X)$ � 2 X ^ (8x 2 X(x 6= � � 9y 2 X x = y � 1 )):

Spine: The set of strings on rightmost branh of a tree will be alled the spine

of this tree. Spine(X; Y ) says that X is a tree and Y is its spine.

Spine(X; Y ) $ Pre�xClosed(X) ^OneSu(Y ) ^ Y � X ^

8Y

0

((Y

0

� X ^ OneSu(Y

0

)) � Y

0

� Y ):

Comb: Informally, Comb(X) says that X is a tree and all right-branhing posi-

tions in it are in its spine.

Comb(X) $ Pre�xClosed(X)^

8x(x � 1 2 X � 9Y Spine(X; Y ) ^ x 2 Y ):

LabelledTree: Informally, LabelledTree(X;X

g

1

; : : : ; X

g

s

) says that hX;X

g

1

; : : : ; X

g

s

i

is a tuple whih is a labelled tree (not neessarily representing a term) ap-

propriately labelled in the following sense: all positions along its spine are

labelled with funtion symbols of positive weights and all other positions

are labelled with the funtion symbol of the weight 0.

LabelledTree(X;X

g

1

; : : : ; X

g

s

) $ Partition(X;X

g

1

; : : : ; X

g

s

)

^ Comb(X)

^ Spine(X;[

g2�nffg

X

g

):

The labelled trees de�ned by LabelledTree(X;X

g

1

; : : : ; X

g

s

) are similar to those

representing terms, exept that in our representation of terms eah ourrene of
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a funtion symbol of a positive weight should be repeated the number of times

equal to the weight. Let us express this restrition in the weak monadi seond-

order logi.

A set onsisting of strings of 1's will be alled a 1-set. A 1-set whih is a

set of suessive positions we be alled an interval. The length of an interval

is the number of elements in it. Consider a labelled tree hX;X

g

1

: : : ; X

g

s

i and a

funtion symbol g 2 �nffg. First we introdue notions of g-interval and maximal

g-interval. A g-interval is an interval whih is ontained in X

g

and ontains no

branhing positions with a possible exeption of the maximal position of this

interval.

g-interval: Let g 2 � n ffg. Informally Interval

g

(I;

�

X) says that

�

X is a labelled tree and I is a g-interval.

Interval

g

(I;

�

X) $ LabelledTree(

�

X) ^ I � X

g

^

9m

0

; m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)

^ 8y(m

0

v y v m

1

� y 2 I))

^8z 2 I( :MaxPref (z; I) � z � 0 62 X):

Maximal g-interval: is a g-interval that an not be properly extended.

MaxInterval

g

(I;

�

X) $ Interval

g

(I;

�

X) ^ 8J(Interval

g

(J;

�

X) � I 6� J):

Our next goal is to express that the length of every maximal g-interval is a

multiple of w(g). To this end we introdue a notion of n-interval, for eah positive

n. We say that a position x is the n-suessor of a position y if x = y � 1

n

. An

n-interval is a 1-set whih onsists of a sequene of positions suh that eah next

position is an n-suessor of the previous. We always assume that an n-interval

ontains at least two elements. For example, the following set is a 2-interval

f1; 111; 11111g. Let us show that for a given n, the property of being an n-

interval is expressible in the monadi seond-order logi.

1-set:

OneSet(X)$ 9Y X � Y ^ OneSu(Y ):
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n-interval:

Interval

n

(X) $ OneSet(X) ^ 9m(MinPref (m;X) ^ 1

n

(m) 2 X)

^8y 2 X(MaxPref (y;X) _ (y � 1

n

2 X ^

V

1�i<n

y � 1

i

62 X)):

Now, to say that the length of every maximal g-interval in a tree is a multiple

of w(g), it is enough to say that for every maximal g-interval in the tree, its

minimal point and the suessor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(

�

X) says that

�

X is a labelled tree and the length

of every maximal g-interval in this tree is a multiple of w(g).

Preterm(

�

X) $ LabelledTree(

�

X)^

V

g2�nffg

8I(MaxInterval

g

(I;

�

X) �

9m

0

9m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)^

9Y Interval

w(g)

(Y ) ^m

0

2 Y ^m

1

� 1 2 Y )):

Finally, to de�ne terms we need to say that the root position of a term is a

onstant and there are no other ourrenes of onstants.

Term:

Term(

�

X) $ Preterm(

�

X) ^ � 2

S

g2�



^

V

g2�



(X

g

6= ; � � 2 X

g

^MaxPref (1

(w(g)�1)

(�); X

g

)):

So, we have that Term(

�

X) de�nes the domain of our term algebra in the

struture of two suessors. Let us now show how to de�ne the funtions of the

term algebra and the Knuth-Bendix order on this domain. Eah onstant an be

easily de�ned as following.

Constants: For eah onstant  2 �



de�ne

�



(

�

X)$ Term(

�

X) ^X



= [

0�i<w()

f1

i

(�)g ^X = X



:

Now we onsider a funtion symbol g 2 �

g

n ffg. In order to say that

�

Y = g(

�

X) we need to say that the spine of

�

Y extends the spine of

�

X with g

repeated w(g) times.
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Funtion symbols of positive weight: For eah funtion symbol g 2 �

g

nffg

de�ne

�

g

(

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nfgg

X

h

= Y

h

^

9S9m(Spine(X;S) ^MaxLex (m;S)^

Y

g

= (X

g

[

S

1�i�w(g)

f1

i

(m)g)):

In order to say that

�

Y = f(

�

X) where f is the funtion symbol of zero weight

we need to say that

�

Y extends the greatest position in

�

X, w.r.t. lexiographi

order, with f .

Funtion symbol of zero weight: For the funtion symbol of zero weight de-

�ne

�

f

(

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nffg

X

h

= Y

h

^

9m(MaxLex (m;X) ^ Y

f

= (X

f

[ fm � 0g)):

Finally, we will de�ne the Knuth-Bendix order. For this we need some auxil-

iary prediates.

Point of di�erene: Informally, PointOfDi�erene(x;

�

X;

�

Y ) says that

�

X;

�

Y rep-

resent terms and they di�er at the position x.

PointOfDi�erene(x;

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y )^

W

g2�

((x 2 X

g

^ x 62 Y

g

) _ (x 2 Y

g

^ x 62 X

g

)) :

Maximal point of di�erene: Informally,MaxPointOfDi�erene(x;

�

X;

�

Y ) says

that

�

X;

�

Y are terms, and x is the greatest point of di�erene w.r.t. the lex-

iographi order.

MaxPointOfDi�erene(x;

�

X;

�

Y ) $ PointOfDi�erene(x;

�

X;

�

Y )^

8y(PointOfDi�erene(y;

�

X;

�

Y ) � y �

lex

x):

Now we are ready to de�ne the Knuth-Bendix order. Indeed, to say that

�

X �

�

Y it is enough to say that

�

X;

�

Y are terms, the maximal point of their

di�erene is in X and the funtion symbol at this position in

�

X is greater in

the preedene relation� than the funtion symbol at this position in

�

Y , if this

position belongs to Y .
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Knuth-Bendix order:

�

X �

�

Y $ 9x(MaxPointOfDi�erene(x;

�

X;

�

Y ) ^ x 2 X^

V

g2�

(x 2 X

g

� (x 62 Y _

W

h�g

x 2 Y

h

))):

Lemma 5.3.1 The formulas Term(

�

X);

�

X �

�

Y and �

g

(

�

X;

�

Y ) for g 2 �, de�ne

an interpretation of the term algebra with the Knuth-Bendix order in the struture

of two suessors.

Proof. The laim follows from the de�nition of the Knuth-Bendix order. �

Using the deidability of the weak monadi seond-order theory of two sues-

sors, this lemma and Proposition 5.2.2 we obtain the main result of this hapter.

Theorem 5.3.2 The �rst-order theory of any Knuth-Bendix order over any unary

signature is deidable. �

Let us note that this interpretation of Knuth-Bendix orders also works if we

onsider partial preedene order � on the signature, assuming that f is the

greatest symbol w.r.t. �.

Finally, let us remark that our result an be easily extended to the deidability

of term algebras with several Knuth-Bendix orders whih have the same weight

funtions and di�erent preedene relations. Indeed, in this ase the interpreta-

tion of terms and term funtions is the same as above and we only need to add

formulas

�

X �

i

�

Y for eah Knuth-Bendix order �

i

.



Chapter 6

Orientability of rewrite rules by

Knuth-Bendix orders

This hapter is based on papers [Korovin and Voronkov 2001b, Korovin and

Voronkov 2003d℄.

Let us give an informal overview of the results proved in this hapter. The

formal de�nitions will be given in the next setion. Let � be any order on ground

terms and l ! r be a rewrite rule. We say that � orients l ! r, if for every

ground instane l

0

! r

0

of l ! r we have l

0

� r

0

. We write l � r if for every

ground instane l

0

! r

0

of l ! r we have l

0

� r

0

or l

0

= r

0

. There are situations

where we want to hek if there exists a simpli�ation order on ground terms

that orients a given system of (possibly non-ground) rewrite rules. We all this

problem orientability. Orientability an be useful when a theorem prover is run

on a new problem for whih no suitable simpli�ation order is known, or when

termination of a rewrite system is to be established automatially (see Chapter 2).

We give a polynomial-time algorithm for heking orientability by Knuth-

Bendix orders.

Theorem 6.9.1: The problem of the existene of a

Knuth-Bendix order whih orients a given term rewriting

system an be solved in polynomial time.

The main algorithmi omplexity of our orientability algorithm arises from

the usage of solvability of homogeneous linear inequalities. We show that this

is unavoidable by reduing solvability of ertain homogeneous linear inequalities

to our orientability problem. Using this redution and a redution to the iruit

value problem we show the following hardness result.
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Theorem 6.9.2: The problem of orientability of term

rewriting systems by Knuth-Bendix orders is P-omplete.

Moreover, it is P-hard even for ground rewriting systems.

A similar problem of orientability by the non-ground version of real-valued

Knuth-Bendix orders was studied in [Dik et al. 1990℄ and an algorithm for ori-

entability was given. We prove that any term rewriting system orientable by a

real-valued Knuth-Bendix order is also orientable by an integer-valued Knuth-

Bendix order. This result also holds for the non-ground version of Knuth-Bendix

orders onsidered in [Dik et al. 1990℄. In our proofs we use some tehniques of

[Dik et al. 1990℄. We also show that some rewrite systems ould not be ori-

ented by non-ground version of Knuth-Bendix orders, but an be oriented by our

algorithm.

The seond problem we onsider is solving ordering onstraints onsisting of a

single inequality, over a given Knuth-Bendix order. If � is total on ground terms,

then the problem of heking if � orients l ! r has relation to the problem

of solving ordering onstraints over �. Indeed, � does not orient l ! r if and

only if there exists a ground instane l

0

! r

0

of l ! r suh that r

0

� l

0

, i.e., if

and only if the ordering onstraint r � l has a solution. This means that any

proedure for solving ordering onstraints onsisting of a single inequality an

be used for heking whether a given system of rewrite rules is oriented by �,

and vie versa. Using the same tehnique as for the orientability problem, we

show that the problem of solving Knuth-Bendix ordering onstraints onsisting

of single inequalities an be solved in polynomial time. Let us remark that this

algorithm does not use solvability of systems of homogeneous linear inequalities

and runs in the time O(n

2

) of the size of the onstraint.

Theorem 6.9.3: The problem of solving a given Knuth-

Bendix ordering onstraint onsisting of a single inequal-

ity an be solved in the time O(n

2

).

6.1 Preliminaries

In the sequel we will often refer to the least and the greatest terms among the

terms of the minimal weight for a given Knuth-Bendix order. It is easy to see that

every term of the minimal weight is either a onstant of the minimal weight, or a

term f

n

(), where  is a onstant of the minimal weight, and w(f) = 0. Therefore,
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the least term of the minimal weight is always the onstant of the minimal weight

whih is the least among all suh onstants w.r.t. �. This onstant is also the

least term w.r.t. �.

The greatest term of the minimal weight exists if and only if there is no unary

funtion symbol of the weight 0. In this ase, this term is the onstant of the

minimal weight whih is the greatest among suh onstants w.r.t. �.

Definition 6.1.1 (grounding substitution) A substitution � is grounding for an

expression E (i.e., term, rewrite rule et.) if for every variable x ourring in E

the term �(x) is ground. We denote by E� the expression obtained from E by

replaing in it every variable x by �(x). A ground instane of an expression E is

any expression E� whih is ground. �

A rewrite rule is a pair of terms (l; r), possibly with variables, usually denoted

by l ! r. A term rewriting system is a �nite set of term rewrite rules. The

following de�nition is entral to this hapter.

Definition 6.1.2 (orientability) AKnuth-Bendix order� orients a rewrite rule

l ! r if for every ground instane l

0

! r

0

of l ! r we have l

0

� r

0

. A Knuth-

Bendix order orients a system R of rewrite rules if it orients every rewrite rule

in R. �

We show that the problem of the existene of a Knuth-Bendix order whih orients

a given system of term rewrite rules an be solved in polynomial time. Moreover,

if the given system of rewrite rules is orientable by a Knuth-Bendix order, we an

�nd suh an order in polynomial time.

The deidability of the orientability problem for Knuth-Bendix orders does not

follow immediately from the deidability of Knuth-Bendix ordering onstraints

(Chapter 4), as it is in the ase of reursive path orders. For a given �nite

signature, there exists only a �nite number of di�erent reursive path orders.

But there exists an in�nite number of di�erent Knuth-Bendix orders, sine the

weight funtion is not restrited.

We de�ne orientability in terms of ground instanes of rewrite rules. One an

also de�ne orientability using the non-ground version of Knuth-Bendix orders as

originally de�ned by Knuth and Bendix [1970℄. But then we obtain a weaker

notion (fewer systems an be oriented) as the following example shows.

Example 6.1.3 Consider the following rewrite rule:
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g(x; a; b)! g(b; b; a): (6.1)

For any hoie of the weight funtion w and order �, g(x; a; b) �

KBO

g(b; b; a)

does not hold for the original Knuth-Bendix order with variables. However,

rewrite rule (6.1) an be oriented by any Knuth-Bendix order suh that w(a) �

w(b) and a� b. �

In fat the order based on all ground instanes is the greatest simpli�ation order

extending the Knuth-Bendix order from ground terms to non-ground terms.

6.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous

linear inequalities. The de�nitions related to systems of linear inequalities an be

found in standard textbooks, see, e.g., Shrijver [1998℄. We will denote olumn

vetors of variables by X, integer or real vetors by V;W , integer or real matries

by A;B. Column vetors onsisting of 0's will be denoted by 0. The set of real

numbers is denoted by R, and the set of non-negative real numbers by R

+

.

Definition 6.2.1 (homogeneous linear inequalities) A homogeneous linear in-

equality has the form either V X � 0 or V X > 0. A system of homogeneous

linear inequalities is a �nite set of homogeneous linear inequalities. �

Solutions (real or integer) to systems of homogeneous linear inequalities are de-

�ned as usual. When we write a system of homogeneous linear inequalities as

AX � 0, we assume that every inequality in the system is of the form V X � 0

(but not of the form V X > 0).

We will use the following fundamental property of system of homogeneous

linear inequalities:

Lemma 6.2.2 Let AX � 0 be a system of homogeneous linear inequalities, where

A is an integer matrix. Then there exists a �nite number of integer vetors

V

1

; : : : ; V

n

suh that the set of solutions to AX � 0 is

fr

1

V

1

+ : : :+ r

n

V

n

j r

1

; : : : ; r

n

2 R

+

g: (6.2)

�
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The proof an be found in, e.g., [Shrijver 1998℄.

The following lemma was proved in [Martin 1987℄ for the systems of linear

homogeneous inequalities over the real numbers. We will give a simpler proof of

it here.

Lemma 6.2.3 Let AX � 0 be a system of homogeneous linear inequalities where

A is an integer matrix and let Sol be the set of all real solutions to the system.

Then the system an be split into two disjoint subsystems BX � 0 and CX � 0

suh that

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol suh that CV > 0.

Proof. By Lemma 6.2.2 we an �nd integer vetors V

1

; : : : ; V

n

suh that the

set Sol is (6.2). We de�ne BX � 0 to be the system onsisting of all inequalities

WX � 0 in the system suh that WV

i

= 0 for all i = 1; : : : ; n; then property 1 is

obvious.

Note that the system CX � 0 onsists of the inequalities WX � 0 suh that

for some i we have WV

i

> 0. Take V to be V

1

+ : : :+ V

n

, then it is not hard to

argue that CV > 0. �

Let W be a system of homogeneous linear inequalities. We will all the subsystem

BX � 0 of W the degenerate subsystem if the following holds. Denote by C the

matrix of the omplement to BX � 0 in W and by Sol the set of all real solutions

to W . Then

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol suh that CV > 0.

For every system W of homogeneous linear inequalities the degenerate subsystem

of W will be denoted by W

=

. Note that the degenerate subsystem is de�ned for

arbitrary systems, not only those of the form AX � 0.

Let us now prove another key property of integer systems of homogeneous

linear inequalities: the existene of a real solution implies the existene of an

integer solution.
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Lemma 6.2.4 Let W be a system of homogeneous linear inequalities with an in-

teger matrix. Let V be a real solution to this system and for some subsystem of

W with the matrix C we have CV > 0. Then there exists an integer solution V

0

to W for whih we also have CV

0

> 0.

Proof. Let W

0

be obtained from W by replaement of all strit equalities

WX > 0 by their non-strit versions WX � 0. Take vetors V

1

; : : : ; V

n

so that

the set of solutions to W

0

is (6.2). Evidently, for every inequality WX � 0 in

CX � 0 there exists some i suh that WV

i

> 0. De�ne V

0

as V

1

+ : : : + V

n

,

then it is not hard to argue that CV

0

> 0. We laim that V

0

is a solution to

W . Assume the onverse, then there exists an inequality WX > 0 in W suh

that WV

0

= 0. But WV

0

= 0 implies that WV

i

= 0 for all i, so W has no real

solution, ontradition. �

The following lemma follows from Lemmas 6.2.3 and 6.2.4.

Lemma 6.2.5 Let W be a system of homogeneous linear inequalities with an inte-

ger matrix and its degenerate subsystem is di�erent from W . Let C be the matrix

of the omplement of the degenerate subsystem. Then there exists an integer

solution V to W suh that CV > 0. �

The following result is well-known, see, e.g., [Shrijver 1998℄.

Lemma 6.2.6 The existene of a real solution to a system of linear inequalities

an be deided in polynomial time. �

This lemma and Lemma 6.2.4 imply the following key result.

Lemma 6.2.7 (i) The existene of an integer solution to an integer system of ho-

mogeneous linear inequalities an be deided in polynomial time. (ii) If an integer

system W of homogeneous linear inequalities has a solution, then its degenerate

subsystem W

=

an be found in polynomial time.

Proof. (i) By Lemma 6.2.6 the existene of a real solution an be heked

in polynomial time. By Lemma 6.2.4 an integer solution exists if and only if

there exists a real solution. Therefore, the existene of an integer solution an be

deided in polynomial time.

(ii) Let WX � 0 be a linear inequality in W . By Lemma 6.2.3 and the

de�nition of the degenerate system W

=

, this inequality belongs to W

=

if and



6.3 States 87

only if W [fWX > 0g has no solution. By (i) this an be heked in polynomial

time. �

6.3 States

In Setion 6.5 we will present an algorithm for orientability by Knuth-Bendix

orders. This algorithm will work on states whih generalize systems of rewrite

rules in several ways. A state will use a generalization of rewrite rules to tuples

of terms and some information about possible solutions.

Let � be any order on ground terms. We extend it lexiographially to an

order on tuples of ground terms as follows: we write hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i if

for some i 2 f1; : : : ; ng we have l

1

= r

1

; : : : ; l

i�1

= r

i�1

and l

i

� r

i

. We all a

tuple inequality any expression hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i. The length of this tuple

inequality is n.

In the sequel we assume that � is a �xed signature and e is a onstant not

belonging to �. The onstant e will play the role of a temporary substitute for a

onstant of the minimal weight. We also assume that di�erent rewrite rules have

disjoint sets of variables. This an be ahieved by renaming variables.

We will present the algorithm for orienting a system of rewrite rules as a

sequene of state hanges. We all a state a tuple (R; M ;W ;U; G ; L ;o), where

1. R is a set of tuple inequalities hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i, suh that every

two di�erent tuple inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms

of the minimal weight.

3. W is a system of homogeneous linear inequalities over the following vari-

ables: fw

g

j g 2 � [ fegg. This system denotes onstraints on the weight

funtion olleted so far, and w

e

denotes the minimal weight of terms.

4. U is one of the following values one or any. The value one signals that

there exists exatly one term of the minimal weight, while any means that

no onstraints on the number of elements of the minimal weight have been

imposed.
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5. G and L are sets of onstants, eah of them ontains at most one element.

If d 2 G (respetively d 2 L), this signals that d is the greatest (respetively

least) term among the terms of the minimal weight.

6. o is a binary relation on �. This relation denotes the subset of the pree-

dene relation omputed so far.

Let w be a weight funtion on �, � a preedene relation on � ompatible with

w, and � the Knuth-Bendix order indued by (w;�). A substitution � grounding

for a set of variables X is said to be minimal for X if for every variable x 2 X

the term �(x) is of the minimal weight. We extend w to e by de�ning w(e) to be

the minimal weight of a onstant of �.

We say that the pair (w;�) is a solution to a state (R; M ;W ;U; G ; L ;o) if

1. For every tuple inequality hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i in R and every substi-

tution � grounding for this tuple inequality and minimal for M we have

hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. The weight funtion w solves every inequality in W in the following sense:

replaement of eah w

g

by w(g) gives a tautology. In addition, w(e) oin-

ides with the minimal weight w() of onstants  2 �.

3. If U = one, then there exists exatly one term of the minimal weight.

4. If d 2 G (respetively d 2 L) for some onstant d, then d is the greatest

(respetively least) term among the terms of the minimal weight. Note that

if d is the greatest term of the minimal weight, then the signature ontains

no unary funtion symbol of the weight 0.

5. � extendso.

We will now show how to redue the orientability problem for the systems of

rewrite rules to the solvability problem for states.

Let R be a system of rewrite rules suh that every two di�erent rules in R

have disjoint variables. Denote by S

R

the state (R; M ;W ;U; G ; L ;o) de�ned as

follows.

1. R onsists of all tuple inequalities hli > hri suh that l ! r belongs to R.

2. M = ;.
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3. W onsists of (a) all inequalities w

g

� 0, where g 2 � is a non-onstant;

(b) the inequality w

e

> 0 and all inequalities w

d

� w

e

� 0, where d is a

onstant of �.

4. U = any.

5. G = L = ;.

6. o is the empty binary relation on �.

Lemma 6.3.1 Let w be a weight funtion, � a preedene relation on � ompat-

ible with w, and � a Knuth-Bendix order indued by (w;�). Then � orients R

if and only if (w;�) is a solution to S

R

. �

The proof is straightforward.

6.4 Trivial signatures

For tehnial reasons, we will distinguish two kinds of signatures. Essentially, our

algorithm depends on whether the weights of terms are restrited or not. For the

so-alled non-trivial signatures, the weights are not restrited. When we present

the orientability algorithm for the non-trivial signatures, we will use the fat that

terms of suÆiently large weights always exist. For the trivial signatures we will

present a simpler orientability algorithm in Setion 6.6.

A signature is alled trivial if it ontains no funtion symbols of arity � 2, and

at most one unary funtion symbol. Note that a signature is non-trivial if and

only if it ontains either a funtion symbol of arity � 2 or at least two funtion

symbols of arity 1.

Lemma 6.4.1 Let � be a non-trivial signature and w be a weight funtion for �.

Then for every integer m there exists a ground term of the signature � suh that

jtj > m.

Proof. It is enough to show how for every term t build a term of the weight

greater than jtj. Note that the weight of any term is positive. If � ontains a

funtion symbol g of arity n � 2, then jg(t; : : : ; t)j = w(g) + n � jtj > jtj. If �

ontains two unary funtion symbols, then for at least one of them g we have

w(g) > 0. Then jg(t)j = w(g) + jtj > jtj. �



6.5 An algorithm for orientability in the ase of non-trivial signatures 90

6.5 An algorithm for orientability in the ase of

non-trivial signatures

In this setion we only onsider non-trivial signatures. An algorithm for trivial

signatures is given in Setion 6.6. The algorithm given in this setion will be

illustrated below in Setion 6.5.5 on the rewrite rule of Example 6.1.3.

Our algorithm works as follows. Given a system R of rewrite rules, we build

the initial state S

R

= (R; M ;W ;U; G ; L ;o). Then we repeatedly transform

(R; M ;W ;U; G ; L ;o) as desribed below. We all the size of the state the total

number of ourrenes of funtion symbols and variables in R. Every transfor-

mation step will terminate with either suess or failure, or else derease the size

of R.

At eah step we assume that R onsists of k tuple inequalities

hl

1

; L

1

i > hr

1

; R

1

i;

� � �

hl

k

; L

k

i > hr

k

; R

k

i;

(6.3)

suh that all of the L

i

; R

i

are tuples of terms.

We will label parts of the algorithm. These labels will be used in the proof of

its soundness. The algorithm an make a non-deterministi hoie of a onstant

of the minimal weight, but at most one at step (T3) below, and the number

of non-deterministi branhes is bounded by the number of onstants in �. If

we allow to extend our signature with an extra onstant, whih is appropriate

for most appliations, then this non-deterministi hoie an be replaed by by

adding e as a new onstant in our signature.

When the set W of linear inequalities hanges, we assume that we hek the

new set for satis�ability, and terminate with failure if it is unsatis�able. Likewise,

when we hange o, we hek if it an be extended to an order and terminate

with failure if it annot.

6.5.1 The algorithm

The algorithm works as follows. Every step onsists of a number of state trans-

formations, beginning with PREPROCESS de�ned below. During the algorithm,

we will perform two kinds of onsisteny heks:
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� The onsisteny hek on W is the hek whether W has a solution. If it

does not, we terminate with failure.

� The onsisteny hek on o is the hek whethero an be extended to

an order, i.e., the transitive losure � ofo is irreexive, i.e., for no g 2 �

we have g � g. Ifo annot be extended to an order, we terminate with

failure.

It is not hard to argue that both kinds of onsisteny heks an be performed

in polynomial time. The onsisteny hek on W is polynomial by Lemma 6.2.7.

The onsisteny hek ono is polynomial sine the transitive losure of a binary

relation an be omputed in polynomial time, see, e.g., [Cormen, Leiserson and

Rivest 1991℄.

PREPROCESS. Do the following transformations while possible. If R on-

tains a tuple inequality hl

1

; : : : ; l

n

i > hl

1

; : : : ; l

n

i, terminate with failure. Other-

wise, if R ontains a tuple inequality hl; l

1

; : : : ; l

n

i > hl; r

1

; : : : ; r

n

i, replae it by

hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

If R beomes empty, proeed to TERMINATE, otherwise ontinue with MAIN.

MAIN. Now we an assume that in (6.3) eah l

i

is a term di�erent from the

orresponding term r

i

. For every variable x and term t denote by n(x; t) the

number of ourrenes of x in t. For example, n(x; g(x; h(y; x))) = 2. Likewise,

for every funtion symbol g 2 � and term t denote by n(g; t) the number of

ourrenes of g in t. For example, n(h; g(x; h(y; x))) = 1.

(M1) For all x and i suh that n(x; l

i

) > n(x; r

i

), add x to M .

(M2) If for some i there exists a variable x 62 M suh that n(x; l

i

) < n(x; r

i

),

then terminate with failure.

For every pair of terms l; r, denote by W (l; r) the linear inequality obtained

as follows. Let v

l

and v

r

be the numbers of ourrenes of variables in l and r

respetively. Then

W (l; r) =

X

g2�

(n(g; l)� n(g; r))w

g

+ (v

l

� v

r

)w

e

� 0: (6.4)

For example, if l = h(x; f(y)) and r = f(g(x; g(x; y))), then
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W (l; r) = w

h

� 2 � w

g

� w

e

� 0:

(M3) Add to W all the linear inequalities W (l

i

; r

i

) for all i and perform the

onsisteny hek on W .

Now ompute W

=

. If W

=

ontains none of the inequalities W (l

i

; r

i

), proeed to

TERMINATE. Otherwise, for all i suh that W (l

i

; r

i

) 2 W

=

apply the appliable

ase below, depending on the form of l

i

and r

i

.

(M4) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)), where g is di�erent from

h, then extend o by adding g o h and remove the tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i from R. Perform the onsisteny hek ono.

(M5) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then replae hl

i

; L

i

i >

hr

i

; R

i

i by hs

1

; : : : ; s

n

; L

i

i > ht

1

; : : : ; t

n

; R

i

i.

(M6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do the

following. (Note that at this point x; y 2 M .) If L

i

is empty, then terminate

with failure. Otherwise, set U to one and replae hl

i

; L

i

i > hr

i

; R

i

i by

hL

i

i > hR

i

i.

(M7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If

t is not a onstant, or L

i

is empty, then terminate with failure. So assume

that t is a onstant . If L = fdg for some d di�erent from , then terminate

with failure. Otherwise, set L to fg. Replae in L

i

and R

i

the variable x

by , obtaining L

0

i

and R

0

i

respetively, and then replae hl

i

; L

i

i > hr

i

; R

i

i

by hL

0

i

i > hR

0

i

i.

(M8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following.

If t ontains x, remove hl

i

; L

i

i > hr

i

; R

i

i from R. Otherwise, if t is a non-

onstant or L

i

is empty, terminate with failure. (Note that at this point

x 2 M and W (t; x) 2 W

=

.) Let now t be a onstant . If G = fdg for some

d di�erent from , then terminate with failure. Otherwise, set G to fg.

Replae in L

i

and R

i

the variable x by , obtaining L

0

i

and R

0

i

respetively,

and then replae hl

i

; L

i

i > hr

i

; R

i

i by hL

0

i

i > hR

0

i

i.

After this step repeat PREPROCESS.
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TERMINATE. Let (R; M ;W ;U; G ; L ;o) be the urrent state. Do the follow-

ing.

(T1) If d 2 G , then for all onstants  di�erent from d suh that w



� w

e

� 0

belongs to W

=

extend o by adding do . Likewise, if  2 L, then for

all onstants d di�erent from  suh that w

d

� w

e

� 0 2 W

=

extendo by

adding do . Perform the onsisteny hek ono.

(T2) For all f in � do the following. If f is a unary funtion symbol and w

f

� 0

belongs to W

=

, then extend o by adding f o h for all h 2 � � ffg.

Perform the onsisteny hek ono. If U = one or G 6= ;, then terminate

with failure.

(T3) If there exists no onstant  suh that w



� w

e

� 0 is in W

=

, then non-

deterministially hoose a onstant  2 �, add w

e

� w



� 0 to W , perform

the onsisteny hek on W and repeat PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one

onstant  suh that w



� w

e

� 0 belongs to W

=

.

(T5) Terminate with suess.

We will show how to build a solution at step (T5) below in Lemma 6.5.19.

6.5.2 Corretness

In this setion we prove orretness of the algorithm. In Setion 6.5.3 we show

how to �nd a solution when the algorithm terminates with suess. The orret-

ness will follow from a series of lemmas asserting that the transformation steps

performed by the algorithm preserve the set of solutions. We will use notation

and terminology of the algorithm. We say that a step of the algorithm is orret if

the set of solutions to the state before this step oinides with the set of solutions

after the step. When we prove orretness of a partiular step, we will always

denote by S = (R; M ;W ;U; G ; L ;o) the state before this step, and by S

0

the

state after this step. When we use substitutions in the proof, we always assume

that the substitutions are grounding for the relevant terms.

The following two lemmas an be proved by a straightforward appliation of

the de�nition of solution to a state.
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Lemma 6.5.1 (onsisteny hek) If onsisteny hek on W or on o termi-

nates with failure, then S has no solution. �

Lemma 6.5.2 Step PREPROCESS is orret. �

Let us now analyzeMAIN. For every weight funtion w and preedene relation

� ompatible with w we all a ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�)

any substitution � minimal for M suh that hr

i

�;R

i

�i � hl

i

�; L

i

�i for the order

� indued by (w;�).

Denote by S

�i

the state obtained from S by removal of the ith tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i from R. The following lemma follows immediately from the

de�nition of solution.

Lemma 6.5.3 (ounterexample) If for every solution (w;�) to S

�i

there exists

a ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�), then S has no solution. If for

every solution (w;�) to S

�i

there exists no ounterexample to the tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i, then removing this tuple inequality from R does not hange the

set of solutions to S. �

This lemma means that we an hange hl

i

; L

i

i > hr

i

; R

i

i into a di�erent tuple

inequality or hange M , if we an prove that this hange does not inuene the

existene of a ounterexample.

Let � be a substitution, x a variable and t a term. Denote by �

t

x

the substi-

tution de�ned by

�

t

x

(y) =

(

�(y); if y 6= x;

t; if y = x:

Lemma 6.5.4 Let w be a weight funtion on � and� a preedene relation on �

ompatible with w. Suppose also that for some x and i we have n(x; l

i

) > n(x; r

i

)

and there exists a ounterexample � to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�). Then

there exists a ounterexample �

0

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�) minimal for

fxg.

Proof. Suppose that � is not minimal for fxg. Denote by  a minimal onstant

w.r.t. w and by t the term x�. Sine � is not minimal for fxg, we have jtj > jj.

Consider the substitution �



x

. Sine � is a ounterexample, we have jr

i

�j � jl

i

�j.

We have
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jl

i

�



x

j = jl

i

�j � n(x; l

i

) � (jtj � jj);

jr

i

�



x

j = jr

i

�j � n(x; r

i

) � (jtj � jj):

Then

jr

i

�



x

j = jr

i

�j � n(x; r

i

) � (jtj � jj) � jl

i

�j � n(x; r

i

) � (jtj � jj)

> jl

i

�j � n(x; l

i

) � (jtj � jj) = jl

i

�



x

j:

Therefore, jr

i

�



x

j > jl

i

�



x

j, and so �



x

is a ounterexample too. �

One an immediately see that this lemma implies orretness of step (M1).

Lemma 6.5.5 Step (M1) is orret.

Proof. Evidently, every solution to S is also a solution to S

0

. But by Lemma 6.5.4,

every ounterexample to S an be turned into a ounterexample to S

0

, so every

solution to S

0

is also a solution to S. �

Let us now turn to step (M2).

Lemma 6.5.6 (M2) If for some i and x 62 M we have n(x; l

i

) < n(x; r

i

), then S

has no solution. Therefore, step (M2) is orret.

Proof. We show that for every (w;�) there exists a ounterexample to hl

i

; L

i

i >

hr

i

; R

i

i w.r.t. (w;�). Let � be any substitution grounding for this tuple inequal-

ity. Take any term t and onsider the substitution �

t

x

. We have

jr

i

�

t

x

j � jl

i

�

t

x

j = jr

i

�j � jl

i

�j+ (n(x; r

i

)� n(x; l

i

)) � (jtj � jx�j):

By Lemma 6.4.1 there exist terms of an arbitrarily large weight, so for a term t

of a large enough weight we have jr

i

�

t

x

j > jl

i

�

t

x

j, and so �

t

x

is a ounterexample

to hl

i

; L

i

i > hr

i

; R

i

i.

Corretness of (M2) is straightforward. �

Note that after step (M2) for all i and x 62 M we have n(x; l

i

) = n(x; r

i

).

Denote by �



the substitution suh that �



(x) =  for every variable x.

Lemma 6.5.7 (M3) Let for all i and x 62 M we have n(x; l

i

) = n(x; r

i

). Every

solution (w;�) to S is also a solution toW (l

i

; r

i

). Therefore, step (M3) is orret.
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Proof. Let  be a onstant of the minimal weight. Consider the substitution

�



. Note that this substitution is minimal for M . It follows from the de�nition

of W that (w;�) is a solution to W (l

i

; r

i

) if and only if jl

i

�



j � jr

i

�



j. But

jl

i

�



j � jr

i

�



j is a straightforward onsequene of the de�nition of solutions to

tuple inequalities.

Corretness of (M3) is straightforward. �

Lemma 6.5.8 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2

W

=

. Then for every solution to S

�i

and every substitution � minimal for M we

have jl

i

�j = jr

i

�j.

Proof. Using the fat that n(x; l

i

) = n(x; r

i

) for all x 62 M , it is not hard to

argue that jl

i

�j � jr

i

�j does not depend on �, whenever � is minimal for M .

Let  be a onstant of the minimal weight. It follows from the de�nition of

W that if W (l

i

; r

i

) 2 W

=

, then for every solution to W (and so for every solution

to S

�i

) we have jl

i

�



j = jr

i

�



j. Therefore, jl

i

�j = jr

i

�j for all substitutions �

minimal for M . �

The proof of orretness of steps (M4){(M8) will use this lemma in the fol-

lowing way. A pair (w;�) is a solution to S if and only if it is a solution to

S

�i

and a solution to hl

i

; L

i

i > hr

i

; R

i

i. Equivalently, (w;�) is a solution to S

if and only if it is a solution to S

�i

and for every substitution � minimal for M

we have hl

i

�; L

i

�i � hr

i

�;R

i

�i. But by Lemma 6.5.8 we have jl

i

�j = jr

i

�j, so

hl

i

�; L

i

�i � hr

i

�;R

i

�i must be satis�ed by either ondition 2 or ondition 3 of

the de�nition of Knuth-Bendix orders (De�nition 3.3.8).

This onsideration an be summarized as follows.

Lemma 6.5.9 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2

W

=

. Then a pair (w;�) is a solution to S if and only if it is a solution to S

�i

and

for every substitution � minimal for M the following holds. Let l

i

� = g(t

1

; : : : ; t

n

)

and r

i

� = h(s

1

; : : : ; s

p

). Then at least one of the following onditions holds

1. l

i

� = r

i

� and L

i

� � R

i

�; or

2. g � h; or

3. g = h and for some 1 � i � n we have t

1

� = s

1

�; : : : ; t

i�1

� = s

i�1

� and

t

i

� �

KBO

s

i

�.
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�

Lemma 6.5.10 Step (M4) is orret.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

) for g 6= h.

Take any substitution � minimal for M . Obviously, l

i

� = r

i

� is impossible, so

hl

i

; L

i

i� � hr

i

; R

i

i� if and only if l

i

� � r

i

�. By Lemma 6.5.9 this holds if and

only if g � h, so step (M4) is orret. �

Lemma 6.5.11 Step (M5) is orret.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

). Note that

due to PREPROCESS, l

i

6= r

i

, so n � 1. It follows from Lemma 6.5.9 that

hl

i

; L

i

i� � hr

i

; R

i

i� if and only if hs

1

; : : : ; s

n

; L

i

i� � ht

1

; : : : ; t

n

; R

i

i�, so step

(M5) is orret. �

Lemma 6.5.12 Step (M6) is orret.

Proof. We know that l

i

= x and r

i

= y, where x; y are di�erent variables. Note

that if L

i

is empty, then the substitution �



, where  is of the minimal weight,

is a ounterexample to hx; L

i

i > hy; R

i

i. So assume that L

i

is non-empty and

onsider two ases.

1. If there exist at least two terms s; t of the minimal weight, then there exists

a ounterexample to hx; L

i

i > hy; R

i

i. Indeed, if s � t, then y� � x� for

every � suh that �(x) = t and �(y) = s.

2. If there exists exatly one term t of the minimal weight, then x� = y�

for every � minimal for M . Therefore, hx; L

i

i > hy; R

i

i is equivalent to

hL

i

i > hR

i

i.

In either ase it is not hard to argue that step (M6) is orret. �

Lemma 6.5.13 Step (M7) is orret.

Proof. We know that l

i

= x and r

i

= t. Let  be the least onstant in the

signature. If t 6= , then �



is obviously a ounterexample to hx; L

i

i > ht; R

i

i.

Otherwise t = , then for every ounterexample � we have �(x) = . In either

ase it is not hard to argue that step (M7) is orret. �
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Lemma 6.5.14 Step (M8) is orret.

Proof. We know that l

i

= t and r

i

= x. Note that t 6= x due to the

PREPROCESS step, so if x ours in t we have t� � x� for all �. Assume

now that x does not our in t. Then x 2 M . Consider two ases.

1. t is a non-onstant. For every substitution � minimal for M we have jt�j =

jx�j, hene t� is a non-onstant term of the minimal weight. This implies

that the signature ontains a unary funtion symbol f of the weight 0. Take

any substitution �. It is not hard to argue that �

f(t)�

x

is a ounterexample

to ht; L

i

i > hx;R

i

i.

2. t is a onstant . Let d be the greatest onstant in the signature among the

onstants of the minimal weight. If d 6= , then �

d

is obviously a ounterex-

ample to h; L

i

i > hx;R

i

i. Otherwise d = , then for every ounterexample

� we have �(x) = .

In either ase it is not hard to argue that step (M8) is orret. �

Let us now analyze steps TERMINATE. Note that for every onstant  the

inequality w



�w

e

� 0 belongs to W and for every funtion symbol g the inequality

w

g

� 0 belongs to W too.

Lemma 6.5.15 Step (T1) is orret.

Proof. Suppose d 2 G ,  6= d, and w



� w

e

� 0 belongs to W

=

. Then for

every solution to S we have w() = w(e), and therefore  is a onstant of the

minimal weight. But sine for every solution d is the greatest onstant among

those having the minimal weight, we must have d� .

The ase  2 L is similar. �

Lemma 6.5.16 Step (T2) is orret.

Proof. If f is a unary funtion symbol and w

f

� 0 belongs to W

=

, then for

every solution w(f) = 0. By the de�nition of Knuth-Bendix orders we must have

f � g for all g 2 �� ffg. But then (i) there exists an in�nite number of terms

of the minimal weight and (ii) a onstant d 2 G annot be the greatest term of

the minimal weight (sine for example f(d) � d and jf(d)j = jdj). �
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Step (T3) makes a non-deterministi hoie, whih an result in several states

S

1

; : : : ;S

n

. We say that suh a step is orret if the set of solutions to S is the

union of the sets of solutions to S

1

; : : : ;S

n

.

Lemma 6.5.17 Step (T3) is orret.

Proof. Note that w is a solution to w

e

� w



� 0 if and only if w() is the

minimal weight, so addition of w

e

� w



� 0 to W amounts to stating that  has

the minimal weight. Evidently, for every solution, there must be a onstant  of

the minimal weight, so the step is orret. �

Lemma 6.5.18 Step (T4) is orret.

Proof. Suppose U = one, then for every solution there exists a unique term of

the minimal weight. If,  is a onstant suh that w



� w

e

� 0 belongs to W

=

,

then  must be a term of the minimal weight. Therefore, there annot be more

than one suh a onstant . �

6.5.3 Extrating a solution

In this setion we will show how to �nd a solution when the algorithm terminates

with suess.

Lemma 6.5.19 Step (T5) is orret.

Proof. To prove orretness of (T5) we have to show the existene of solution.

In fat, we will show how to build a partiular solution.

Note that when we terminate at step (T5), the system W is solvable, sine it

was solvable initially and we performed onsisteny heks on every hange of W .

By Lemma 6.2.5 there exists an integer solution w to W whih is also a solution

to the strit versions of every inequality in W �W

=

. Likewise, there exists a linear

order � extending o, sine we performed onsisteny heks on every hange

ofo. We laim that (w;�) is a solution to (R; M ;W ;U; G ; L ;o). To this end

we have to show that w is weight funtion,� is ompatible with w and all items

1{5 of the de�nition of solution are satis�ed.

Let us �rst show that w is a weight funtion. Note that W ontains all

inequalities w

g

� 0, where g 2 � is a non-onstant, the inequality w

e

> 0 and the
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inequalities w

d

�w

e

� 0 for every onstant d 2 �. So to show that w is a weight

funtion it remains to show that at most one unary funtion symbol f has weight

0. Indeed, if there were two suh funtion symbols f

1

and f

2

, then at step (T2)

we would add both f

1

o f

2

and f

2

o f

1

, but the following onsisteny hek

ono would fail.

The proof that � is ompatible with w is similar.

Denote by � the Knuth-Bendix order indued by (w;�).

1. For every tuple inequality hl

i

; L

i

i > hr

i

; R

i

i in R and every substitution �

minimal for M we have hl

i

�; L

i

�i � hr

i

�;R

i

�i. In the proof we will use the

fat that w(e) is the minimal weight.

By step (M3), the inequality W (l

i

; r

i

) does not belong to W

=

(otherwise

hl

i

; L

i

i > hr

i

; R

i

i would be removed at one of steps (M4){(M8)). It follows

from the de�nition of W and the onstrution of w that if W (l

i

; r

i

) 2

W � W

=

, then jl

i

�



j > jr

i

�



j, where  is any onstant of the minimal

weight. In Lemma 6.5.8 we proved that jl

i

�j � jr

i

�j does not depend on �,

whenever � is minimal for M . Therefore, jl

i

�j > jr

i

�j for all substitutions

� minimal for M .

2. The weight funtion w solves every inequality in W and w(e) oinides with

the minimal weight. This follows immediately from our onstrution, if we

show that w(e) is the minimal weight. Let us show that w

e

is the minimal

weight. Indeed, sine W initially ontains the inequalities w



�w

e

� 0 for all

onstants , we have that w(e) is less than or equal to the minimal weight.

By step (T3), there exists a onstant  suh that w



� w

e

� 0 is in W

=

,

hene w() = w(e), and so w(e) is greater than or equal to the minimal

weight.

3. If U = one, then there exists exatly one term of the minimal weight. As-

sume U = one. We have to show that (i) there exists no unary funtion

symbol f of weight 0 and (ii) there exists exatly one onstant of the mini-

mal weight. Let f be a unary funtion symbol. By our onstrution, w

f

� 0

belongs to W . By step (T2) w

f

� 0 does not belong to W

=

, so by the de�ni-

tion of w we have w(f) > 0. By our onstrution, w



�w

e

� 0 belongs to W

for every onstant . By step (T4), at most one of suh inequalities belongs

to W

=

. But if w



� w

e

� 0 does not belong to W

=

, then w()� w(e) > 0
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by the onstrution of w. Therefore, there exists at most one onstant of

the minimal weight.

4. If d 2 G (respetively d 2 L) for some onstant d, then d is the greatest

(respetively least) term among the terms of the minimal weight. We on-

sider the ase d 2 G , the ase d 2 L is similar. But by step (T2) there

is no unary funtion symbol f suh that w

f

� 0 belongs to W

=

, therefore

w(f) > 0 for all unary funtion symbols f . This implies that only onstants

may have the minimal weight. But by step (T1) and the de�nition of w,

for all onstants  of the minimal weight we have do , and hene also

d� .

5. � extendso. This follows immediately from our onstrution.

�

6.5.4 Time omplexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear

inequalities, and a polynomial-time algorithm for transitive losure, we an prove

the following lemma.

Lemma 6.5.20 The algorithm runs in time polynomial of the size of the system

of rewrite rules.

Proof. Note that the algorithm makes polynomial number of steps. Indeed,

initially the size of R is O(n logn) of the size of the system of rewrite rules (and

an even be made linear, if we avoid renaming variables). Eah of the steps (M4){

(M8) dereases the size of R. The algorithm an make a non-deterministi hoie,

but at most one, and the number of non-deterministi branhes is bounded by

the number of onstants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It

remains to prove that every step an be made in polynomial time of the size of a

state and that the size of every state is polynomial in the size of the input.

Solvability of W an be heked in polynomial time by Lemma 6.2.7. The

system W

=

an be built in polynomial time by the same lemma. The relation

o an be extended to an order if and only if the transitive losureo

0

ofo
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is irreexive, i.e., there is no g suh that go

0

g. The transitive losure an be

built in polynomial time. The hek for irreexivity an be obviously done in

polynomial time too. Therefore, every step an be performed in polynomial time

of the size of the state.

It remains to show that the size of S is bound by a polynomial. The only part

of S that is not immediately seen to be polynomial is W . However, it is not hard

to argue that the number of equations in S of the form W (l; r) is bound by the

size of the input, and every equation obviously has a polynomial size. It is also

easy to see that the size of the remaining equations is polynomial too. �

6.5.5 A simple example

Let us onsider how the algorithm works on the rewrite rule g(x; a; b)! g(b; b; a)

of Example 6.1.3. Initially, R onsists of one tuple inequality

hg(x; a; b)i > hg(b; b; a)i (6.5)

and W onsists of the following linear inequalities:

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0:

At step (M1) we note that n(x; g(x; a; b)) = 1 > 0 = n(x; g(b; b; a)). Therefore,

we add x to M .

At step (M3) we add the linear inequality w

e

� w

b

� 0 to W obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0:

Now we ompute W

=

. It onsists of two equations w

b

�w

e

� 0 and w

e

�w

b

� 0,

so we have to apply one of the steps (M4){(M8), in this ase the appliable step

is (M5). We replae (6.5) by

hx; a; bi > hb; b; ai: (6.6)

At the next iteration of step (M3) we should add to W the linear inequality

w

e

� w

b

� 0, but this linear inequality is already a member of W , and moreover

a member of W

=

. So we proeed to step (M7). At this step we set L = fbg and

replae (6.6) by
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ha; bi > hb; ai: (6.7)

Then at step (M2) we add w

a

� w

b

� 0 to W obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0; w

a

� w

b

� 0:

Now w

a

�w

b

� 0 does not belong to the degenerate subsystem of W , so we proeed

to TERMINATE. Steps (T1){(T4) hange neither W noro, so we terminate with

suess.

Solutions extrated aording to Lemma 6.5.19 will be any pairs (w;�) suh

that w(a) > w(b). Note that these are not all solutions. There are also solutions

suh that w(a) = w(b) and a� b. However, if we try to �nd a desription of all

solutions we annot any more guarantee that the algorithm runs in polynomial

time.

6.6 Orientability for trivial signatures

Consider a trivial signature whih onsists of a unary funtion symbol g and some

onstants. Let R be a system of rewrite rules in this signature. If some rule in

R has the form t ! g

n

(x) suh that x does not our in t, then the system is

evidently not orientable. If R ontains no suh rule, then R an be replaed by

an equally orientable ground system, as the following lemma shows.

Lemma 6.6.1 Let R be a system of rewrite rules in a trivial signature � suh

that no rule in R ontains a variable ourring in its right-hand side but not the

left-hand side. De�ne the ground system R

0

obtained from R by the following

transformations:

1. Replae every rule g

m

(x) ! g

n

(d) in R by all rules g

m

() ! g

n

(d) suh

that  is a onstant in �.

2. For every rule g

m

(x)! g

n

(x) in R, if m > n then remove this rule, other-

wise terminate with failure.

Then a Knuth-Bendix order � orients R if and only if it orients R

0

.

�
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We leave the proof of this lemma to the reader. Note that the size of R

0

in the

lemma is polynomial in the sum of the sizes of R and �. Therefore, we an

restrit ourselves to ground systems.

Moreover, we an assume that for every rule in R

0

the funtion symbol g

never ours in both left-hand side and right-hand side of R. Indeed, this an

be ahieved by replaing every rewrite rule g(s) ! g(t) in R

0

by s ! t until g

ours in at most one side of the rule. Evidently, we an assume that R

0

ontains

no trivial rules  ! . So we obtain a system onsisting of rules g

n

() ! d,

! g

n

(d), where n > 0, or ! d suh that ; d are di�erent onstants. In other

words, for every rule l ! r in R

0

the outermost symbol of l is di�erent from the

outermost symbol of r.

In order to hek orientability of R

0

, onsider the system of homogeneous

linear inequalities W whih onsists of

1. the inequalities w



> 0 for all onstants  2 � and the inequality w

g

� 0;

2. for every rule l ! r in R

0

the inequalities W (l; r) =

P

h2�

(n(h; l) �

n(h; r))w

h

� 0.

Evidently, W an be built in time polynomial in the size of R

0

. Evidently, if

W is unsatis�able, then R

0

is not orientable. If W is satis�able, let W

=

be the

degenerate subsystem of W . Let us build a binary relationo on � as follows:

1. for every rule l ! r in R

0

, if W (l; r) 2 W

=

, then we take the outermost

symbols h

1

and h

2

of l and r respetively and add h

1

o h

2

too;

2. if w

g

� 0 belongs to W

=

, then add go  too for all onstants  2 �.

We leave it to the reader to hek that R

0

is orientable if and only ifo an be

extended to a linear order. We an prove in the same way as before, that the

hek for orientability of R

0

an be done in polynomial time.

6.7 The problem of orientability by Knuth-Bendix

orders is P-omplete

In Setion 6.5.4 we have shown that the orientability problem an be solved

in polynomial time. In this setion we show that this problem is P-omplete,
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and moreover it is P-hard even for ground rewrite systems. To this end, we

redue the iruit value problem whih is known to be P-omplete (see, e.g.,

[Papadimitriou 1994℄), to the orientability problem. Our redution onsists of

two steps:

1. we redue the problem of solving systems of linear inequalities AX � 0,

X > 0, where A is an integer matrix, to the orientability problem;

2. we redue the iruit value problem to solvability of suh systems.

In the systems of linear inequalities, we assume all oeÆients to be written in

the unary notation. Both redutions will be LOGSPACE.

Let AX � 0 be a system of linear inequalities and we are looking for stritly

positive solutions to it. For every variable x

i

in the system we introdue a unary

funtion symbol f

i

. We onsider the signature � onsisting of all suh symbols

f

i

, two unary symbols g; h, and a onstant . We will onstrut a ground rewrite

rule system R whose orientability will be equivalent to the existene of a solution

to AX � 0; X > 0 as follows. First of all, R ontains the rewrite rule

gh! hgg:

A Knuth-Bendix order with parameters (w;�) orients this rule if and only if

w(g) = 0 (and hene also g � h). For eah linear inequality I in the system,

we add to R a rewrite rule r(I), whih will be demonstrated by an example (in

order to avoid double indies). Suppose, for example, that the inequality an be

rewritten in the form

a

1

x

1

+ : : :+ a

k

x

k

� a

k+1

x

k+1

+ : : :+ a

n

x

n

: (6.8)

where x

1

; : : : ; x

n

are di�erent variables and a

1

; : : : ; a

n

are non-negative oeÆ-

ients. Then r(I) has the form

ghf

a

1

1

� � � f

a

k

k

! hgf

a

k+1

k+1

� � � f

a

n

n

 (6.9)

Note that for every solution we must have w(f

i

) > 0 sine there may be at most

one funtion symbol of the weight 0. For every weight funtion w onsider the

substitution s of integers to variables suh that w(f

i

) = s(x

i

) and let � be an

arbitrary preedene relation suh that g is maximal w.r.t.�. We leave it to the



6.8 Solving onstraints onsisting of a single inequality 106

reader to hek that (w;�) is a solution to R if and only if s is a solution to

AX � 0; X > 0.

It is not hard to argue that the redution of A to R is LOGSPACE, provided

that the oeÆients of the linear inequalities are written in the unary notation.

Let us now desribe a redution of the iruit value problem to the problem

of whether a given system of linear integer inequalities has a positive solution.

Consider a iruit with gates g

1

; : : : ; g

n

. For eah gate g

i

we introdue a new

numerial variable x

i

. We will also use an auxiliary numerial variable y. We

onstrut a system of linear integer inequalities W in suh a way that the iruit

has the value TRUE if and only if W has a positive solution. For eah gate g

i

we introdue a system of numerial onstraints W

i

in the following way. If g

i

is

a FALSE gate then W

i

is fx

i

= yg, likewise if g

i

is a TRUE gate then W

i

is

fx

i

= 2yg. If g

i

is a NOT gate with an input g

j

then W

i

is fx

i

= 3y � x

j

g.

If g

i

is an AND gate with inputs g

j

and g

k

then W

i

is fy � x

i

� 2y, x

i

� x

j

,

x

i

� x

k

, x

j

+ x

k

� 2y � x

i

g. Let W

0

be the union of all W

i

for 1 � i � n. It is

straightforward to hek that for every positive solution to the system W

0

eah

variable x

i

has the value of the variable y or twie that value, moreover it has

the value of y if and only if the gate g

i

has the value FALSE . To omplete the

onstrution we obtain W by adding to W

0

an equation x

n

= 2y. Note that the

oeÆients of W are small, so they an be onsidered as written in the unary

notation.

We have shown how to redue the iruit value problem to the orientabil-

ity problem. It is lear that all redutions an be done by a logarithmi-spae

algorithm.

6.8 Solving onstraints onsisting of a single in-

equality

In Chapter 4 we show that the problem of solving Knuth-Bendix ordering on-

straints is NP-omplete. Let us show that the problem of solving Knuth-Bendix

ordering onstraints onsisting of a single inequality an be solved in polynomial

time. Let us �x a Knuth-Bendix order on ground terms, i.e., a preedene rela-

tion on the signature � and a weight funtion w. Our problem is to deide for

a given pair of terms s and t whether there exists a grounding substitution �

suh that s� �

KBO

t�. Sine every Knuth-Bendix order is total on ground terms
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our problem is equivalent to the following problem: for a given pair of terms t

and s deide whether for every grounding substitutions �, t� � s� holds. The

algorithm we present is similar to the algorithm for the orientability. The main

di�erene is that there is no need to solve systems of linear inequalities for this

problem. Sine the order is given, we an use a simpler version of the notion of

state S = (R; M ), where R is a single tuple inequality and M is a set of vari-

ables. Instead of tuple inequalities hLi > hRi we will onsider a new kind of

tuple inequalities hLi � hRi with a natural interpretation. Initially R onsists of

the tuple inequality hti � hsi and M = ;. Let e denote the onstant that is the

minimal term w.r.t. �. Instead of using the inequality W (l; r), we will use the

inequality W

0

(l; r) =

P

g2�

(n(g; l) � n(g; r))w(g) + (v

l

� v

r

)w(e) � 0, where v

l

and v

r

are the numbers of ourrenes of variables in l and r respetively. Let us

present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the

form hi � hi, then terminate with suess. If R onsists of a tuple inequality

hl; l

1

; : : : ; l

n

i � hl; r

1

; : : : ; r

n

i, replae it by hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i.

MAIN. Now we an assume that R onsists of a tuple hl; Li � hr; Ri and the

term l is di�erent from the term r.

(M1) For all x suh that n(x; l) > n(x; r), add x to M .

(M2) If there exists a variable x 62 M suh that n(x; l) < n(x; r), then terminate

with failure.

(M3) If W

0

(l; r) > 0 then terminate with suess. IfW

0

(l; r) < 0 then terminate

with failure.

Note that at this point we have W

0

(l; r) = 0.

(M4) If (l; r) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)) where g and h are distint,

then do the following. If g � h terminate with suess, otherwise terminate

with failure.

(M5) If (l; r) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then replae hl; Li �

hr; Ri by hs

1

; : : : ; s

n

; Li � ht

1

; : : : ; t

n

; Ri.
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(M6) If (l; r) has the form (x; y), where x and y are di�erent variables, do the

following. (Note that at this point x; y 2 M .) If there exists only one term

of the minimal weight, then replae hl; Li � hr; Ri by hLi � hRi. Otherwise

terminate with failure.

(M7) If (l; r) has the form (x; t), where t is not a variable, do the following.

If t is di�erent from e, then terminate with failure. Otherwise, replae all

ourrenes of x in L and R by e obtaining L

0

and R

0

. Replae hl; Li � hr; Ri

by hL

0

i � hR

0

i.

(M8) If (l; r) has the form (t; x), where t is not a variable, do the following. If t

ontains x then terminate with suess. Otherwise, if t is not the greatest

term among the terms of the minimal weight, then terminate with failure.

Otherwise, replae all ourrenes of x in L and R by t obtaining L

0

and

R

0

, and replae hl; Li � hr; Ri by hL

0

i � hR

0

i. Note that this step does not

inrease the size of the tuple inequality sine t must be a onstant, when

we substitute it for x.

After this step repeat PREPROCESS.

The proof of orretness of eah step is almost the same as the proof of or-

retness for the orresponding steps in the orientability algorithm, so we leave it

to the reader. Let us estimate the omplexity of this algorithm assuming a stan-

dard RAM model and onsidering integer addition and omparison as onstant

time operations. Sine every iteration of the algorithm dereases the size of R

(measured as the number of symbols), the number of iterations is at most linear

in the size of the input. By the routine inspetion of the steps (M1){(M8) it is

not hard to argue that every step also requires at most a linear number of elemen-

tary operations. For example, omputing n(x; l) and n(x; r) simultaneously for

all variables x at the step (M1) an be done in linear time, as well as omputing

W (l

0

; r

0

) at the step (M3). Therefore, our algorithm deides ordering onstraints

onsisting of a single inequality in the time O(n

2

).

6.9 Main results

Lemmas 6.5.1{6.5.19 guarantee that the orientability algorithm is orret and

Lemma 6.5.20 implies that it runs in polynomial time. Hene we obtain the

following theorem.
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Theorem 6.9.1 The problem of the existene of a Knuth-Bendix order whih

orients a given term rewriting system an be solved in the time polynomial in the

size of the system. �

From the redutions of Setion 6.7 we also obtain the following.

Theorem 6.9.2 The problem of orientability of term rewriting systems by Knuth-

Bendix orders is P-omplete. Moreover, it is P-hard even for ground rewriting

systems. �

In Setion 6.8 we proved the following theorem.

Theorem 6.9.3 The problem of solving a given Knuth-Bendix ordering on-

straint onsisting of a single inequality an be solved in the time O(n

2

). �

The real-valued Knuth-Bendix order is de�ned in the same way as above, ex-

ept that the range of the weight funtion is the set of non-negative real numbers.

Real-valued Knuth-Bendix orders was introdued by Martin [1987℄. Note that in

view of the results of Setion 6.2 on systems of homogeneous linear inequali-

ties (Lemmas 6.2.4 and 6.2.5) the algorithm is also sound and omplete for the

real-valued orders. Therefore, we have

Theorem 6.9.4 If a rewrite rule system is orientable by a real-valued Knuth-

Bendix order, then it is also orientable by an integer-valued Knuth-Bendix order.

�

It follows from this theorem that all our results formulated for integer-valued

Knuth-Bendix orders also hold for real-valued Knuth-Bendix orders.

It is worth noting that unlike integer-valued Knuth-Bendix orders, real-valued

Knuth-Bendix orders allow one to lassify and topologise the spae of all simpli-

�ation orders, for details see [Martin and Shand 2000℄.



Chapter 7

Orientability of equalities by

Knuth-Bendix Orders

This hapter is based on the paper [Korovin and Voronkov 2003℄.

In this hapter we extend orientability results for term rewriting systems,

studied in the previous hapter, to orientability of systems onsisting of equalities

and term rewrite rules.

Let � be any order on ground terms and s ' t be an equality. We say

that � orients an equality s ' t, if it orients either the rewrite rule s! t or the

rewrite rule t! s. The orientability problem is a problem of determining whether

there exists a simpli�ation order whih orders a given system of equalities and

rewrite rules. A straightforward algorithm for heking orientability of systems

of equalities would be to try all possible orientations of equalities and apply an

orientability algorithm for term rewriting systems. Suh an algorithm would

require to test an exponential number of possible orientations of equalities. We

show how to avoid this problem for Knuth-Bendix orders.

Theorem 7.7.1 The problem of the existene of a

Knuth-Bendix order whih orients a given system of

equalities and rewrite rules an be solved in the time poly-

nomial in the size of the system. Moreover, if the system

of equalities and rewrite rules is orientable by a Knuth-

Bendix order we an �nd suh an order in polynomial

time.

As a basis for our orientability algorithm for systems onsisting of equalities
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and rewrite rules we will take the orientability algorithm for systems of rewrite

rules studied in Chapter 6.

We also show that orientability of systems of equalities is at least as hard as

orientability of term rewriting systems.

Theorem 7.7.2 The problem of orientability of systems

of equalities and rewrite rules by Knuth-Bendix orders

is P-omplete. Moreover, it is P-hard even for systems

onsisting only of equalities or only of rewrite rules.

7.1 Preliminaries

An equality is a multiset of two terms s; t, usually denoted by s ' t. Note that

s ' t and t ' s are regarded as the same equality. A system of equalities and

rewrite rules is a �nite set of equalities and rewrite rules. An expression E (e.g.

a term, equality, or a rewrite rule) is alled ground if no variable ours in E.

The following de�nition is entral to this hapter.

Definition 7.1.1 (orientability) A Knuth-Bendix order orients an equality s '

t if it orients either the rewrite rule s ! t or the rewrite rule t ! s. A Knuth-

Bendix order orients a system R of equalities and rewrite rules if it orients every

equality and rewrite rule in R. �

In Chapter 6 we have proved that orientability an be solved in polynomial time

for systems onsisting of rewrite rules only.

Let us show that the problem of orientability of systems of equalities is at

least as hard as the problem of orientability of systems of rewrite rules.

Proposition 7.1.2 There exists a logarithmi-spae algorithm whih for a given

system of rewrite rules R produes a system of equalities E suh that R is ori-

entable by Knuth-Bendix orders if and only if so is E.

Proof. Consider a rewrite system R. Let g be a new binary symbol and  be

a new onstant whih do not our in R. Consider a rewrite system R

0

whih

is obtained from R by replaing eah rewrite rule l ! r with a rewrite rule

g(l; x)! g(r; ) where x is a variable whih does not our in l ! r. Let us hek

that R is orientable by Knuth{Bendix orders if and only if R

0

is. Indeed, let � be

a Knuth{Bendix order whih orients R then we extend parameters of this order



7.2 Systems of homogeneous linear inequalities 112

to the new symbols in suh a way that  beomes a minimal term in this order.

Now it is straightforward to hek that the obtained order �

0

orients R

0

. For the

onverse diretion let us note that if a Knuth{Bendix order orients R

0

then the

same order also orients R.

To onlude the proof we onsider the system of equalities E indued by R

0

.

Sine in eah rewrite rule from R

0

there exists a variable ourring in the left

hand-side and not ourring in the right hand-side it is easy to see that E is

orientable if and only if R

0

is orientable. �

Note that this redution also works for the lexiographi path orders.

7.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous

linear inequalities. In the previous hapter, Setion 6.2 we have studied properties

of homogeneous linear inequalities that we will use here as well.

Lemma 7.2.1 Consider a system of homogeneous linear inequalities W and an

integer homogeneous linear inequality UX > 0. If there exists a solution S to the

system W [ fUX > 0g then the degenerate subsystem of W oinides with the

degenerate subsystem of W [ fUX > 0g.

Proof. We an assume that W is of the form AX � 0. By Lemma 6.2.2 we an

�nd integer vetors V

1

; : : : ; V

n

suh that the set of solutions to AX � 0 is (6.2).

Sine we have that US > 0 for a solution to AX � 0 then for some 1 � i � n

we have UV

i

> 0. Also from Lemma 6.2.3 we have that there exists a solution

S to AX � 0 suh that for eah inequality WX � 0 from the nondegenerate

subsystem of AX � 0 we have WS > 0. Now we onsider a positive number r

suh that rUV

i

+ US > 0, suh a number always exists sine we have UV

i

> 0.

It is straightforward to hek that rV

i

+ S satis�es the required properties. �

Corollary 7.2.2 Consider a system of homogeneous linear inequalities W , then

W

=

oinides with (W

=

)

=

.

Proof. From the previous lemma it follows that if we add to the system W

=

an

inequality from the non-degenerate subsystem of W then we obtain a new system

with the degenerate part equal to (W

=

)

=

. If we ontinue this proess until we
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have added all inequalities from the non-degenerate subsystem of W we obtain

that W

=

oinides with (W

=

)

=

. �

Let us onsider a system of homogeneous linear inequalities W . We say that an

equality V X = 0 follows from W if for every solution S to W we have V S = 0.

Now our goal is to show that for every equality V X = 0 if it follows from W

then it already follows from the degenerate subsystem of W . For this we use the

following theorem.

Theorem 7.2.3 (Fundamental theorem of linear inequalities.) Let A

1

; : : : ; A

m

; U

be vetors in n{dimensional spae. Then, either

1. U is a non-negative linear ombination of linearly independent vetors from

A

1

; : : : ; A

m

, or

2. there exists a vetor W suh that UW < 0 and A

i

W � 0 for 1 � i � m.

Proof. The proof an be found in, e.g. [Shrijver 1998℄. �

Lemma 7.2.4 Consider a system of homogeneous linear inequalities W with an

integer matrix and an integer homogeneous linear equality UX = 0. If UX = 0

follows from W then it follows from the degenerate subsystem of W .

Proof. We an assume that W is of the form AX � 0. First we prove that

if UX = 0 follows from AX � 0 then the vetor U is a non-negative linear

ombination of the row vetors of the degenerate subsystem of AX � 0. For this

we apply Theorem 7.2.3 to the row vetors of the matrix A and the vetor U .

There are two possible ases.

� U is a non-negative linear ombination of the row vetors from the matrix

A. 1 � i � k Let us show that in this ombination all oeÆients of the

vetors from the non-degenerate subsystem of AX � 0 are equal to zero.

Otherwise, we onsider suh a vetor C. Sine C is a row vetor from the

non-degenerate subsystem, there exists a solution S to AX � 0 suh that

CS > 0 and therefore US > 0, whih ontradits to the assumption that

UX = 0 follows from AX � 0.

� there exists a vetor W suh that for eah row vetor Q of A we have

QW � 0 and also UW < 0. But this ontradits to the assumption that

UX = 0 follows from AX � 0.
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We have shown that U is a non-negative linear ombination of the row vetors

from the degenerate subsystem of AX � 0.

Now using Corollary 7.2.2 it is easy to see that UX = 0 follows from the

degenerate subsystem of AX � 0. �

7.3 Constraints

In Setion 7.5 we will present an algorithm for orientability by Knuth-Bendix

orders. The algorithm works not only with equalities and rewrite rules. It also

uses linear inequalities on the weights of the signature symbols, onstraints on

the preedene relation, and some additional information. All this information

will be formalized using the notion of onstraint.

Let > be any binary relation on ground terms. We extend it lexiographi-

ally to a relation on tuples of ground terms as follows: we have hl

1

; : : : ; l

n

i >

hr

1

; : : : ; r

n

i if for some i 2 f1; : : : ; ng we have l

1

= r

1

; : : : ; l

i�1

= r

i�1

and l

i

> r

i

.

In the sequel we assume that � is a �xed signature. We also assume that

di�erent equalities and rewrite rules have disjoint sets of variables. This an be

ahieved by renaming variables.

Our algorithm will work on onstraints. Orientability of a rewrite rule or an

equality are speial kinds of onstraints. In addition, there are onstraints on

the preedene relation and on the weights of the symbols in �. The algorithm

will transform onstraints step by step. We will show that every step preserves

satis�ability of onstraints. Before de�ning onstraints, we introdue speial kind

of variables, alledmarked variables. Intuitively, marked variables range only over

terms of the minimal weight.

Definition 7.3.1 (Constraint) An atomi onstraint is an expression having

one of the following forms:

1. hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i, where l

1

; : : : ; l

n

; r

1

; : : : ; r

n

are terms. Suh on-

straints are alled rewriting onstraints.

2. hl

1

; : : : ; l

n

i �?� hr

1

; : : : ; r

n

i, where l

1

; : : : ; l

n

; r

1

; : : : ; r

n

are terms. Suh on-

straints are alled orientability onstraints.

3. A (strit or non-strit) homogeneous linear inequality over the variables

fw

g

j g 2 �g. Suh onstraints are alled weight onstraints.
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4. g ?� h, where g; h 2 �. Suh onstraints are alled preedene onstraints.

5. gtmw(), where  is a onstant.

A onstraint C is a onjuntion C

1

^ : : :^C

n

of (zero or more) atomi onstraints.

Alternatively, we will sometimes regard a onstraint as the set fC

1

; : : : ; C

n

g of

all atomi onstraints in it. In this ase we say that C ontains the atomi

onstraints C

1

; : : : ; C

n

. Conjuntions (or sets) of atomi rewriting onstraints

are alled rewriting onstraints, and similar for the orientability, weight, and

preedene onstraints. �

We onsider onstraints as onditions on the Knuth-Bendix order. Every Knuth-

Bendix order whih satis�es all atomi onstraints in C is alled a solution to

this onstraint. In order to de�ne solutions, let us give a tehnial de�nition. A

substitution � is alled an admissible substitution for a weight funtion w if for

every marked variable x the term �(x) is a ground term of the minimal weight,

that is w(�(x)) is equal to the smallest weight of a onstant in �.

Definition 7.3.2 (Solution) Let� be the Knuth-Bendix order indued by (w;�).

This order is alled a solution to an atomi onstraint C if one of the following

onditions holds.

1. C is a rewriting onstraint hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i, and for every admis-

sible substitution � we have hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. C is an orientability onstraint hl

1

; : : : ; l

n

i �?� hr

1

; : : : ; r

n

i and � is a so-

lution to either hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i or hr

1

; : : : ; r

n

i ?� hl

1

; : : : ; l

n

i.

3. C is a weight onstraint and w solves C in the following sense: replaement

of eah w

g

by w(g) gives a tautology.

4. C is a preedene onstraint g ?� h, and g � h.

5. C is a onstraint gtmw(), and  is the greatest term of the minimal weight.

A solution to an arbitrary onstraint C is a solution to every atomi onstraint

in C. A onstraint C is satis�able if it has a solution. A onstraint C

1

implies a

onstraint C

2

, denoted by C

1

� C

2

, if every solution to C

1

is also a solution to

C

2

. Two onstraints are equivalent if they have the same solutions. �



7.4 Rih onstraints and trivial signatures 116

We will often write atomi onstraints in W in an equivalent form, for example

write w



> w

e

instead of w



� w

e

> 0.

We will now show how to redue the orientability problem for the systems of

equalities and rewrite rules to the satis�ability problem for onstraints.

Let R be a system of equalities and rewrite rules suh that every two di�erent

rules in R have disjoint variables. Denote by C

R

the onjuntion of the following

onstraints:

1. rewriting onstraints hli ?� hri suh that l ! r belongs to R.

2. orientability onstraints hli �?� hri suh that l ' r belongs to R.

The following lemma is straightforward.

Lemma 7.3.3 A Knuth-Bendix order � orients R if and only if � is a solution

to C

R

.

�

7.4 Rih onstraints and trivial signatures

For tehnial reasons, it will be onvenient for us to work with onstraints whih

ontain enough information to deide some properties of its solutions, for example,

whih of the onstants of � is the smallest. Suh onstraints are introdued here

and alled rih onstraints.

Definition 7.4.1 (Rih Constraint) A onstraint C is alled rih if

1. C ontains all the onstraints w



> 0, where  2 � is a onstant, and all

the onstraints w

g

� 0, where g 2 � is a non-onstant funtion symbol.

2. There is a onstant e 2 � suh that for all onstants  2 � distint from e,

C ontains the atomi onstraint  ?� e.

3. Exatly one of the following onditions holds. (i) There is a unary funtion

symbol f 2 � suh that C ontains the atomi onstraint w

f

� 0, all of the

atomi onstraints f ?� g for g 2 � distint from f , and all of the atomi

onstraints w

g

> 0 for unary funtion symbols g distint from f . (ii) For

some onstant d 2 �, C ontains the onstraint gtmw(d). For every unary

funtion symbol g 2 �, C ontains the atomi onstraint w

g

> 0.
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�

Lemma 7.4.2 Let C be a rih onstraint and the Knuth-Bendix order � indued

by (w;�) satis�es C.

1. e is the least term with respet to �.

2. There exists a unary funtion symbol f 2 � suh that w(f) = 0 if and

only if (i) holds. In addition, if suh a funtion f does not exist, then

the onstraint ontains gtmw(d), and hene d is the greatest term of the

minimal weight.

3. There exists more than one term of the minimal weight if and only if either

there exists a unary funtion symbol f 2 � suh that w(f) = 0 or there

exists a onstant d 2 � distint from e suh that C ontains the atomi

onstraint gtmw(d).

�

Lemma 7.4.3 The orientability problem an be solved in polynomial time if the

orientability problem for rih onstraints an be solved in polynomial time. �

The idea of the proof of the lemma is as follows: one an \guess" the following

properties of solutions: (a) whih of the onstants is smallest one, (b) does there

exist a unary funtion symbol of the weight 0, () if suh a funtion does not

exist, then whih of the onstants is the greatest term of the minimal weight.

Note that we make only a onstant number of guesses.

For tehnial reasons, we will distinguish two kinds of signatures. Essentially,

our algorithm depends on whether the weights of terms are restrited or not. For

the non-trivial signatures, the weights are not restrited. Note that a signature

is non-trivial if and only if it ontains either a funtion symbol of arity � 2 or at

least two funtion symbols of arity 1. When we present the orientability algorithm

for the non-trivial signatures, we will use the fat that terms of suÆiently large

weights always exist (see Lemma 6.4.1). A (straightforward) algorithm for trivial

signatures is presented in Setion 7.6.
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7.5 The orientability algorithm

In this setion we only onsider non-trivial signatures. Our algorithm works as

follows.

Given a system R of equalities or rewrite rules, we build the initial onstraint

C = C

R

. Using Lemma 7.4.3 we an assume that C is rih. We will always denote

by e the onstant suh that C ontains all atomi onstraints  ?� e, where  is

a onstant distint from e (suh a onstant e exists, sine C is rih). Then

we repeatedly transform C as desribed below. We all the essential size of a

onstraint the total number of ourrenes of funtion symbols and variables in its

rewriting and orientability part. Every transformation step will either terminate

with suess or failure, or replae an equality by a rewrite rule, or derease the

essential size of C.

At eah step the onstraint C an be represented as a onjuntion R ^ W ^

O ^ P ^ G , where R is a rewrite onstraint, W a weight onstraint, O an ori-

entability onstraints, P a preedene onstraint, and G either empty or has the

form gtmw().

For every variable x and term t, denote by n(x; t) the number of ourrenes of

x in t. For example, n(x; g(x; h(y; x))) = 2. Likewise, for every funtion symbol

g 2 � and term t, denote by n(g; t) the number of ourrenes of g in t. For

example, n(h; g(x; h(y; x))) = 1.

For every term t, denote by W (t) the linear expression obtained as follows.

Let v be the number of ourrenes of variables in t. Then

W (t) =

X

g2�

n(g; t)w

g

+ vw

e

: (7.1)

For example, if t = h(x; x; ; e; f(y)), then

W (l) = w

h

+ w



+ w

f

+ 4w

e

:

7.5.1 The algorithm

The algorithm works as follows. Every step onsists of a number of state transfor-

mations, beginning with REWRITE RULE de�ned below. During the algorithm,

we will perform two kinds of satis�ability heks:

� The satis�ability hek on W is the hek whether W has a solution. If it

does not, we terminate with failure.
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� The satis�ability hek on P is the hek whether P is satis�able, that is the

transitive losure of the set f(g; h) j g ?� h is an atomi onstraint in Pg

is irreexive. i.e., ontains no pair (g; g). If P is inonsistent, then we

terminate with failure.

It is not hard to argue that both kinds of satis�ability heks an be performed

in polynomial time. The satis�ability hek on W is polynomial by Lemma 6.2.7.

The satis�ability hek on P is polynomial sine the transitive losure of a binary

relation an be omputed in polynomial time, see, e.g. [Cormen et al. 1991℄.

When any of the sets W or P hanges, we assume that we perform the orre-

sponding satis�ability hek and terminate with failure if it fails.

We will label parts of the algorithm, these labels will be used in the proof of

its soundness.

REWRITE RULE.

(R0) Do the following transformations while possible. If R ontains a tuple

inequality hl

1

; : : : ; l

n

i ?� hl

1

; : : : ; l

n

i, terminate with failure. Otherwise, if

R ontains a tuple inequality hl; l

1

; : : : ; l

n

i ?� hl; r

1

; : : : ; r

n

i, replae it by

hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i.

Now R has the form

hl

1

; L

1

i ?� hr

1

; R

1

i;

� � �

hl

k

; L

k

i ?� hr

k

; R

k

i;

(7.2)

suh that eah l

i

is a term di�erent from the orresponding term r

i

.

(R1) For all x and i suh that n(x; l

i

) > n(x; r

i

), mark the variable x.

(R2) If for some i there exists an unmarked variable x suh that n(x; l

i

) <

n(x; r

i

), then terminate with failure.

(R3) Add to W all the linear inequalities W (l

i

) � W (r

i

) for all i and perform

the satis�ability hek on W .

Now ompute W

=

. If W

=

ontains none of the inequalitiesW (l

i

) � W (r

i

) proeed

to EQUALITY. Otherwise, for all i suh that (W (l

i

) � W (r

i

)) 2 W

=

apply the

appliable ase below, depending on the form of l

i

and r

i

.



7.5 The orientability algorithm 120

(R4) If l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

), where g is di�erent from h, then

replae the onstraint hl

i

; L

i

i ?� hr

i

; R

i

i by g ?� h. Perform the satis�abil-

ity hek on P.

(R5) If l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

), then replae hl

i

; L

i

i ?� hr

i

; R

i

i

by hs

1

; : : : ; s

n

; L

i

i ?� ht

1

; : : : ; t

n

; R

i

i.

(R6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do

the following. (Note that at this point both x and y are marked.) If L

i

is empty, then terminate with failure. If the onstraint guarantees the

existene of more than one term of the minimal weight (see Lemma 7.4.2),

then also terminate with failure. Otherwise, replae hl

i

; L

i

i ?� hr

i

; R

i

i by

hL

i

i ?� hR

i

i.

(R7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If

t is di�erent from e, or L

i

is empty, then terminate with failure. Otherwise

replae in L

i

and R

i

the variable x by e, obtaining L

0

i

and R

0

i

respetively,

and then replae hl

i

; L

i

i ?� hr

i

; R

i

i by hL

0

i

i ?� hR

0

i

i.

(R8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following.

If t ontains x, remove hl

i

; L

i

i ?� hr

i

; R

i

i from C. Otherwise, if t is a non-

onstant or L

i

is empty, terminate with failure. (Note that at this point

x is marked and (W (t) � W (x)) 2 W

=

.) Let now t be a onstant . If

C does not ontain the atomi onstraint gtmw(), then terminate with

failure. Otherwise replae in L

i

and R

i

the variable x by , obtaining L

0

i

and R

0

i

respetively, and then replae hl

i

; L

i

i ?� hr

i

; R

i

i by hL

0

i

i ?� hR

0

i

i.

After this step repeat REWRITE RULE.

EQUALITY.

(E0) Do the following transformations while possible. If O ontains an atomi

onstraint hs

1

; : : : ; s

n

i �?� hs

1

; : : : ; s

n

i, terminate with failure. Otherwise,

if O ontains an atomi onstraint hs; s

1

; : : : ; s

n

i �?� hs; t

1

; : : : ; t

n

i, replae

it by hs

1

; : : : ; s

n

i �?� ht

1

; : : : ; t

n

i.

If O is empty, proeed to TERMINATE. Otherwise, O now has the form

hs

1

; S

1

i �?� ht

1

; T

1

i;

� � �

hs

k

; S

k

i �?� ht

k

; T

k

i;

(7.3)
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suh that eah s

i

is a term di�erent from the orresponding term t

i

.

(E1) If, for some i and variable x we have n(x; s

i

) > n(x; t

i

), then replae

hs

i

; S

i

i �?� ht

i

; T

i

i by hs

i

; S

i

i ?� ht

i

; T

i

i and proeed to REWRITE RULE.

Likewise, if for some i and variable x we have n(x; t

i

) > n(x; s

i

), replae

hs

i

; S

i

i �?� ht

i

; T

i

i by ht

i

; T

i

i ?� hs

i

; S

i

i and proeed to REWRITE RULE.

Note that after this step for every i and variable x, the number of ourrenes of

x in s

i

oinides with its number of ourrenes in t

i

.

Now for eah hs

i

; S

i

i �?� ht

i

; T

i

i in O suh that W � W (s

i

) = W (t

i

) apply

(E2) below, if there is no suh tuples in O then proeed to TERMINATE.

(E2) If the top symbols of s

i

and t

i

oinide, i.e., we have s

i

= g(u

1

; : : : ; u

m

)

and t

i

= g(v

1

; : : : ; v

m

), then we replae the onstraint hs

i

; S

i

i �?� ht

i

; T

i

i

by hu

1

; : : : ; u

m

; S

i

i �?� hv

1

; : : : ; v

m

; T

i

i and proeed to REWRITE RULE.

Otherwise, remove hs

i

; S

i

i �?� ht

i

; T

i

i from the onstraint, and proeed to

EQUALITY.

TERMINATE. If the onstraint ontains gtmw(d), then for all onstants  dif-

ferent from d suh that w



� w

e

belongs to W

=

add d ?�  to the onstraint.

Perform the satis�ability hek on P. Terminate with suess.

Note that after TERMINATE, for eah hs

i

; S

i

i �?� ht

i

; T

i

i in O either W ^

W (s

i

) > W (t

i

) or W ^W (t

i

) > W (s

i

) is satis�able.

7.5.2 Corretness

In this setion we prove orretness of the algorithm and show how to �nd a

solution when the algorithm terminates with suess. The orretness will follow

from a series of lemmas asserting that all of the transformation steps performed by

the algorithm preserve the set of solutions. Although the algorithm an terminate

with suess without eliminating all orientability onstraints, we will be able to

show that in this ase the resulting onstraint is always satis�able. To prove this

we employ lemmas on homogeneous linear inequalities from Setion 7.2.

We will use the following notation and terminology in the proof. We say

that a step of the algorithm is equivalene-preserving if the set of solutions to

the onstraint before this step oinides with the set of solutions after the step.
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When we use substitutions in the proof, we always assume that the substitutions

are grounding for the relevant terms.

The following lemma an be proved by a straightforward appliation of the

de�nition of solution to a state.

Lemma 7.5.1 (satis�ability hek) If satis�ability hek on W or on P termi-

nates with failure, then S has no solution. �

In Chapter 6we presented an algorithm for heking orientability of systems

of rewrite rules by Knuth-Bendix orders. Sine REWRITE RULE uses the same

steps as the algorithm in Chapter 6, we an dedue the following lemma about

REWRITE RULE.

Lemma 7.5.2 Steps (R0){(R8) are equivalene-preserving.

Proof. The proof is the same as for the steps PREPROCESS, (M1){(M8) of the

orientability algorithm for term rewrite rules, see Chapter 6. �

Lemma 7.5.3 Step (E1) is equivalene-preserving .

Proof. Consider hs

i

; S

i

i �?� ht

i

; T

i

i in O suh that for some variable x, n(x; s

i

) >

n(x; t

i

). To prove the lemma it suÆes to show that if we replae hs

i

; S

i

i �?� ht

i

; T

i

i

by ht

i

; S

i

i ?� hs

i

; T

i

i in our onstraint, then we obtain an unsatis�able onstraint

C

0

. Assume that C

0

has a solution�. Let � be any substitution grounding for this

tuple inequality. Take any term u and modify � by mapping x into u, obtaining

�

u

x

. We have

js

i

�

u

x

j � jt

i

�

u

x

j =

js

i

�j � jt

i

�j+ (n(x; s

i

)� n(x; t

i

)) � (juj � jx�j):

Sine there exist terms of an arbitrarily large weight, for a term u of a large enough

weight we have js

i

�

u

x

j > jt

i

�

u

x

j, whih ontradits to the assumption ht

i

; S

i

i�

u

x

�

hs

i

; T

i

i�

u

x

. �

Lemma 7.5.4 Step (E2) is equivalene-preserving.

Proof. At this step we have that for eah variable x the number of ourrenes

of x in s

i

is the same as the the number of ourrenes of x in t

i

and therefore
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neither s

i

nor t

i

is a variable. Also, for every solution to the onstraint and every

grounding substitution � we have js

i

�j = jt

i

�j.

Consider the ase when top symbols of s

i

and t

i

oinide, i.e., s

i

= g(u

1

; : : : ; u

m

)

and t

i

= g(v

1

; : : : ; v

m

). Then it easy to see that if we have a solution to our on-

straint suh that hs

i

; S

i

i �?� ht

i

; T

i

i the same solution will satisfy the onstraint

hu

1

; : : : ; u

m

; S

i

i �?� hv

1

; : : : ; v

m

; T

i

i and vie versa.

Now we onsider the ase when top symbols of s

i

and t

i

are di�erent, i.e.

s

i

= g(�u) and t

i

= h(�v). It suÆes to show that if we have a solution � to

the onstraint after removing hs

i

; S

i

i �?� ht

i

; T

i

i, denoted as C

0

, then � is also a

solution to hs

i

; S

i

i �?� ht

i

; T

i

i. Consider a solution � to C

0

indued by (w;�).

Assume that g � h, then for every substitution � we have s

i

� � t

i

� sine

js

i

�j = jt

i

�j. Similar, if h � g then for every substitution � we have t

i

� � s

i

�.

�

Let us show that TERMINATE preserves satis�ability.

Lemma 7.5.5 TERMINATE is equivalene-preserving.

Proof. Let us show that the addition of all atomi onstraints d ?�  at this

step preserves equivalene. If C has no solution, then this is obvious. Otherwise,

take any solution � to C and let this solution be indued by (w;�). We know

C ontains gtmw(d), hene d must be the greatest term of the minimal weight.

It is not hard to argue that at the TERMINATE step, W ontains all onstraints

w



� w

e

, where  is a onstant di�erent from d. If suh a onstraint belongs to

W

=

, then we have w() = w(e), hene  is a term of the minimal weight. But

then we must have d � . By the onstrution, C also ontains w

e

� w

d

, so

C � w

e

= w

d

. Therefore, d �  also implies d � , and the addition of d ?� 

does not hange the set of solutions. �

We have shown that all steps of our algorithm preserve satis�ability of on-

straints. Now we show that if the algorithm terminates with suess then the

onstraint is satis�able, moreover we will be able to �nd a solution to the on-

straint in polynomial time.

We all a onstraint C saturated if appliation of our orientability algorithm

to C does not hange C and terminates with suess.

Lemma 7.5.6 If a onstraint C = R ^ W ^ P ^ G ^ O is saturated then the

onstraint C

0

= R ^ W ^ P ^ G is satis�able.
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Proof. We have that W is satis�able, and in addition, for eah rewriting on-

straint hl

i

; L

i

i ?� hr

i

; R

i

i the weight onstraint W (l

i

) � W (r

i

) does not belong to

W

=

. By Lemma 6.2.5 there exists a solution w to W suh that for eah rewrit-

ing onstraint hl

i

; L

i

i ?� hr

i

; R

i

i we have W (l

i

)w > W (r

i

)w. Let � be an order

indued by (w;�), where � is an arbitrary extension of P to a linear order. We

need to show that � satis�es the rewriting onstraint R (onstraints W ,P,G , are

obviously satis�ed). For this let us onsider a tuple hl

i

; L

i

i ?� hr

i

; R

i

i in R and

an admissible substitution � and show that hl

i

; L

i

i� � hr

i

; R

i

i�. From algorithm

(rules (R1), (R2)) we have that for eah unmarked variable x, n(x; l

i

) = n(x; r

i

),

also for eah marked variable y we have jy�j = w(e). Therefore

jl

i

�j � jr

i

�j = W (l

i

)w �W (r

i

)w > 0;

this shows that hl

i

; L

i

i� � hr

i

; R

i

i�. �

Lemma 7.5.7 Every saturated onstraint is satis�able.

Proof. Consider a saturated onstraint

C = R ^ W ^ P ^ G ^ O :

We show that C is satis�able by indution on the number of atomi onstraints

in O . If O is empty then the laim follows from Lemma 7.5.6. Now assume that

O is not empty. Sine C is saturated we have that for eah atomi onstraint

hs

i

; S

i

i �?� ht

i

; T

i

i in O either W ^W (s

i

) > W (t

i

) or W ^W (t

i

) > W (s

i

) is sat-

is�able. Assume that W ^W (s

i

) > W (t

i

) is satis�able, then add W (s

i

) > W (t

i

)

to W and remove hs

i

; S

i

i �?� ht

i

; T

i

i from O , obtaining W

0

and O

0

respetively.

Let us show that the obtained onstraint

C

0

= R ^ W

0

^ P ^ G ^ O

0

is saturated. From Lemma 7.2.1 it follows that the degenerate subsystem of

W

0

oinides with the degenerate subsystem of W and sine C is saturated we

have that none of the rules (R0){(R8), (E0), (E1) an hange the onstraint C

0

.

Also from Lemma 7.2.4 it follows that for eah hs

0

i

; S

0

i

i �?� ht

0

i

; T

0

i

i in O

0

either

W

0

^W (s

0

i

) > W (t

0

i

) or W

0

^W (t

0

i

) > W (s

0

i

) is satis�able. Hene, rule (E2) also

an not hange the onstraint C

0

and we onlude that C

0

is saturated. Sine O

0
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ontains less atomi onstraints than O

0

and C

0

is saturated, we an apply the

indution hypothesis.

�

7.5.3 Time omplexity

Provided that we use a polynomial-time algorithm for solving systems of homoge-

neous linear inequalities, and a polynomial-time algorithm for transitive losure,

a areful analysis of our algorithm shows the following.

Lemma 7.5.8 The algorithm runs in time polynomial of the size of the system

of rewrite rules. �

7.6 Orientability for trivial signatures

In this setion we onsider only trivial signatures. Let us remind that a signature

is alled trivial if it ontains no funtion symbols of arity � 2, and at most one

unary funtion symbol. Consider a trivial signature whih onsists of a unary

funtion symbol g and some onstants. Consider a onstraint C = R ^ O where

R is a rewriting onstraint and O is an orientability onstraint. If O ontains an

orientability onstraint t�?� t then C is obviously unsatis�able, and therefore

we will assume that for all orientability onstraints t�?� s 2 O , t is di�erent

from s. If O ontains nonground onstraints then we an transform C into an

equally orientable onstraint C

0

= R

0

^ O

0

suh that all onstraints in O

0

are

ground.

Lemma 7.6.1 Let C = R^O be a onstraint in a trivial signature � suh that O

ontains nonground atomi onstraints. De�ne a onstraint C

0

= R

0

^O

0

obtained

by the following transformations.

1. Replae every atomi orientability onstraint g

m

(x) �?� g

n

(d) with the rewrit-

ing onstraint g

m

(x) ?� g

n

(d).

2. Replae every atomi orientability onstraint g

m

(x) �?� g

n

(x), where m >

n, with the rewriting onstraint g

m

(x) ?� g

n

(x).

Then a Knuth-Bendix order � orients C if and only if it orients C

0

. All on-

straints in O

0

are ground. �
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The proof of this lemma is straightforward and we an restrit ourselves to on-

straints with ground orientability part. Now, onsider suh a onstraint C = R^O

and let � be a Knuth-Bendix order whih is a solution to R. Then � is also a so-

lution to O , sine every Knuth-Bendix order is total on ground terms. Therefore,

we redue our problem to the problem of orientability of rewriting systems for

trivial signatures whih is shown to be solvable in polynomial time in Setion 6.6.

7.7 Main results

Lemmas 7.5.1{7.5.7 guarantee that the orientability algorithm is orret and

Lemma 7.5.8 implies that it runs in polynomial time. Hene we obtain the fol-

lowing theorem.

Theorem 7.7.1 The problem of the existene of a Knuth-Bendix order whih

orients a given system of equalities and rewrite rules an be solved in the time

polynomial in the size of the system. Moreover, if the system of equalities and

rewrite rules is orientable by a Knuth-Bendix order we an �nd suh an order in

polynomial time. �

In Chapter 6 we have proved that the problem of orientability by Knuth-

Bendix orders is P-omplete for systems of rewrite rules, moreover it is P-hard

even for ground rewrite rule systems. Therefore, the following result follows from

Theorem 6.9.2 and Proposition 7.1.2.

Theorem 7.7.2 The problem of orientability of systems of equalities and rewrite

rules by Knuth-Bendix orders is P-omplete. Moreover, it is P-hard even for

systems onsisting only of equalities or only of rewrite rules. �



Chapter 8

AC-Compatible Knuth-Bendix

Orders

8.1 Introdution

This hapter is based on the paper [Korovin and Voronkov 2003a℄.

E-ompatible simpli�ation orders for various equational theories E an be

used for building-in equational theories in theorem provers and rewriting modulo

equational theories (see Chapter 2).

Among various equational theories, theories axiomatized by the axioms of as-

soiativity and ommutativity, so-alled AC-theories, play a speial role. Suh

theories very often our in appliations and require speial treatment in auto-

mated systems, where AC-ompatible simpli�ation orders is a ruial ingredient.

The existene of an AC-ompatible simpli�ation order AC-total on ground

terms had been a hallenging problem for many years, whih was �nally solved

in [Narendran and Rusinowith 1991℄. Reently, a lot of work has been done

to modify reursive path orders to obtain AC-ompatible simpli�ation orders

AC-total on ground terms [Rubio and Nieuwenhuis 1993, Rubio 2002, Rubio

1999, Kapur and Sivakumar 1998, Kapur and Sivakumar 1997, Kapur et al. 1995,

Kapur et al. 1990℄. Despite the fat that Knuth-Bendix orders are widely used in

automated dedution, to our knowledge no AC-ompatible simpli�ation variant

of Knuth-Bendix orders have been known. (There was an attempt to introdue

suh an order in [Steinbah 1990℄ but this order is laking the ruial monotoniity

property, as we will show later).

In this hapter we de�ne a family of AC-ompatible Knuth-Bendix orders
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�

ACKBO

. These orders enjoy attrative features of the standard Knuth-Bendix

orders, for example

1. a polynomial-time algorithm for term omparison;

2. omputationally eÆient approximations based on weight omparison, so in

many pratial ases we do not need to traverse the whole term eah time

to ompare it with another term;

3. light terms are smaller than heavier ones.

Our approah share some ideas with the AC-RPO of Rubio [Rubio 2002, Rubio

1999℄, but a areful exploitation of some properties of weight funtions enable us

to avoid ompliations leading to an exponential behavior in the AC-RPO ase.

8.2 Preliminaries

We will use multisets and multiset extension of an order, as de�ned in Chapter 3,

where key properties of suh extensions are disussed.

Definition 8.2.1 Let > be a binary relation on a set S. A lexiographi exten-

sion of >, denoted by >

lex

, is a relation on tuples of elements of S de�ned as

follows. Let �a = (a

1

; : : : ; a

m

) and

�

b = (b

1

; : : : ; b

n

) be two tuples. Then �a >

lex

�

b if

one of the following onditions holds:

1. m > n;

2. m = n and there exists i suh that 1 � i � m, a

i

> b

i

, and for all

j 2 f1; : : : ; i� 1g we have a

j

= b

j

.

�

The following fat is not hard to hek, see, e.g., [Baader and Nipkow 1998℄.

Lemma 8.2.2 If > is an order, then so is >

lex

. If > is a total order, then so is

>

lex

. If > is a well-founded order, then so is >

lex

. �

For every pre-order � we denote by > the orresponding strit order > de�ned

as follows: s > t if and only if s � t and t 6� s. We will use this notation for

various pre-orders, for example � will denote the strit version of �.
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Let �

1

;�

2

be pre-orders. We all the lexiographi produt of �

1

and �

2

,

denoted �

1


 �

2

, the relation � de�ned as follows: s � t if and only if either

s >

1

t, or s �

1

t and s �

2

t. It is not hard to argue that �

1


 �

2

is a pre-order.

We de�ne lexiographi produt >

1


 >

2

of strit parts of �

1

;�

2

as the strit

part of �

1


 �

2

.

We will also onsider lexiographi produts of more than two orders.

Lemma 8.2.3 If >

1

; >

2

are orders, then so is >

1


 >

2

. If >

1

; >

2

are total orders,

then so is >

1


 >

2

. If >

1

; >

2

are well-founded orders, then so is >

1


 >

2

. �

In our proofs below we will often ompose the multiset order, the lexiographi

extension, and the lexiographi produt of various orders and use Lemmas 3.2.4,

8.2.2 and 8.2.3 to establish properties of the ompositions.

8.3 AC-ompatible orders

Let E be an equational theory and > be a partial order on ground terms of a

signature �. Denote equality with respet to E by =

E

. We say that an order >

is E-ompatible if it satis�es the following property: if s > t, s =

E

s

0

and t =

E

t

0

,

then s

0

> t

0

. The order > is alled E-total , if for all ground terms s; t, if s 6=

E

t,

then either s > t or t > s.

Let + be a binary funtion symbol. The AC-theory for + is the equational

theory axiomatized by set of two formulas

8x8y8z((x + y) + z ' x+ (y + z));

8x8y(x + y ' y + x):

From now on we assume that we are given a �xed signature � with a distinguished

subset �

AC

of binary funtion symbols. The members of �

AC

will be alled

AC-symbols. Two terms s; t are alled AC-equal , denoted s =

AC

t, if they are

equal in the equational theory generated by the union of the AC-theories for all

g 2 �

AC

. An order is alled AC-ompatible if it is E-ompatible with respet to

this equational theory.
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8.4 Main results

Our main aim is to �nd AC-ompatible AC-total simpli�ation orders whih

generalize standard Knuth-Bendix orders for the ase of AC-theories. In the rest

of this hapter we de�ne a family of suh orders, eah order �

ACKBO

in this family

is indued by a weight funtion w and a preedene relation � ompatible with

w. We prove the following results.

1. �

ACKBO

is an AC-ompatible AC-total simpli�ation order,

2. On the terms without AC-symbols, �

ACKBO

oinides with the standard

Knuth-Bendix order indued by w and �.

3. If � ontains no unary funtion symbols of the weight 0, then for every

ground term t there exists a �nite number of terms s suh that t �

ACKBO

s.

Further, we extend the orders �

ACKBO

to non-ground terms in suh a way that

for all terms s; t and substitutions �, if s �

ACKBO

t, then s� �

ACKBO

t�.

8.5 The Ground Case

8.5.1 Flattened terms

In the sequel the symbol + will range over �

AC

. Let us all a term normalized if

it has no subterms of the form (r+ s)+ t. Evidently, every term is AC-equal to a

normalized term. Sine we aim at �nding AC-ompatible simpli�ation orders, it

is enough for us to de�ne these orders only for normalized terms. For normalized

terms, we introdue a speial well-known notation, alled attened term.

To this end, we onsider all AC-symbols to be varyadi, i.e., having an un-

bounded arity greater than or equal to 2. A term s using the varyadi symbols

is alled attened if for every non-variable subterm t of s, if t has the form

+(t

1

; : : : ; t

n

), then the top symbols of t

1

; : : : ; t

n

are distint from +. We identify

a subterm +(t

1

; : : : ; t

m

) with the normalized term (t

1

+ (t

2

+ : : :+ t

n

)). We will

sometime write subterms of attened terms as t

1

+ : : :+ t

n

. In the sequel we will

only deal with attened terms.

Note that we have to be areful with de�ning substitutions into attened terms

and the subterm property for them. When we substitute a term s

1

+ : : :+ s

m

for

a variable x in x+ t

1

+ : : :+ t

n

, we obtain s

1

+ : : :+ s

m

+ t

1

+ : : :+ t

n

. To prove
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the subterm property for an order > on ordinary terms, we also have to prove the

following anellation property for attened terms: s

1

+s

2

+: : :+s

n

> s

2

+: : :+s

n

.

Similarly, we have to be areful with de�ning weights of terms with varyadi

symbols. We want the weight to be invariant under =

AC

, in partiular, the weight

of a term must oinide with the weight of a attened term equal to it modulo

AC. Therefore, we modify the de�nition of weight as follows.

Definition 8.5.1 (Weight) The weight of a ground term t, denoted jtj, is de-

�ned as follows. Let t = g(t

1

; : : : ; t

n

), where n � 0. Then

1. if g 62 �

AC

, then jtj = w(g) + jt

1

j+ : : :+ jt

n

j.

2. if g 2 �

AC

, then jtj = (n� 1)w(g) + jt

1

j+ : : :+ jt

n

j.

�

We have the following straightforward result.

Lemma 8.5.2 Let r; s; t be terms. If jsj = jtj, then jr[s℄j = jr[t℄j. Likewise, if

jsj > jtj, then jr[s℄j > jr[t℄j. �

8.5.2 Relation �

+

All relations introdued below will be AC-ompatible. Therefore, in the sequel

we will onsider the AC-equality instead of the syntati equality and onsider

relations on the equivalene lasses modulo =

AC

.

To de�ne an AC-ompatible weight-based simpli�ation order, let us �rst

de�ne, for eah AC-symbol +, an auxiliary partial order �

+

on multisets of

attened terms.

If a term t has the form g(t

1

; : : : ; t

n

), where n � 0, then g is alled the top

symbol of t, denoted by top(t), and t

1

; : : : ; t

n

the arguments of t. We de�ne the

top symbol of a variable x to be x itself.

First we introdue the following pre-order �

top

on terms: s �

top

t if and only

if top(s) � top(t) or top(s) = top(t). Note that this order is also de�ned for

non-ground terms. Likewise, we introdue the pre-order �

w

on ground terms as

follows: s �

w

t if jsj � jtj. Naturally, the strit versions of �

top

and �

w

are

denoted by >

top

and >

w

, respetively.
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Definition 8.5.3 (Relation �

+

) LetM;N be two multisets of attened ground

terms and let

M

0

=

_

ft

_

2M j top(t)� +

_

g;

N

0

=

_

ft

_

2 N j top(t)� +

_

g:

We de�ne M �

+

N if and only if

M

0

(�

w


 �

top

)

mul

N

0

:

�

In other words, we an de�ne the order �

+

as follows. First, remove fromM and

N all elements with top symbols smaller than or equal to +. Then ompare the

remaining multisets using the multiset order in whih the terms are �rst ompared

by weight and then by their top symbol.

Lemma 8.5.4 For eah symbol + 2 �

AC

the relation �

+

is a well-founded order.

Proof. Follows immediately from the observation that the strit part of (�

w


 �

top

)

mul

is a well-founded order (by Lemmas 3.2.4 and 8.2.3). �

Let us give a haraterization of the relation �

+

. Let M be a multiset of

ground terms and v be a positive integer. Denote by seleted(+; v;M) the mul-

tiset of top funtors of all terms in M of the weight v whose top symbol is

greater than + w.r.t. �. Then we have M �

+

N if and only if there exists an

integer v suh that seleted(+; v;M) >

mul

top

seleted(+; v; N) and for all v

0

> v,

seleted(+; v

0

;M) =

mul

seleted(+; v

0

; N). Let �

+

denote the inomparability re-

lation on multisets of terms w.r.t. �

+

. That is, given two multisets M;N , we

have M �

+

N if and only if neither M �

+

N nor N �

+

M . Now it is easy

to hek that two multisets of terms M and N are inomparable w.r.t. �

+

if

and only if for eah weight v we have seleted(+; v;M) = seleted(+; v; N) and

therefore �

+

is indeed an equivalene relation on terms. So �

+

an be seen as a

total well-founded order on the equivalene lasses of multisets modulo �

+

.

8.5.3 Order �

ACKBO

Using the relation �

+

, we an de�ne an AC-ompatible simpli�ation order

�

ACKBO

.
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Definition 8.5.5 (Order �

ACKBO

) Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

)

be attened ground terms. Then t �

ACKBO

s if and only if one of the following

onditions holds:

1. jtj > jsj; or

2. jtj = jsj and h� g; or

3. jtj = jsj, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g; or

ii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and n > k; or

iii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g, n = k and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g.

�

Let us remark that similar to the AC-RPO of Rubio [Rubio 2002, Rubio 1999℄

we make a speial treatment of the immediate subterms below + having top sym-

bols greater than +. To this end, we use the relation �

+

, whih allows us to avoid

reursive omputations deeper into subterms at this stage (we need only to om-

pare weights and top symbols of the immediate subterms). As a result, we gain

some eÆieny. More importantly, using properties of the weight funtions we an

avoid the exponential behavior of AC-RPO aused by enumerating embeddings

of ertain subterms.

Lemma 8.5.6 �

ACKBO

is an AC-ompatible AC-total order on ground terms.

Proof. It is easy to see that �

ACKBO

is AC-ompatible. The AC-totality an be

proved by a routine indution on terms.

Let us prove that �

ACKBO

is an order. Let us all the f -height of a term r,

denoted by height

f

(r), the greatest number n suh that r = f

n

(r

0

). The proof is

by indution on the order >

0

on ground terms de�ned as follows: t >

0

s if jtj > jsj

or jtj = jsj and height

f

(t) > height

f

(s). Obviously, >

0

is the lexiographi produt

of two well-founded orders, and so a well-founded order itself.
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Note the following property of >

0

: if t >

0

s, then t �

ACKBO

s. Therefore, it is

enough to prove that for eah pair of natural numbers (k; l), the relation �

ACKBO

is an order on the set of ground terms

ft j jtj = k and height

f

(t) = lg:

But this follows from the following observation: �

ACKBO

on this set of terms is

de�ned as a lexiographi produt of the following �ve orders:

t >

1

s, h� g;

t >

2

s, (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

) and h = g 62 �

AC

;

t >

3

s,

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and h = g 2 �

AC

;

t >

4

s, n > k and h = g 2 �

AC

;

t >

5

s,

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g and h = g 2 �

AC

:

Note that �

lex

ACKBO

and �

mul

ACKBO

used in this de�nition are orders by the indution

hypothesis and by Lemmas 8.2.2 and 3.2.4. �

Theorem 8.5.7 The relation �

ACKBO

is an AC-ompatible AC-total simpli�ation

order on ground terms.

Proof. By Lemma 8.5.6, �

ACKBO

is an order, so it only remains to prove the sub-

term property, anellation property, and monotoniity. The anellation prop-

erty is obvious, sine js

0

+ s

1

+ : : :+ s

n

j > js

1

+ : : :+ s

n

j. The subterm property

is heked in the same way as for the standard Knuth-Bendix order.

Let us prove the monotoniity. By Lemma 8.5.6, �

ACKBO

is an AC-ompatible

AC-total order. In partiular, �

ACKBO

is transitive, so it remains to prove the

following property: if t �

ACKBO

s, then for every funtion symbol g we have

g(r

1

; : : : ; r

i�1

; t; r

i+1

; : : : ; r

n

) � g(r

1

; : : : ; r

i�1

; s; r

i+1

; : : : ; r

n

). When g 62 �

AC

,

the proof is idential to that for the standard Knuth-Bendix order, so we only

onsider the ase when g is an AC-symbol +.

We have to prove the following statement for all terms s; t; r

1

; : : : ; r

m

: let

u = t + r

1

+ : : : + r

m

and v = s + r

1

+ : : :+ r

m

, then t �

ACKBO

s implies u �

ACKBO

v. Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

). Consider all possible ases of

De�nition 8.5.5 of �

ACKBO

.

1. jtj > jsj. In this ase by Lemma 8.5.2 we have juj > jvj, and so u �

ACKBO

v.
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Now we an assume jtj = jsj, hene by Lemma 8.5.2 juj = jvj. Denote by

U and V the multisets of arguments of u and v, respetively. Note that U

is not neessarily equal to

_

ft; r

1

; : : : ; r

m

_

g: indeed, the top symbol of t may

be +, and then we have to atten t+ r

1

+ : : :+ r

m

to obtain the arguments

of u. Likewise, V is not neessarily equal to

_

fs; r

1

; : : : ; r

m

_

g. Denote by p; q

the number of elements in U; V respetively. Note that

p =

(

m + 1; if top(t) 6= +;

m + n; if top(t) = +:

q =

(

m+ 1; if top(s) 6= +;

m+ k; if top(s) = +:

Sine juj = jvj and top(u) = top(v) = +, the omparison of u and v should

be done using lauses (3(b)i){(3(b)iii) of De�nition 8.5.5. That is, �rst we

hek U �

+

V . Then, if U �

+

V , we hek if p > q. Finally, if p = q, we

ompare U and V using the multiset order �

mul

ACKBO

. Consider the remaining

ases.

2. h� g. Let us show that if h� + then U �

+

V and so u �

ACKBO

v. If +� g

then we have U �

+

U

_

�

_

ft

_

g =

_

fr

1

; : : : ; r

m

_

g = V

_

�

_

fs

_

g �

+

V . If g � + then

_

ft

_

g �

+

_

fs

_

g and hene U =

_

ft; r

1

; : : : ; r

m

_

g �

+

_

fs; r

1

; : : : ; r

m

_

g = V . If g = +

then s is of the form s

1

+ : : : + s

k

. We have

_

ft

_

g �

+

_

fs

1

; : : : ; s

k

_

g, sine

the weight of eah arguments of s is stritly less than the weight of t, and

therefore U �

+

V .

Now if +� h, then U �

+

V and p = q. In this ase u �

ACKBO

v , U �

mul

ACKBO

V , t �

ACKBO

s, so u �

ACKBO

v. It remains to onsider the ase h = +. In

this ase we have U �

+

V

_

�fsg �

+

V and either U �

+

V , so u �

ACKBO

v, or

we have U �

+

V and p > q, so u �

ACKBO

v, by (3(b)ii) of De�nition 8.5.5.

3. h = g.

(a) h 6= +. Then U �

+

V and p = q. In this ase u �

ACKBO

v , U �

mul

ACKBO

V , t �

ACKBO

s.

(b) Now it remains to onsider the ase h = g = +. In this ase U =

_

ft

1

; : : : ; t

n

; r

1

; : : : ; r

m

_

g and V =

_

fs

1

; : : : ; s

k

; r

1

; : : : ; r

m

_

g. Sine t �

ACKBO

s, it is enough to onsider the following ases.
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i.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g. In this ase U �

+

V , hene u �

ACKBO

v.

ii.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g and n > k. In this ase U �

+

V but

p > q, hene u �

ACKBO

v.

iii.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g, n = k, and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g. In this ase U �

+

V , p = q, but

U �

mul

ACKBO

V , hene u �

ACKBO

v.

The proof is omplete. �

Suppose that � does not ontains a unary funtion symbol f of the weight 0.

In this ase for eah weight v there is only a �nite number of ground terms of the

weight v. Therefore, we have the following result.

Proposition 8.5.8 If � does not ontain a unary funtion symbol f of the

weight 0, then for every term t, there exists only a �nite number of terms s

suh that t �

ACKBO

s. �

Now let us show that if our signature ontains only two AC-symbols and

in addition one of them is maximal and another is minimal w.r.t. �, then we

an onsiderably simplify de�nition of AC-KBO by avoiding �

h

omparisons. In

partiular the following de�nition will satisfy all required properties.

Definition 8.5.9 (Simpli�ed AC-KBO for two AC symbols) Consider a signa-

ture � ontaining only two AC-symbols, suh that one of them is maximal and

another is minimal w.r.t. � in �.

Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

) be attened ground terms. Then

t �

0

ACKBO

s if and only if one of the following onditions holds:

1. jtj > jsj; or

2. jtj = jsj and h� g; or

3. jtj = jsj, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

0 lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i. n > k and h is maximal in � w.r.t. �; or
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ii. k > n and h is minimal in � w.r.t. �; or

iii. k = n and

_

ft

1

; : : : ; t

n

_

g �

0 mul

ACKBO

_

fs

1

; : : : ; s

k

_

g.

�

Theorem 8.5.10 The relation �

0

ACKBO

is an AC-ompatible AC-total simpli�a-

tion order on ground terms.

Proof. We skip the proof whih is similar to the general ase. �

8.6 Non-Ground Order

In this setion we will generalize AC-ompatible Knuth-Bendix orders �

ACKBO

to

non-ground terms. The de�nition will be very similar to the ground ase. We will

have to hange the de�nitions of the weight and slightly hange the de�nition of

�

+

. As before, we will be dealing with attened terms.

Let us modify the notion of weight to non-ground terms. In fat, we will

introdue two di�erent weights jtj and jjtjj. As before, we assume that we are

given a weight funtion w and a preedene relation � ompatible with w. Let

e denote the onstant in � having the least weight among all onstants in �. It

is not hard to argue that jej is also the least weight of a ground term.

Definition 8.6.1 (Weight jtj) The weight of a term t, denoted jtj, is de�ned as

follows.

1. If t is a variable, then jtj = w(e).

2. If t = g(t

1

; : : : ; t

n

) and g 62 �

AC

, then jtj = w(g) + jt

1

j+ : : :+ jt

n

j.

3. If t = g(t

1

; : : : ; t

n

) and g 2 �

AC

, then jtj = (n� 1)w(g) + jt

1

j+ : : :+ jt

n

j.

�

It is not hard to argue that the weight of a term t is equal to the weight of

the ground term obtained from t by replaing all variables by e. Therefore,

Lemma 8.5.2 also holds for non-ground terms.

Lemma 8.6.2 Let r; s; t be terms. If jsj = jtj, then jr[s℄j = jr[t℄j. Likewise, if

jsj > jtj, then jr[s℄j > jr[t℄j. �
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Let t be a term. Denote by vars(t) the multiset of variables of t. For example,

vars(g(x; a; h(y; x))) =

_

fx; y; x

_

g.

Definition 8.6.3 (Generalized Weight) A generalized weight is a pair (n; V ),

where n is a positive integer and V is a multiset of variables. Let us introdue a

pre-order � and an order > on generalized weights as follows. We let (m;M) �

(n;N) if m � n and N is a submultiset of M . We let (m;M) > (n;N) if m > n

and N is a submultiset of M . The generalized weight of a term t, denoted jjtjj, is

the pair (jtj; vars(t)). We write t �

W

s if jjtjj � jjsjj and t >

W

s if jjtjj > jjsjj. �

Note that >

W

is not a strit version of �

W

. However, it is easy to see that >

W

is a well-founded order. The following properties of �

W

and >

W

are also not

diÆult to hek.

Lemma 8.6.4 Let r; s; t be terms. If s �

W

t, then r[s℄ �

W

r[t℄. Likewise, if

s >

W

t, then r[s℄ >

W

r[t℄. Moreover, if s; t are ground terms, then s �

w

t if and

only if s �

W

t, and s >

w

t if and only if s >

W

t. �

Note that �

W

is not a total pre-order. For example, if x; y are two di�erent

variables, then neither x �

W

y nor y �

W

x holds.

8.6.1 Relation �

+

Let us now generalize the relation�

+

to non-ground terms. The de�nition is more

omplex that in the ground ase beause of one tehnial problem: the order >

W

is not the strit version of �

W

. Therefore, we annot ompose orders using �

W

to

obtain new orders as before. In partiular, the de�nition of a multiset extension

of an order does not work any more and should be replaed.

First, instead of the pre-order �

w


 �

top

used in the de�nition of �

+

on

ground terms, we introdue a pre-order �

W;top

de�ned as �

W


 �

top

. We also

write s =

W;top

t if jjsjj = jjtjj and top(s) = top(t). Then let us de�ne an order

>

W;top

as follows: s >

W;top

t if either s >

W

t or s �

W

t and top(s)� top(t).

Now, to de�ne an analogue of (�

w


 �

top

)

mul

used in the de�nition of �

+

for

ground terms, let us de�ne the following deletion operation on pairs of multisets

M;N : if t

_

2 M , s

_

2 N , and t =

W;top

s, then delete one ourrene of t from M

and one ourrene of s from N .
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Definition 8.6.5 (Relation �

+

) Let M;N be two multisets of attened terms

and let

M

0

=

_

ft

_

2M j t is a variable or top(t)� +

_

g;

N

0

=

_

ft

_

2 N j t is a variable or top(t)� +

_

g:

Let M

00

; N

00

be obtained by applying the deletion operation to M

0

; N

0

while pos-

sible. Then we de�ne M �

+

N if M

00

ontains a non-variable term and for every

s 2 N

00

there exists t 2 M

00

suh that t >

W;top

s. We also de�ne M �

+

N if either

M �

+

N or N

00

is empty and M

00

ontains only variables. �

Similarly to the ground ase, we have the following lemma.

Lemma 8.6.6 For eah symbol + 2 �

AC

the relation �

+

is a well-founded order.

Moreover, on ground terms it oinides with the order �

+

of De�nition 8.5.3. �

8.6.2 Order �

ACKBO

Using the relation�

+

, we an de�ne an AC-ompatible simpli�ation order �

ACKBO

in essentially the same way as for ground terms.

Definition 8.6.7 (Order �

ACKBO

) Let us de�ne the relation�

ACKBO

for non-ground

terms as follows. If x is a variable, then for every term s it is not true that

x �

ACKBO

s. If y is a variable then t �

ACKBO

y if and only if y ours in t and is

distint from t. Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

) be attened terms.

Then t �

ACKBO

s if and only if one of the following onditions holds:

1. t >

W

s; or

2. t �

W

s and h� g; or

3. t �

W

s, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g; or

ii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and n > k; or

iii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g, n = k and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g. �
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The proof that �

ACKBO

is an AC-ompatible simpli�ation order is similar to

the ground ase, so we have the following theorem.

Theorem 8.6.8 The relation �

ACKBO

is an AC-ompatible monotoni order sat-

isfying the subterm property. Moreover, on ground terms it oinides with the

order of De�nition 8.5.5. �

Theorem 8.6.9 �

ACKBO

is losed under substitutions, that is, if t �

ACKBO

s, then

for every substitution �, t� �

ACKBO

s�. �

8.7 Related Work

In general, Knuth-Bendix orders and reursive path orders are inomparable in

the sense that there are rewrite (equational) systems that an be oriented by

Knuth-Bendix orders but annot be oriented by reursive path orders, and vie

versa. To ompare Knuth-Bendix orders with orders based on polynomial in-

terpretations (or ombinations of polynomial interpretations with reursive path

orders) let us note that usually it is diÆult to �nd a suitable polynomial inter-

pretation whih orients a given rewrite (equational) system. For Knuth-Bendix

orders, we an employ eÆient algorithms (see Chapters 6,7).

An attempt to de�ne an AC-ompatible Knuth-Bendix order was undertaken

in [Steinbah 1990℄ for a speial ase when eah AC-symbol + is of the weight

0 and is also a maximal symbol w.r.t. �. It is proposed to ompare terms with

the top symbol + �rst by weight and then by omparing the multisets of their

arguments. Let us give an example demonstrating that the order de�ned in this

way laks the monotoniity property.

Consider the weight funtion w suh that w(+) = 0 and w() = w(d) =

w(g) = 1 and a preedene relation � suh that + � g. Let t =  + d and

s = g(). Then jtj = jsj, and therefore t �

ACKBO

s. Take any term r. Then

by monotoniity we must have r +  + d �

ACKBO

r + g(). But in fat we have

r + g() �

ACKBO

r + + d, sine jg()j > jj and jg()j > jdj.

For future researh let us mention the problems of onstraint solving and

orientability for AC-ompatible Knuth-Bendix orders. It is worth to note that

algorithms and omplexity results for onstraint solving for AC-RPO are pre-

sented in [Comon, Nieuwenhuis and Rubio 1995, Godoy and Nieuwenhuis 2001℄.
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Undeidability of �rst-order onstraint solving in the presene of AC-symbols fol-

lows from the results in [Treinen 1990℄, where it is shown that already the �

3

fragment of the �rst-order theory of any trem algebra modulo assoiativity and

ommutativity is undeidable for signatures that ontain at least one onstant,

one non-onstant funtion symbol and one AC funtion symbol.



Chapter 9

Conlusions

In this thesis we have presented results of our study of deision problems for

Knuth{Bendix orders that have appliations in automated dedution. Let us

summarise our main results and point out some related open problems.

Constraint solving. Ordering onstraints are ruial for pruning searh spae

in theorem provers. As a onsequene algorithms for solving various ordering

onstraints are of great importane. In this thesis we have shown that the problem

of solving Knuth-Bendix ordering onstraints is deidable and NP{omplete. We

have presented an algorithm for solving Knuth{Bendix ordering onstraints with

an optimal omplexity bound. Our algorithm extensively uses nondeterministi

hoies. It would be interesting to investigate how this nondeterminism an be

redued. Another problem to study is solving Knuth-Bendix ordering onstraints

under the extended signature semantis.

Constraints onsisting of single inequalities are ommonly used in automated

theorem proving. We have presented a polynomial-time algorithm for solving

Knuth-Bendix ordering onstraints onsisting of single inequalities. We believe

that this algorithm an be eÆiently implemented. It an also be used to approx-

imate solving general Knuth-Bendix ordering onstraints.

We have also been studying the onstraint solving problem for �rst-order on-

straints. We have shown the deidability of the �rst-order Knuth-Bendix ordering

onstraints over unary signatures. Our deision proedure uses interpretation of

unary terms as trees and uses deidability of the weak monadi seond-order the-

ory of binary trees. Although deision proedures for weak monadi seond-order

theory of binary trees behave reasonably well in pratie, theoretial lower bound
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for omplexity of this problem is nonelementary. An exat omplexity for the

problem of solving �rst-order Knuth-Bendix ordering onstraints over unary sig-

natures remains unknown. A more general open problem is the deidability and

omplexity of full �rst-order theory of Knuth-Bendix orders.

Orientability. Orientability by simpli�ation orders is useful in term rewriting

for showing termination of term rewriting systems, and in theorem proving for

�nding e�etive strategies for partiular problems and theories. In automated

systems whih are dealing with equality it is desirable to have an eÆient algo-

rithm for orientability of systems onsisting of term rewrite rules and equalities.

We have shown that suh an algorithm exists for Knuth-Bendix orders. In par-

tiular, we present a polynomial-time algorithm whih heks for a given system

of term rewriting rules and equalities whether there exists a Knuth-Bendix order

whih orients this system, and if suh an order exists, the algorithm �nds param-

eters of this order. To omplete the omplexity analysis of this problem we have

shown that the orientability problem for Knuth-Bendix orders is P-omplete even

for systems onsisting only of rewrite rules or only of equalities. A diretion for

future researh is to integrate our orientability algorithm into existing theorem

provers and assess its usefulness experimentally.

AC-ompatible Knuth-Bendix orders. Axioms of assoiativity and ommu-

tativity our in many important theories. Unfortunately these axioms are very

diÆult to deal with sine they are extremely proli� due to non-orientability of

the ommutativity axiom. The main approah to overome this problem is to in-

tegrate AC-reasoning into inferene systems, whih requires total AC-ompatible

simpli�ation orders. The importane of AC-ompatible orders triggered a huge

amount of researh devoted for designing suh orders, mostly by modifying re-

ursive path orders. We have shown that it is possible to modify Knuth-Bendix

orders to AC-ompatible orders. Moreover, these orders preserve attrative prop-

erties of original Knuth-Bendix orders suh as a polynomial-time algorithm for

term omparison and omputationally eÆient approximations based on weight

omparisons. We believe that the algorithm for omparing terms in these orders

an be eÆiently implemented. For future researh let us mention the problems

of onstraint solving and orientability for AC-ompatible Knuth-Bendix orders.
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