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Abstra
t

Ordering restri
tions play a 
ru
ial role in automated dedu
tion. In parti
ular,

orders are used extensively for pruning sear
h spa
e in automated theorem provers

and for rewriting-based reasoning and 
omputation. There are two 
lasses of

orders that are widely used in automated dedu
tion: Knuth-Bendix orders and

various versions of re
ursive path orders. Despite the fa
t that Knuth-Bendix

orders were dis
overed earlier than re
ursive path orders, and sin
e then have

been used in many state-of-the-art automated theorem provers; the de
idability

and 
omplexity of many important problems related to these orders remained

open. In this thesis we try to 
lose this gap and provide various de
idability and


omplexity results for a number of important de
ision problems related to Knuth-

Bendix orders. We prove the de
idability and NP-
ompleteness of the problem of

solving Knuth-Bendix ordering 
onstraints. In the 
ase of 
onstraints 
onsisting

of single inequalities we present a polynomial-time algorithm. We also prove the

de
idability of the problem of solving general �rst-order Knuth-Bendix ordering


onstraints over unary signatures. Another problem we study is the orientability

problem by Knuth-Bendix orders. We present a polynomial-time algorithm for

orientability of systems 
onsisting of term rewrite rules and equalities by Knuth-

Bendix orders, and prove that this problem is P-
omplete. Finally, we show that

it is possible to extend Knuth-Bendix orders to AC-
ompatible orders preserving

attra
tive properties of Knuth-Bendix orders.
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Chapter 1

Introdu
tion

Automated dedu
tion is an important bran
h of Computer S
ien
e, whi
h has

appli
ations in various areas in
luding spe
i�
ation and veri�
ation of software

and hardware, synthesis of safe programs, database systems, 
omputer algebra

and others. One of the most popular methods used in automated dedu
tion

is resolution-based theorem proving. It turns out that this method is powerful

enough for many appli
ations, yet it 
an be implemented eÆ
iently. Resolution-

based theorem proving was introdu
ed by Robinson in his seminal paper [Robinson

1965℄. Be
ause of its pra
ti
al importan
e, a huge amount of resear
h has been

devoted to theoreti
al improvements of this method, likewise to eÆ
ient imple-

mentation issues. Introdu
tion of ordering restri
tions has been one of the main

breakthroughs in resolution-based theorem proving and in equational reasoning.

In this work we are mainly fo
used on theoreti
al problems related to ordering

restri
tions that 
an help to improve performan
e of resolution-based theorem

provers. Major resear
h dire
tions involving orders for automated dedu
tion in-


lude

� solving ordering 
onstraints,

� orientability problems,

� studying orders 
ompatible with various equational theories, and

� eÆ
ient ordering algorithms.

There are two 
lasses of orders that are widely used in automated dedu
tion:

Knuth-Bendix orders [Knuth and Bendix 1970℄ and various versions of re
ursive
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path orders [Dershowitz 1982℄. Both Knuth-Bendix orders and re
ursive path or-

ders are used in most of the state-of-the-art theorem provers, for example Vampire

[Riazanov and Voronkov 1999℄, E [S
hulz 1999℄, Waldmeister [Hillenbrand, Bu
h,

Vogt and L�o
hner 1997℄ and SPASS [Weidenba
h 2001℄. During the last two

de
ades re
ursive path orders have been intensively studied and many important

results have been obtained by various resear
hers. Despite the fa
t that Knuth-

Bendix orders were dis
overed earlier than re
ursive path orders and sin
e then

used in most of automated theorem provers, almost nothing had been known

about properties of these orders.

In this work we try to 
lose this gap and provide various de
idability and


omplexity results for a number of important problems related to Knuth-Bendix

orders. Let us draw some 
onne
tions between known results in the area and

results of this thesis. More details about appli
ations of orders in automated

dedu
tion 
an be found in Chapter 2.

Constraint solving. Using solvability of ordering 
onstraints we 
an dramati-


ally redu
e the number of redundant inferen
es in a resolution-based prover. As

a 
onsequen
e, the problem of solving ordering 
onstraints for the known simpli�-


ation orders is one of the important problems in the area. There exists extensive

literature on solving re
ursive path ordering 
onstraints: [Jouannaud and Okada

1991, Comon 1990, Nieuwenhuis 1993, Nieuwenhuis and Rivero 1999, Narendran,

Rusinowit
h and Verma 1998, Narendran and Rusinowit
h 2000℄, but until re-


ently no algorithms for solving Knuth-Bendix ordering 
onstraints were known.

We show

� The de
idability and NP{
ompleteness of the problem of solving Knuth-

Bendix ordering 
onstraints (see Chapter 4).

� The polynomial{time 
omputability of the problem of solving Knuth-Bendix

ordering 
onstraints 
onsisting of single inequalities (see Chapter 6).

� The de
idability of �rst-order Knuth-Bendix ordering 
onstraints over unary

signatures (see Chapter 5).

These results are reported in [Korovin and Voronkov 2000, Korovin and Voronkov

2001a, Korovin and Voronkov 2001b, Korovin and Voronkov 2002, Korovin and

Voronkov 2003b℄.
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Orientability. Usually an order is an important parameter of a dedu
tion sys-

tem that 
an be 
hosen a

ording to the problem to solve. The 
hoi
e of an

order is espe
ially important for problems 
ontaining equality and problems re-

lated to term rewrite systems and 
an be restated as a problem of orientability

of equational (term rewrite) systems. In some 
ases the user 
an de�ne man-

ually the order that the system should use on a given problem. Of 
ourse it

would be desirable to automate the pro
ess of 
hoosing an appropriate order.

In general this problem is bound to be 
omputationally diÆ
ult, and hen
e we


an try to solve this problem for some known 
lasses of orders. The orientability

problem for re
ursive path orders has been studied and shown to be NP{hard

[Krishnamoorthy and Narendran 1985, Les
anne 1984℄. We study orientability

problem for Knuth-Bendix orders and show the following.

� The problem of the existen
e of a Knuth-Bendix order whi
h orients a

given system of equalities and term rewrite rules 
an be solved in the time

polynomial in the size of the system. Moreover, if the system of equalities

and rewrite rules is orientable by a Knuth-Bendix order, we 
an �nd su
h

an instan
e in polynomial time (see Chapters 6,7).

� The problem of orientability of systems of equalities and rewrite rules by a

Knuth-Bendix order is P-
omplete. Moreover, it is P-hard even for systems


onsisting only of term rewrite rules or only of equalities (see Chapters 6,7).

These results are reported in [Korovin and Voronkov 2001b, Korovin and

Voronkov 2003
, Korovin and Voronkov 2003d℄. Let us note that an algorithm

for orientability of term rewriting systems by a weaker version of Knuth-Bendix

order has been presented in [Martin 1987, Di
k, Kalmus and Martin 1990℄.

Orders 
ompatible with asso
iativity{
ommutativity. Among various equa-

tional theories, theories axiomatized by the axioms of asso
iativity and 
ommu-

tativity, so-
alled AC-theories, play a spe
ial role. Su
h theories very often o

ur

in appli
ations and require spe
ial treatment in automated systems. In su
h sys-

tems AC-
ompatible simpli�
ation orders is a 
ru
ial ingredient. Importan
e of

AC-
ompatible simpli�
ation orders triggered a huge amount of resear
h aimed to

design su
h orders: [Dershowitz, Hsiang, Josephson and Plaisted 1983, Ba
hmair

and Plaisted 1985, Gnaedig and Les
anne 1986, Cherifa and Les
anne 1987, Ka-

pur, Sivakumar and Zhang 1990, Narendran and Rusinowit
h 1991, Ba
hmair
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1992, Rubio and Nieuwenhuis 1993, Kapur, Sivakumar and Zhang 1995, Mar
h�e

1995, Kapur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio

2002℄. Usually, AC-
ompatible simpli�
ation orders are designed from known

simpli�
ation orders. Re
ently, a lot of work has been done to modify re
ursive

path orders to obtain AC-
ompatible simpli�
ation orders AC-total on ground

terms [Kapur et al. 1990, Rubio and Nieuwenhuis 1993, Kapur et al. 1995, Ka-

pur and Sivakumar 1997, Kapur and Sivakumar 1998, Rubio 1999, Rubio 2002℄.

Although Knuth-Bendix orders are widely used in automated dedu
tion, to our

knowledge no AC-
ompatible simpli�
ation variant of Knuth-Bendix orders have

been known. In Chapter 8 we de�ne a family of AC-
ompatible Knuth-Bendix or-

ders. These orders enjoy attra
tive features of the standard Knuth-Bendix orders,

su
h as

� a polynomial-time algorithm for term 
omparison, and

� 
omputationally eÆ
ient approximations.

These results are reported in [Korovin and Voronkov 2003a℄.



Chapter 2

Motivation

In this 
hapter we brie
y introdu
e resolution and paramodulation 
al
uli. The

main goal of our presentation is to illustrate how results of this thesis 
an be

applied in automated dedu
tion. Thus, all results in this 
hapter are well-known

and the reader wishing to study this subje
t in detail 
an �nd a 
omprehensive

treatment of these topi
s in e.g. [Ba
hmair and Ganzinger 2001, Baader and

Nipkow 1998, Nieuwenhuis and Rubio 2001℄.

This 
hapter is organized as follows. In Se
tion 2.2 we introdu
e a simple

version of resolution-based inferen
e system and dis
uss the eÆ
ien
y problems.

In Se
tion 2.3 we show how these problems 
an be ta
kled with the help of simple


onstraints. In Se
tion 2.4 we extend resolution into resolution with 
onstrained


lauses. In Se
tion 2.5 we introdu
e the subsumption rule and show how �rst-

order 
onstraints 
an be used. In Se
tion 2.6 we introdu
e equational reasoning

and term rewriting, and dis
uss the role of orientability. In Se
tion 2.7 we show

how the resolution system 
an be extended with equality and the use of 
onstraint

solving and orientability for this system. Finally, in Se
tion 2.8 we show how

to integrate nonorientable equations like 
ommutativity into term rewriting and

paramodulation 
al
uli with the help of E-
ompatible simpli�
ation orders.

2.1 Introdu
tion

In pra
ti
al appli
ations we 
an spe
ify properties of systems su
h as programs

or hardware devi
es using �rst-order formulas. Usually we want to be sure that

this spe
i�
ation satis�es some required properties. Often problems of this kind


an be reformulated as the validity problem for �rst-order formulas. In order to
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prove validity of �rst-order formulas various dedu
tion 
al
uli have been devised.

Roughly speaking, dedu
tion 
al
uli allow us to prove validity of formulas using

simple transformations (derivations). Two main properties of a dedu
tion 
al-


ulus are soundness and 
ompleteness. Soundness ensures that we dedu
e only

valid formulas and 
ompleteness guarantees that if a given formula is valid then

we 
an prove it in a �nite number of steps.

Another important property of a dedu
tion 
al
ulus is that it 
an be imple-

mented eÆ
iently. This is one of the main 
on
erns in the area of automated

dedu
tion. It turns out that it is a very diÆ
ult task to devise an eÆ
ient 
al-


ulus for �rst-order logi
. One of the most su

essful attempts is the resolution


al
ulus introdu
ed by Robinson [1965℄. The resolution 
al
ulus and its re�ne-

ments form a basis for most of the 
ontemporary theorem provers for �rst-order

logi
. Let us brie
y des
ribe this 
al
ulus.

2.2 Resolution-based theorem proving

We assume that the reader is familiar with the syntax and semanti
s of �rst-

order logi
. We 
onsider formulas over a �nite language 
onsisting of predi
ate

and fun
tion symbols and we assume that the language is arbitrary but �xed.

Also w.l.o.g. we assume that our language 
ontains at least one 
onstant.

Let us sket
h how the resolution 
al
ulus 
an be applied to prove valid-

ity of �rst-order formulas. To prove the validity of a �rst-order formula we

prove the unsatis�ability of its negation. To prove the unsatis�ability of a

formula we �rst eliminate all existential quanti�ers, by a transformation pre-

serving satis�ability/unsatis�ability of this formula (for eÆ
ient algorithms for

su
h transformations we refer to [Baaz, Egly and Leits
h 2001, Nonnengart and

Weidenba
h 2001℄). Now we 
an restri
t ourself to universally quanti�ed formu-

las. The key theorem, whi
h is used to prove 
ompleteness of resolution 
al
uli,

is Herbrand's theorem whi
h states the following. Consider a formula � = 8�x (x)

where  (�x) is a quanti�er{free formula. Then, � is unsatis�able if and only if

there exists a �nite number of tuples of terms

�

t

1

; : : : ;

�

t

n

without variables su
h

that the formula  (

�

t

1

)^ : : :^ (

�

t

n

) is unsatis�able. Let us note that this theorem

gives us a semi{de
ision pro
edure for proving validity of �rst-order formulas,

sin
e we 
an 
he
k e�e
tively satis�ability of variable{free formulas. Of 
ourse,

su
h a pro
edure would be highly ineÆ
ient in pra
ti
e, that is the reason why
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the resolution 
al
ulus was devised.

Now we are ready to introdu
e the resolution 
al
ulus. The resolution 
al
ulus

involves formulas of a spe
ial kind, so-
alled 
lauses. A 
lause is a disjun
tion of

literals, where a literal is either an atomi
 or a negated atomi
 formula. Initially

we have a set of 
lauses whi
h are impli
itly universally quanti�ed. The goal is to

prove that this set is unsatis�able, or in other words to dedu
e the empty 
lause.

The inferen
e system 
onsists of two rules: the resolution rule and the fa
toring

rule.

Resolution:

A _ C :B _D

(C _D)�

where � is the most general uni�er of the atoms A and B.

Fa
toring:

A _B _ C

(B _ C)�

where � is the most general uni�er of the atoms A and B.

This inferen
e system was proved to be refutation 
omplete, i.e., if we have an

unsatis�able set of 
lauses, then there is a proof of the empty 
lause using these

inferen
e rules. Usually the proof sear
h is implemented via a saturation pro
ess,

i.e., exhaustively appli
ation of inferen
es to the previously derived 
lauses. There

are three possible out
omes of a saturation pro
ess. We derive the empty 
lause

whi
h means that the initial set of 
lauses is unsatis�able. Or, the pro
edure stops

without dedu
ing the empty 
lause whi
h means that the initial set of 
lauses is

satis�able. The third possibility is that the pro
edure does not terminate whi
h

means that the initial set of 
lauses is satis�able. Only the �rst two out
omes

are useful for appli
ations. Consequently we want to restri
t nontermination of

the pro
edure without 
ompromising 
ompleteness. Although we 
an not avoid

nontermination of resolution pro
ess on all problems, due to unde
idability of

�rst-order logi
, we 
an narrow the 
lass of su
h problems.

Let us 
onsider the following simple example.

Example 2.2.1 Consider the following set of 
lauses S = fB(x)_A(f(x));:A(x)_

A(f(x))g. It is easy to see that S is satis�able, nevertheless the resolution pro
ess

does not terminate.

B(x) _ A(f(x)) :A(x) _ A(f(x))

B(x) _ A(f(f(x))) :A(x) _ A(f(x))

B(x) _ A(f(f(f(x)))) :A(x) _ A(f(x))

� � �
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It turns out that even for unsatis�able sets of 
lauses, the straightforward ap-

proa
h of applying inferen
e rules is very ineÆ
ient in the sense that we generate

a huge number of unne
essary inferen
es. Therefore, one of the main problems in

the area is how to restri
t appli
ability of the inferen
e rules while preserving the


ompleteness of the inferen
e system. One of the most prominent approa
hes to

this problem is based on various ordering restri
tions on appli
ability of inferen
e

rules. Ordering restri
tions and related problems will be the main topi
 for the

rest of this 
hapter.

2.3 Resolution and 
onstraints

Ordering re�nements were introdu
ed into resolution in [Slagle 1967℄, who at-

tributes the idea to [Reynolds 1965℄. In [Slagle 1967℄ orders on literals in the


lause were used to restri
t appli
ability of resolution and fa
toring rules. This

idea turned out to be very produ
tive (see e.g. [Ba
hmair and Ganzinger 2001℄

for a 
omprehensive re
ent survey). In parti
ular, if we 
onsider a simpli�
ation

order � (see De�nition 3.3.1) on the set of ground atoms, then the following

resolution system with ordering restri
tions is 
omplete. (To simplify the presen-

tation we omit restri
tions based on sele
tion fun
tions and refer to [Ba
hmair

and Ganzinger 2001℄ for the general 
ase.)

Resolution:

A _ C :B _D

(C _D)�

where � is the most general uni�er of the atoms A and B.

Restri
tion of appli
ability: For every atom C

0

in C there exists a ground

substitution 
 su
h that A�
 � C

0

�
. In other words, we apply this in-

feren
e rule only if the ordering 
onstraint A�(�x) � C

0

�(�x) is satis�able.

Likewise, for every atom D

0

in D there exists a ground substitution � su
h

that B�� � D

0

��. So, in addition we require that the ordering 
onstraint

B�(�x) � D

0

�(�x) is satis�able.

Fa
toring:

A _B _ C

(B _ C)�

where � is the most general uni�er of the atoms A and B.

Restri
tion of appli
ability: For every atom C

0

in C there exists a ground

substitution 
 su
h that A�
 � C

0

�
. In other words, we apply this infer-

en
e rule only if the ordering 
onstraint A�(�x) � C

0

�(�x) is satis�able.
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These ordering restri
tions are powerful but to use them we need algorithms for

solving ordering 
onstraints, (see Chapter 3 for the de�nition of 
onstraints).

There are two 
lasses of orders extensively used in automated dedu
tion, namely

Knuth-Bendix orders and re
ursive path orders. The de
idability of re
ursive path

ordering 
onstraints is shown in [Comon 1990℄ and 
omplexity results are given

in [Jouannaud and Okada 1991, Nieuwenhuis 1993, Comon and Treinen 1994℄. In

Chapter 4 we prove the de
idability of Knuth-Bendix ordering 
onstraints and

show that this problem is NP-
omplete for 
onjun
tive 
onstraints (as 
orollary

it is NP-
omplete for quanti�er free 
onstraints). It is interesting to note that

for Knuth-Bendix 
onstraints 
onsisting of a single inequality, as used above in

ordered resolution, there is an eÆ
ient polynomial-time algorithm solving them,

presented in Chapter 6. This is in 
ontrast with re
ursive path orders, for whi
h

it is shown that the problem of solving 
onstraints 
onsisting of a single inequality

is NP-
omplete [Comon and Treinen 1994℄.

Let us re
onsider Example 2.2.1. Now we apply ordered resolution instead

of unrestri
ted resolution. For a suitable order we 
an have that the 
onstraint

A(f(x)) � B(x), is unsatis�able and therefore the pro
edure stops returning the

answer \satis�able", in 
ontrast to the unrestri
ted resolution. (An example of

su
h an order is a Knuth-Bendix order � with parameters fjBj = 3; jAj = 1; jf j =

1;B � A� fg see De�nition 3.3.8 of Knuth{Bendix orders.)

Here we also 
an noti
e that in addition to the 
onstraint satisfa
tion problem,

there is a problem of 
hoosing an appropriate order to minimize the number of

appli
able rules. This problem is related to the orientability problem, whi
h is

shown to be de
idable in polynomial time for Knuth-Bendix orders see Chapters

6,7.

It turns out that it is possible to restri
t resolution even further by introdu
ing


onstrained 
lauses, whi
h will be dis
ussed in the next se
tion.

2.4 Inherited 
onstraints

In order to restri
t resolution further, instead of ordinary 
lauses we 
onsider


onstrained 
lauses whi
h are of the form C(�x) j �(�x), where C(�x) is a 
lause

and �(�x) is an ordering 
onstraint. Usually a 
lause is viewed as a representation

of all its ground instan
es C(�x)�, then a 
onstrained 
lause C(�x) j �(�x) 
an be

viewed as a representation of all ground C(�x)� su
h that the 
onstraint �(x)�
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is valid. The main bene�t of using 
onstrained 
lauses is that we 
an inherit


onstraints along the derivation. Now the resolution rule 
an be repla
ed with

the following rule.

Resolution with inherited 
onstraints:

C _ A j T :B _D j T

0

(C _D)� j (OC ^ T ^ T

0

)�

where � is the most general uni�er of the atoms A and B and OC is the ordering


onstraint imposed by this inferen
e. Now a 
lause C(�x) j �(�x) is redundant if


onstraint �(�x) is unsatis�able.

Various types of 
onstraint 
lauses are introdu
ed and 
ompleteness results are

proved in [Huet 1972, B�urkert 1990, Kir
hner, Kir
hner and Rusinowit
h 1990,

Nieuwenhuis and Rubio 1992, Nieuwenhuis and Rubio 1995℄. Again, in order

to gain from 
onstrained 
lauses, we need algorithms for 
he
king solvability

of ordering 
onstraints (see Chapter 4 for a nondeterministi
 polynomial time

algorithm for this problem for Knuth-Bendix orders).

2.5 First-order 
onstraints

In resolution-based theorem proving there are important simpli�
ations whi
h

allow us to remove 
lauses from the sear
h spa
e. It turns out that in order

to express appli
ability 
onditions for these simpli�
ations, we need to 
onsider


onstraints whi
h involve �rst-order quanti�ers. As an example we 
onsider sub-

sumption.

Subsumption: ([Voronkov 2000℄) We say that a 
onstrained 
lause C(�x) j '(�x)

subsumes a 
onstrained 
lause D(�x) j  (�x) if the following holds:

8x( (x)! 9y('(y) ^ C(y) � D(x))):

If the 
lause D(�x) j  (�x) is subsumed by a 
lause C(�x) j '(�x) then it


an be shown that the 
lause D(�x) j  (�x) is redundant and 
an be removed

from the sear
h spa
e. In order to 
he
k whether one 
lause is subsumed by

another we need to solve ordering 
onstraints involving alternation of quanti-

�ers. Unfortunately the �rst-order theory of re
ursive path orders is unde
id-

able [Treinen 1990, Comon and Treinen 1997℄. Re
ently, it was shown that

in the 
ase of the signatures 
onsisting of unary fun
tion symbols and 
on-

stants the �rst-order theory of re
ursive path orders is de
idable [Narendran and
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Rusinowit
h 2000℄. In Chapter 5 we show that the �rst-order theory of the

Knuth{Bendix orders is de
idable if we 
onsider signatures 
onsisting of unary

fun
tion symbols and 
onstants.

Another possible appli
ation of solvability of �rst-order ordering 
onstraints

is simpli�
ation of 
onstraints. For example, 
onsider a 
onstrained 
lause C(�x) j

'(�x; �y). It might be the 
ase that the variables �y do not o

ur in the 
lause C(�x)

and therefore we want to simplify the 
onstraint '(�x; �y) to a 
onstraint '

0

(�x)

whi
h does not 
ontain variables from �y. From the de
idability pro
edure for

�rst-order Knuth{Bendix ordering 
onstraints over unary signatures, we 
an see

that there is a representation of 
onstraints where su
h redundant variables 
an

be eliminated.

2.6 Equational reasoning and term rewriting

Equational reasoning plays an important role in mathemati
s and 
omputer s
i-

en
e. Most problems o

urring in pra
ti
al appli
ations involve reasoning with

equality.

Formally, we are studying properties of stru
tures de�ned using identities.

Although the language is restri
tive we still 
an de�ne a lot of interesting and

important 
lasses of stru
tures su
h as groups, rings, latti
es, et
.. Let us 
onsider

axioms of group theory:

� asso
iativity axiom: (x Æ y) Æ z ' x Æ (y Æ z) ,

� left-unit axiom: e Æ x ' x,

� left-inverse axiom: i(x) Æ x ' e.

In many situations we are interested in the following question: given a set of

axioms and an equality t ' s, is t ' s valid in all stru
tures satisfying these

axioms (e.g. is i(x Æ y) = i(y) Æ i(x) valid in all groups)? In other words, does

the given equality logi
ally follow from the axioms? One way to 
he
k it, is to

transform terms t and s by repla
ing equal subterms using the axioms, and wait

until t will be synta
ti
ally equal to s. In fa
t, this method is sound and 
omplete

by Birkho�'s theorem (see e.g. [Baader and Nipkow 1998℄), i.e., if the equality

t ' s follows from the axioms, then exhaustively applying transformations as

above we will dedu
e synta
ti
ally identi
al terms in a �nite number of steps.
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Unfortunately this method has two major drawba
ks. First, for a given set of

axioms we 
annot predi
t whether the algorithm terminates for every equality

t ' s. More importantly, this algorithm is hopelessly ineÆ
ient. For example

if we want to prove that (x Æ i(y)) Æ y ' x follows from the axioms of group

theory, then among other dedu
ed equalities we obtain f(x Æ (e Æ i(y))) Æ y '

x; (x Æ i(y)) Æ (e Æ y) ' e Æx; (x Æ i(e Æ y)) Æ (e Æ y) ' x) : : :g (using left-unit axiom),

whi
h have nothing to do with the a
tual proof.

The main approa
h to over
ome these problems is as follows. We represent

axioms as rewrite rules and apply them only in one dire
tion. Now in pla
e of

axioms we have term rewrite rules. For example a possible term rewriting system

for groups is as follows.

� asso
iativity rule: (x Æ y) Æ z ! x Æ (y Æ z) ,

� left-unit rule: e Æ x! x,

� left-inverse rule: i(x) Æ x! e.

The idea is to redu
e a given term into a normal form using these rewrite rules.

Then, if our term rewriting system satis�es 
ertain properties, we 
an guarantee

that this rewriting pro
ess will always terminate and produ
e a unique normal

form for ea
h term. As a 
onsequen
e, the problem of 
he
king whether a given

equality follows from the axioms be
omes simple: we produ
e normal forms of


orresponding terms and 
he
k synta
ti
 identity of normal forms. This approa
h,


alled term rewriting, was introdu
ed in the seminal paper of Knuth and Bendix

[1970℄ and has been intensively studied and developed during the last 30 years.

For example, 
onsider again the equality (xÆi(y))Æy ' x. The only appli
able

rule is the asso
iativity rule whi
h produ
es x Æ (i(y) Æ y) ' x, at the next step

the only appli
able rule is the left-inverse rule whi
h produ
es x Æ e ' x, now

the only appli
able rule is the left-unit rule whi
h proves the equality produ
ing

x ' x. Although the term rewriting system above is sound, it is in
omplete, i.e.,

not all equalities whi
h follow from the axioms of group theory 
an be proved

by this term rewriting system. For example x Æ i(x) ' e is a logi
al 
onsequen
e

of group theory, but 
annot be proved by this term rewriting system (none of

the rules is appli
able). Therefore a natural question to ask is what are the

properties of term rewriting systems whi
h guarantee that the term rewriting

system is 
omplete, i.e., 
an prove all logi
al 
onsequen
es? These properties
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are termination and 
on
uen
e. Termination guarantees that there is no in�nite

sequen
es of rewritings and 
on
uen
e guarantees that if we 
an rewrite a given

term into two di�erent ones then we 
an join these rewrites. If a term rewriting

system is 
on
uent and terminating, then every term 
an be rewritten into a

unique normal form. As a 
onsequen
e, every equality 
an be proved or disproved

by rewriting. Therefore, termination is one of the 
ru
ial properties of term

rewriting systems. Moreover, it turns out that 
on
uen
e is de
idable if our term

rewriting system is terminating. In general, termination of rewriting systems is

unde
idable (see e.g. [Baader and Nipkow 1998℄), but in many pra
ti
al 
ases we


an prove termination using orientability of term rewriting systems by redu
tion

orders. In fa
t, if our term rewriting system 
an be oriented using a redu
tion

order then it is terminating. Let us de�ne the orientability problem. Let � be

any redu
tion order on ground terms and l ! r be a rewrite rule. We say that �

orients l ! r, if for every ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

. We

say that � orients a term rewriting system R if it orients every rewrite rule in R.

Orientability problem (TRS): Given a term rewriting system R 
he
k whether

there exists a redu
tion order � whi
h orients R.

Knuth-Bendix orders and re
ursive path orders are two major 
lasses of orders

that 
an be used to show termination of term rewriting systems. For re
ursive

path orders the orientability problem is 
omputationally diÆ
ult, in parti
ular it

is NP-hard and 
o-NP-hard [Krishnamoorthy and Narendran 1985, Comon and

Treinen 1994℄. We show that for Knuth-Bendix orders the orientability prob-

lem 
an be solved in polynomial-time, in parti
ular we show that this problem

is P-
omplete (Chapter 6). Let us note that there are powerful extentions of

termination analysis based on orientability, by 
onsidering dependen
y relation

between term rewrite rules, fo
using only on rules that 
an start a nonterminating

sequen
e of rewrites (see [Arts and Giesl 2000℄).

The term rewriting te
hnique for equational reasoning 
an be integrated into

resolution-based theorem proving as shown in the next se
tion. Let us men-

tion that term rewriting systems are already expressive enough to be used in

veri�
ation (see e.g. [Arts and Giesl 2001, Hoe and Arvind 1999℄) where 
er-

tain spe
i�
ations are represented as term rewriting systems. Again, termination

plays a 
ru
ial role there.
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2.7 Introdu
ing equality into resolution

The equality predi
ate is used in many appli
ations and 
onsequently it is impor-

tant to introdu
e it into resolution 
al
ulus. One way to do this is by introdu
ing

equality axioms. Indeed, the equality predi
ate ' 
an be axiomatized by the

following set of axioms

� re
exivity axiom: x ' x;

� symmetry axiom: x ' y � y ' x;

� transitivity axiom: x ' y ^ y ' z � x ' z;

� fun
tion substitution axioms: x

1

' y

1

^ : : : ^ x

n

' y

n

� f(x

1

; : : : ; x

n

) '

f(y

1

; : : : ; y

n

), for every fun
tion symbol f ;

� predi
ate substitution axioms: x

1

' y

1

^ : : : ^ x

n

' y

n

^ P (x

1

; : : : ; x

n

) �

P (y

1

; : : : ; y

n

), for every predi
ate symbol P .

Suppose that we want to prove a theorem 
ontaining equality, then we 
an try

to dedu
e it from the equality axioms above using resolution system. However,

this would lead to a 
ombinatorial explosion due to the universal appli
ability of

the equality axioms.

In order to over
ome these problems it has been suggested to build equality

into resolution 
al
ulus via spe
ial rules. Su
h a rule, 
alled paramodulation, was

introdu
ed in [Robinson and Wos 1969℄.

Paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Robinson and Wos [1969℄ proved 
ompleteness of the system 
onsisting of res-

olution, fa
toring and paramodulation in the presen
e of some addition axioms,


alled fun
tion re
exivity axioms. Later Brand [1975℄ proved that resolution,

fa
toring and paramodulation is 
omplete even without fun
tion re
exivity ax-

ioms. Nevertheless, unrestri
ted appli
ation of paramodulation is still very inef-

�
ient. Re
ent resear
h has been aiming at various restri
tions of appli
ability of

paramodulation. One of the most prominent approa
hes is introdu
ing ordering

restri
tions where we repla
e \bigger" terms by \smaller" ones, with respe
t to

the given simpli�
ation order. The main idea goes ba
k to term rewriting. Given
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a simpli�
ation order �, we 
an repla
e paramodulation with ordered paramod-

ulation as follows.

Ordered paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Restri
tion of appli
ability:

� s

0

is not a variable;

� there exists a ground substitution 
 su
h that s�
 � t�
.

Ordered paramodulation was introdu
ed and studied in [Peterson 1983, Hsiang

and Rusinowit
h 1986℄ where 
ompleteness results are proved. Let us refer to

[Nieuwenhuis and Rubio 2001℄ for a re
ent 
omprehensive survey of state-of-the-

art re�nements of the paramodulation 
al
ulus.

Here we 
an observe that if an order � is su
h that for all ground substitutions

� we have s� � t� then we 
an apply paramodulation rule only when we repla
ing

instan
es of s by instan
es of t but not vi
e versa. This is a desirable restri
tion

of appli
ability. Now we are fa
ing a problem of how to 
hoose an order su
h that

equalities o

urring in the set of 
lauses would be oriented by this order. This

is the orientability problem for sets of equalities, whi
h 
an be stated as follows.

We say that � orients an equality s ' t, if it orients either the rewrite rule s! t

or the rewrite rule t! s. The orientability problem for systems of equalities is a

problem of determining whether there exists a simpli�
ation order whi
h orients a

given system of equalities. A straightforward algorithm for 
he
king orientability

of systems of equalities would be to try all possible orientations of equalities and

apply an orientability algorithm for term rewriting systems. Su
h an algorithm

would require to test an exponential number of possible orientations of equalities.

In Chapter 7 we show how to over
ome this problem for Knuth-Bendix orders,

presenting a polynomial time algorithm for 
he
king orientability of systems of

equalities. In some 
ases orientation of some subsystem of equalities is desirable to

be �xed in advan
e. For example, if we know whi
h orientation of the group theory

axioms 
an lead to a 
onvergent term rewriting system, we might require that

this subsystem be oriented in this parti
ular way. So the general statement of the

orientability problem is as follows: given a system of equalities and term rewrite

rules, determining whether there exists a simpli�
ation order whi
h orients this
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system. In Chapter 7 we show that this problem 
an also be solved in polynomial

time for Knuth-Bendix orders.

A further re�nement of ordered paramodulation is maximal paramodulation.

Maximal paramodulation:

s ' t _ C

1

L[s

0

℄ _ C

2

(L[t℄ _ C

1

_ C

2

)�

;

where � is the most general uni�er of s

0

and s.

Restri
tion of appli
ability:

1. s

0

is not a variable;

2. there exists a ground substitution 
 su
h that s�
 � t�
;

3. L[s

0

℄� is maximal w.r.t. � in (L[s

0

℄ _ C

2

)�;

4. (s ' t)� is maximal w.r.t. � in (s ' t _ C

1

)�.

Similar to resolution we 
an inherit 
onstraints along the derivations without

loosing 
ompleteness (see [Nieuwenhuis and Rubio 1995℄). This imposes stronger

restri
tions on appli
ability of rules. Thus, we 
an make use of both orientability

and 
onstraint solving algorithms.

The rules des
ribed so far were inferen
e rules, so every appli
ation of su
h a

rule produ
es a new 
lause, therefore enlarging the sear
h spa
e. For eÆ
ien
y

reasons, another type of rules, so-
alled simpli�
ation rules, are of great impor-

tan
e. Simpli�
ation rules allow us to repla
e 
lauses with \simpli�ed" ones. One

of the most popular simpli�
ation rules for equality reasoning is demodulation.

Demodulation:

s ' t L[s

0

℄ _ C

(L[t℄ _ C)�

;

where s

0

= s�.

Appli
ability: s�
 � t�
 for every ground substitution 
.

After appli
ation of the demodulation the 
lause in the frame will be removed

from the sear
h spa
e. As a 
onsequen
e we want to orient equations in order to

simplify 
lauses. For this, we 
an again employ an orientability algorithm.
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2.8 Building in equational theories

One disappointing feature of the term rewriting approa
h is that some important

axioms like 
ommutativity 
an be oriented by no simpli�
ation ordering. To 
ope

with this problem rewriting modulo theories has been devised, where we rewrite

equivalen
e 
lasses generated by equational theory rather than individual terms.

A general approa
h is to partition a given set of equational axioms into a set

of rewrite rules R whi
h indu
es a rewrite relation on terms !

R

, and a set of

equations E whi
h indu
es an equivalen
e relation on terms =

E

. We say that a

term t R=E-rewrites in one step to a term t

0

(and denote this by t !

R=E

t

0

) if

there exists a term s E-equivalent to t and a term s

0

E-equivalent to t

0

su
h that

t rewrites to t

0

by !

R

. In other words t!

R=E

t

0

if t =

E

s[l�℄ and t

0

=

E

s[r�℄ for

a term s and a rewrite rule l ! r in R. We say that a term t is in a normal form

if we 
annot R=E-rewrite it. Now we 
an try to de
ide equational 
onsequen
es

of the the given set of axioms by normalizing terms w.r.t. R=E-rewriting and


he
k whether the obtained normal forms are equivalent modulo E. For this,

similar to the ordinary rewriting, R=E-rewriting has to be terminating and every

two terms equal w.r.t. our axioms should rewrite to the same normal form. We


an prove termination of R=E-rewriting using simpli�
ation orders whi
h satisfy

an additional property, 
alled E-
ompatibility. We say that an order � is E-


ompatible if it satis�es the following property: if s � t, s =

E

s

0

and t =

E

t

0

, then

s

0

� t

0

. The order � is 
alled E-total , if for all ground terms s; t, if s 6=

E

t, then

either s � t or t � s. Designing E-
ompatible simpli�
ation orders has been an

a
tive resear
h area.

Among various equational theories, theories axiomatized by the axioms of as-

so
iativity and 
ommutativity, so-
alled AC-theories, play a spe
ial role. Su
h

theories very often o

ur in appli
ations and require spe
ial treatment in auto-

mated systems. AC-reasoning based on AC-rewriting has been integrated into

paramodulation framework in [Rusinowit
h and Vigneron 1995, Nieuwenhuis and

Rubio 1997℄. A 
ru
ial ingredient in these approa
hes is an AC-
ompatible AC-

total simpli�
ation order. Existen
e of an AC-
ompatible AC-total simpli�
ation

order has been an open problem for many years and was �nally solved by Naren-

dran and Rusinowit
h [1991℄ who applied this order to show that any ground AC-

theory 
an be represented as a �nite 
onvergent rewriting system. Unfortunately

this order was de�ned only for ground terms whi
h restri
ts its appli
ability.
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Re
ently there has been a huge amount of resear
h devoted to designing AC-


ompatible AC-total simpli�
ation orders, mainly by modifying re
ursive path

orders. Sin
e Knuth-Bendix orders are widely used in automated dedu
tion, it is

important to �nd AC-
ompatible variants of it. In Chapter 8 we present a family

of AC-
ompatible Knuth-Bendix orders. These orders enjoy attra
tive features of

the standard Knuth-Bendix orders, su
h as polynomial-time algorithm for term


omparison and 
omputationally eÆ
ient approximations based on weight 
om-

parisons.



Chapter 3

Ordering restri
tions:

preliminaries

In this 
hapter we introdu
e basi
 de�nitions like orders on sets and multisets

(Se
tion 3.2), orders on terms (Se
tion 3.3) and �nally notion of ordering 
on-

straints (Se
tion 3.4) where we also overview some known results on solving or-

dering 
onstraints.

3.1 Term algebras

The main obje
ts we will be working with are terms over a �nite signature. A

signature is a �nite set of fun
tion symbols with assigned arities (nonnegative

integers) e.g. � = fg(; ); h(); 
g is a signature with fun
tion symbols g of arity

two, (su
h symbols also 
alled binary symbols), h of arity one,(also 
alled unary

symbols) and 
 of arity zero (also 
alled 
onstants). We will denote a signature

by �. Terms of the signature � over a set of variables X are de�ned by indu
tion

as follows, 
onstants and variables are terms, and for ea
h fun
tion symbol g 2 �

of a positive arity n and terms t

1

; : : : t

n

we have g(t

1

; : : : ; t

n

) is a term. Terms

whi
h 
ontain no variables are 
alled ground terms.

Definition 3.1.1 (substitution) A substitution � is a mapping from the set of

variables X to the set of terms. This mapping 
an be extended from variables

to terms in the following 
anoni
al way. For every 
onstant 
, �(
) = 
 and

for every non
onstant term g(t

1

; : : : ; t

n

), �(g(t

1

; : : : ; t

n

)) = g(�(t

1

); : : : ; �(t

n

)). In

the sequel we 
onsider substitutions whi
h are identity on all but �nitely many
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variables. An appli
ation of a substitution � to a term t will be denoted by t�. �

Definition 3.1.2 Let � be a �nite signature whi
h 
ontains at least one 
on-

stant. The �{term algebra TA(�) is an algebra with the domain of the set of

all ground �{terms and the following interpretation: 
onstants interpreted by


onstants from the domain and the value of a fun
tion g on terms

�

t is the term

g(

�

t). �

When the signature is 
lear from the 
ontext, then we say the term algebra instead

of the �{term algebra.

Some authors 
all the �{term algebra as an absolutely free algebra (in the


lass of all �{algebras), it means that there exists a unique homomorphism from

the term algebra into any �{algebra.

In the future we always assume that our signature 
ontains at least one 
on-

stant symbol.

3.2 Orders on sets

Definition 3.2.1 A partially ordered set (A;�) is a set A with a binary relation

� whi
h is re
exive, transitive and antisymmetri
. An order is 
alled linear or

total if for any two elements a; b 2 A either a � b or b � a. We say that a is

stri
tly greater than b, denoting a > b, if a � b and b 6� a. An order is 
alled

well-founded if there is no in�nite de
reasing 
hain a > b > � � �. �

Let us de�ne multisets whi
h is a generalization of sets (for the properties of

multisets see [Baader and Nipkow 1998℄).

Definition 3.2.2 A multiset M over a set A is a fun
tion M : A! N . �

A multiset is �nite if there are only �nitely many x su
h that M(x) > 0. We will


onsider only �nite multisets. We adopt a standard set notation for multisets

for example

_

fa; a; b

_

g denotes the multiset M = fa ! 2; b ! 1g and we write

a

_

2 M if M(a) > 0. The union, interse
tion and multiset di�eren
e are de�ned

as follows: (M

1

[M

2

)(x) =M

1

(x) +M

2

(x), (M

1

\M

2

)(x) = min(M

1

(x);M

2

(x))

and (M

1

_

�M

2

)(x) = max(0;M

1

(x)�M

2

(x)).

One of the important properties of multisets is as follows: if have a total, well{

founded order on a set A then we 
an extend this order into a total, well{founded

order on the multisets over A.
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Definition 3.2.3 Given a stri
t order > on a set A, we de�ne the 
orresponding

multiset order on all multisets over A as follows: M >

mul

N if there exist multisets

X; Y su
h that the following holds:

� ; 6= X �M , and

� N = (M nX) [ Y , and

� 8y 2 Y 9x 2 X x > y.

�

We also 
all >

mul

as a multiset extension of >. The multiset orders were intro-

du
ed by Dershowitz and Manna [1979℄.

Proposition 3.2.4 If > is a stri
t order then >

mul

is a stri
t order. If > is a

well{founded order then >

mul

is a well{founded order. �

For a proof let us refer to [Baader and Nipkow 1998℄.

3.3 Orders on terms

One of the most general 
lasses of orders on terms whi
h is used in automated

dedu
tion is so-
alled simpli�
ation orders introdu
ed by Dershowitz [1979℄.

Definition 3.3.1 A stri
t order > on TA(�) is 
alled a simpli�
ation order if

it has the following properties:

� > ismonotone (or 
ompatible with �{operations): for all s

1

; s

2

2 TA(�) and

n{ary fun
tion symbol g 2 �, s

1

> s

2

implies g(t

1

; : : : ; t

i�1

; s

1

; t

i+1

; : : : ; t

n

) >

g(t

1

; : : : ; t

i�1

; s

2

; t

i+1

; : : : ; t

n

) for all i, 1 � i � n, and all t

1

; : : : ; t

i�1

; t

i+1

; : : : ; t

n

2

TA(�).

� > has a subterm property : if r[s℄ 6= s, then r[s℄ > s.

�

One of the main properties of simpli�
ation orders is that every simpli�
ation

order is well-founded [Dershowitz 1979℄.

There are two sub
lasses of simpli�
ation orders that are widely used be
ause

of a possibility to generate them automati
ally for a given set of 
lauses. They

are: Knuth-Bendix orders and re
ursive path orders.



3.3 Orders on terms 30

Let us start from the de�nition of re
ursive path orders. Re
ursive path orders

are generalization of lexi
ographi
 path orders introdu
ed by Kamin and L�evy

[1980℄ and multiset path orders introdu
ed by Dershowitz [1982℄.

Definition 3.3.2 Let us �x a stri
t order� on �. The lexi
ographi
 path order

>

lpo

on TA(�) indu
ed by� is de�ned as follows: g(s

1

; : : : ; s

n

) >

lpo

h(t

1

; : : : ; t

m

)

if one of the following 
onditions holds:

� s

i

�

lpo

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and g(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ; m.

� g = h and g(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ; m and there exists j,

1 � j � m, su
h that s

1

= t

1

; : : : ; s

j�1

= t

j�1

and s

i

>

lpo

t

i

.

�

Lexi
ographi
 path orders are simpli�
ation orders (for a proof see [Baader

and Nipkow 1998℄).

Remark 3.3.3 If our signature 
ontains at least two non-
onstant fun
tion sym-

bols then there are terms with an in�nite number of di�erent terms below them

with respe
t to the lexi
ographi
al path order.

Proof. We illustrate the proof for the 
ase � = fg(); h(); 
g and g � h the

general 
ase is similar. It is easy to 
he
k that all terms h

n

(
) are stri
tly less

than the term g(
) for any natural number n. �

One of the main usage of orders in automated dedu
tion is to repla
e \big"

terms by \smaller" terms. This remark shows that \small" terms in the sense of

lexi
ographi
 path orders 
an be arbitrarily large in the physi
al representation.

We will see later, Lemma 3.3.9, that for a rather large 
lass of Knuth-Bendix

orders the number of terms below any �xed term is �nite.

Let us 
onsider multiset path orders introdu
ed by Dershowitz [1982℄. These

orders are de�ned on the equivalen
e 
lasses over the multiset equivalen
e. The

multiset equivalen
e =

mul

is the least equivalen
e relation su
h that if we have

that a term t is in the equivalen
e 
lass, then any term obtained by permutation

of immediate subterms of t is in the same equivalen
e 
lass.
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Definition 3.3.4 Let us �x a stri
t order� on �. The multiset path order >

mpo

on TA(�) indu
ed by � is de�ned as follows g(s

1

; : : : ; s

n

) >

mpo

h(t

1

; : : : ; t

m

) if

one of the following 
onditions holds:

� s

i

>

mpo

h(t

1

; : : : ; t

m

) or s

i

=

mul

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and g(s

1

; : : : ; s

n

) >

mpo

t

i

for all i = 1; : : : ; m.

� g = h and

_

fs

1

; : : : ; s

n

_

g >

mul

_

ft

1

; : : : ; t

n

_

g.

�

Re
ursive path orders on terms is a 
ombination of lexi
ographi
al path orders

and multiset path orders. We divide our signature � into two disjoint sets �

lex

and

�

mul

. The multiset equivalen
e =

mul

on TA(�

lex

[�

mul

) is de�ned w.r.t. fun
tion

symbols in �

mul

. That is, =

mul

is the least equivalen
e relation su
h that if we

have that a term t, with top fun
tion symbol in �

mul

, is in the equivalen
e 
lass,

then any term obtained by permutation of immediate subterms of t is in the same

equivalen
e 
lass.

Definition 3.3.5 Let us �x a stri
t order � on �.

The re
ursive path order >

rpo

on TA(�) indu
ed by � is de�ned as follows:

g(s

1

; : : : ; s

n

) >

rpo

h(t

1

; : : : ; t

m

) if one of the following 
onditions holds:

� s

i

>

rpo

h(t

1

; : : : ; t

m

) or s

i

=

mul

h(t

1

; : : : ; t

m

) for some i, 1 � i � n.

� g � h and h(s

1

; : : : ; s

n

) >

rpo

t

i

for all i = 1; : : : ; m.

� g = h, g 2 �

lex

and g(s

1

; : : : ; s

n

) >

rpo

t

i

for all i = 1; : : : ; m and there exists

j, 1 � j � m, su
h that s

1

= t

1

; : : : ; s

j�1

= t

j�1

and s

i

>

rpo

t

i

.

� g = h, g 2 �

mul

and

_

fs

1

; : : : ; s

n

_

g >

mul

_

ft

1

; : : : ; t

n

_

g.

�

Lexi
ographi
 and multiset path orders are the spe
ial 
ases of re
ursive path

orders, when we �x �

lex

= �, �

mul

= � respe
tively. Re
ursive path orders

on terms, modulo the multiset equivalen
e, are well{founded, 
ompatible with

�{operations, and total.

Let us now de�ne Knuth-Bendix orders on TA(�) [Knuth and Bendix 1970℄.

Knuth-Bendix orders is a family of orders parameterized by two parameters: a

weight fun
tion and a pre
eden
e relation.
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Definition 3.3.6 (weight fun
tion) We 
all a weight fun
tion on � any fun
-

tion w : �! N su
h that (i) w(a) > 0 for every 
onstant a 2 �, (ii) there exist at

most one unary fun
tion symbol f 2 � su
h that w(f) = 0. Given a weight fun
-

tion w, we 
all w(g) the weight of g. The weight of any ground term t, denoted

jtj, is de�ned as follows: for every 
onstant 
 we have j
j = w(
) and for every

fun
tion symbol g of a positive arity we have jg(t

1

; : : : ; t

n

)j = w(g)+jt

1

j+: : :+jt

n

j.

�

Definition 3.3.7 (pre
eden
e relation) A pre
eden
e relation on � is any total

order � on �. A pre
eden
e relation � is said to be 
ompatible with a weight

fun
tion w if, whenever f is a unary fun
tion symbol f of weight zero, f is the

greatest element w.r.t. �. �

These 
onditions on the weight fun
tion and pre
eden
e relation ensure that

every Knuth-Bendix order is a simpli�
ation order total on ground terms (see,

e.g. [Baader and Nipkow 1998℄).

Let us 
onsider a weight fun
tion w on � and a pre
eden
e relation� on �,


ompatible with w.

Definition 3.3.8 The Knuth-Bendix order on TA(�) is the binary relation

�

KBO

de�ned as follows. For any ground terms t = g(t

1

; : : : ; t

n

) and s =

h(s

1

; : : : ; s

k

) we have t �

KBO

s if one of the following 
onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and

t

i

�

KBO

s

i

.

�

Note that every Knuth-Bendix order is a total monotoni
 well-founded order,

see, e.g. [Baader and Nipkow 1998℄.

For a unary fun
tion symbol f and a term t, let f

m

(t) denote a term obtained

by m appli
ations of f to t. Let us prove the following simple properties of weight

fun
tions whi
h we will use later.

Lemma 3.3.9 Every weight fun
tion satis�es the following properties.
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1. The weight of every term is positive.

2. If � 
ontains the unary fun
tion symbol of the weight 0, then, for every

weight, either there are no terms of that weight or there are in�nitely many.

3. If a term s is a subterm of t then either jtj > jsj or jtj = jsj and t has the

form f

m

(s) for some m � 0, where f is the unary fun
tion symbol of the

weight 0.

4. If � 
ontains no unary fun
tion symbol of the weight 0, then for every

natural number n there is only a �nite number of terms of the weight n.

Proof. First property follows from the fa
t that the weight of every 
onstant is

positive.

Denote the unary fun
tion symbol of the weight 0 as f . Then the se
ond

property follows from the fa
t that if we have a term t then for every m 2 N the

term f

m

(t) has the same weight as t.

To prove the last two properties let us show that if we 
onsider a non
onstant

term t with a top fun
tion symbol di�erent from f then the weight of t is stri
tly

greater than the weight of any of its immediate subterms.

Indeed, if we 
onsider a term t = g(t

1

; : : : ; t

n

) where g is di�erent from f ,

then jg(t

1

; : : : ; t

n

)j = w(g) + jt

1

j+ � � �+ jt

n

j and all possible 
ases are as follows:

� either w(g) > 0 and jtj > jt

1

j+� � �+jt

n

j and therefore jtj > jt

i

j for 1 � i � n,

or

� w(g) = 0 and n > 1 so we have jtj = jt

1

j + : : : + jt

n

j, and sin
e the weight

of every term is positive we have that jtj > jt

i

j for 1 � i � n.

From this, the third property follows immediately. To show the last property


onsider a signature without the unary fun
tion symbol of zero weight. From the

observation above we have that in this 
ase ea
h term has depth less or equal

than its weight. Sin
e there are only �nite number of terms of a �xed depth we


on
lude that for ea
h weight there is only a �nite number of terms of this weight.

�

From this lemma it follows that if our signature 
ontains no unary fun
tion

symbol of weight zero then there is only a �nite number of terms below ea
h term.

The following example shows that if our signature 
ontains the unary fun
tion
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symbol of the weight 0 and a binary fun
tional symbol then there exists a term

t with an in�nite number of terms below it of the same weight as t.

Example 3.3.10 Let � = ff(); g(; ); 


1

g and f � g � 


1

and w(f) = 0. Then

g(f(


1

); 


1

) �

KBO

g(


1

; f

n

(


1

)) for any natural number n. Moreover we have that

w(g(f(


1

); 


1

)) = w(g(


1

; f

n

(


1

))) for any natural number n. �

3.4 Ordering 
onstraints

In this se
tion we des
ribe types of ordering 
onstraints that we will work with.

Let us �x a signature � whi
h indu
es the term algebra TA(�) and let us

�x an order on this term algebra. We denote TA

>

(�) the stru
ture of the term

algebra with the order > and we 
all this stru
ture an ordered term algebra.

Definition 3.4.1 A 
onjun
tive ordering 
onstraint (or just a 
onstraint ) is a


onjun
tion of atomi
 formulas of the language of TA

>

(�). �

For example, if we have � = fh(; ); g(); 
g then h(x; g(y)) > 
^g(x) > h(g(z); y)^

g(g(y)) = g(g(
)) is a 
onstraint with free variables x; y.

Definition 3.4.2 A quanti�er{free 
onstraint is a quanti�er{free formula of the

language of TA

>

(�). �

For example, if we have � = fh(; ); g(); 
g then (h(g(y); z) > z)! :(z = g(m) _

z > g(
)) is a quanti�er{free 
onstraint.

Definition 3.4.3 A �rst{order 
onstraint is a �rst order formula of the language

of TA

>

(�). �

For example, if we have � = fh(; ); g(); 
g then 8y9z(h(g(y); x) > z ^ y > 
) is a

�rst{order 
onstraint.

A 
onstraint �(�x) is satis�able in the ordered term algebra TA

>

(�) if TA

>

(�) j=

9�x�(�x) i.e. there exist ground terms

�

t su
h that the senten
e �(

�

t) is valid in our

ordered term algebra. Let us �x an ordered term algebra TA

>

(�) then the 
on-

straint satis�ability problem is a problem to de
ide for a given 
onstraint whether

it satis�able in TA

>

(�) or not. A solution to a 
onstraint is a substitution whi
h

makes this 
onstraint valid. It is 
lear, that the quanti�er{free (�rst{order) 
on-

straint satis�ability problem is equivalent to the problem of the de
idability of

the existential (�rst{order) theory of the ordered term algebra.



3.5 Solving ordering 
onstraints 35

3.5 Solving ordering 
onstraints

In this se
tion we overview some results on solving re
ursive path ordering 
on-

straints.

Term algebras are rather well-studied stru
tures. Ma

�

l
ev [1961℄ was the �rst to

prove the de
idability of the �rst-order theory of term algebras. Other methods

of proving de
idability were developed by Comon and Les
anne [1989℄, Kunen

[1987℄, Belegradek [1988℄ and Maher [1988℄. The 
omplexity of the �rst-order

theory of any term algebra over a signature 
ontaining a binary fun
tion symbol

is nonelementary, i.e. not bounded by any tower of exponents 2

�

�

�

2

n

(see [Ferrante

and Ra
ko� 1979℄).

If we introdu
e a binary predi
ate into a term algebra, then one 
an obtain

a ri
her theory. Term algebras with the subterm predi
ate have an unde
idable

�rst{order theory and a de
idable existential theory [Venkataraman 1987℄.

Let us 
onsider term algebras with lexi
ographi
 path orders.

Theorem 3.5.1 [Comon 1990℄ The quanti�er{free 
onstraint satis�ability prob-

lem for lexi
ographi
 path orders is de
idable. �

Later, it was shown that this problem is NP{
omplete.

Theorem 3.5.2 [Nieuwenhuis 1993℄ The quanti�er{free 
onstraint satis�ability

problem for lexi
ographi
 path orders is NP{
omplete. �

Let us prove a simple result (similar to the result from [Nieuwenhuis 1993℄)

from whi
h NP-hardness will follow.

Proposition 3.5.3 For any stru
ture S with at least two elements the following

holds.

1. The problem of de
iding whether a given existential formula is valid in S is

NP-hard.

2. The problem of de
iding whether a given �rst-order formula is valid in S is

PSPACE-hard.

Proof. It is well-known that the problem of satis�ability of propositional formu-

las is NP-
omplete and the problem of satis�ability of quanti�ed propositional

formulas is PSPACE-
omplete (see e.g. [Papadimitriou 1994℄). We show how
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to redu
e satis�ability of propositional formulas to satis�ability of quanti�er-free


onstraints in S and satis�ability of quanti�ed propositional formulas to to sat-

is�ability of �rst-order 
onstraints in S.

We transform any propositional formula P into a quanti�er-free 
onstraint C

as follows. For any propositional variable X o

urring into P we �x a pair of

new variables x

1

; x

2

. Any o

urren
e of a propositional variable X we repla
e

with the formula x

1

= x

2

. It is easy to 
he
k that the obtained 
onstraint C is

satis�able in S if and only if P is satis�able.

For quanti�ed propositional formulas, in addition to the previous transfor-

mations, we repla
e ea
h propositional quanti�er 9X with �rst-order quanti�ers

9x

1

9x

2

, likewise 8X we repla
e with 8x

1

8x

2

. It is easy to 
he
k that the obtained

�rst-order 
onstraint is satis�able in S if and only if the initial propositional quan-

ti�ed formula is satis�able. �

Corollary 3.5.4 If a term algebra 
ontains at least two elements then the

quanti�er-free 
onstraint satis�ability problem is NP-hard and �rst-order 
on-

straint satis�ability problem is PSPACE-hard, for any order. �

It turns out that for lexi
ographi
 path orders even the problem of satis�ability

of the atomi
 formulas is NP-
omplete [Comon and Treinen 1994℄.

Although the 
onstraint satis�ability problem for lexi
ographi
 path orders is

in NP, a pra
ti
al algorithm was presented only in [Nieuwenhuis and Rivero 1999℄.

Let us 
onsider �rst{order lexi
ographi
 path ordering 
onstraints. Treinen

[1990℄ proved the unde
idability of the 
onstraint satis�ability problem for a gen-

eralization of lexi
ographi
al path orders. He used a redu
tion of the Post 
or-

responden
e problem to the �rst{order 
onstraint satis�ability problem. Later,

Comon and Treinen [1997℄ proved that the 
onstraint satis�ability problem for

lexi
ographi
 path orders is unde
idable again using a redu
tion of the Post 
or-

responden
e problem.

Theorem 3.5.5 [Comon and Treinen 1997℄ Let us �x a signature � and an

order � on � su
h that there exists a binary fun
tion h minimal with respe
t to

�.This order indu
es a lexi
ographi
 order � on TA(�) su
h that the �rst-order

theory of the ordered term algebra TA

�

(�) is unde
idable. �

It turns out that if we 
onsider a signature whi
h 
onsists only of 
onstants
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and unary fun
tion symbols then the problem of satis�ability of �rst{order lexi
o-

graphi
 path ordering 
onstraints is de
idable [Narendran and Rusinowit
h 2000℄.

Let us 
onsider re
ursive path ordering 
onstraints. The quanti�er-free 
on-

straints satis�ability problem is shown to be de
idable [Jouannaud and Okada

1991℄ and NP{
omplete [Narendran et al. 1998℄. To our knowledge it is unknown

whether the satis�ability problem of �rst-order multiset path ordering 
onstraints

is de
idable or not.



Chapter 4

Knuth-Bendix 
onstraint solving

is NP-
omplete

This 
hapter is based on papers [Korovin and Voronkov 2000, Korovin and

Voronkov 2001a℄.

In this 
hapter we present a nondeterministi
 polynomial-time algorithm for

solving Knuth-Bendix ordering 
onstraints, and hen
e show that the problem

is 
ontained in NP for every term algebra with a Knuth-Bendix order. As a


onsequen
e, we obtain that the existential �rst-order theory of any term algebra

with a Knuth-Bendix order is NP-
omplete too. Let us note that the problem of

solvability of a Knuth-Bendix ordering 
onstraints 
onsisting of a single inequality


an be solved in polynomial time see Chapter 6.

This 
hapter is stru
tured as follows. In Se
tion 4.2 we introdu
e the notion

of isolated form of 
onstraints and show that every 
onstraint 
an be e�e
tively

transformed into an equivalent disjun
tion of 
onstraints in isolated form. This

transformation is represented as a nondeterministi
 polynomial-time algorithm


omputing members of this disjun
tion. After this, it remains to show that

solvability of 
onstraints in isolated form 
an be de
ided by a nondeterminis-

ti
 polynomial-time algorithm. In Se
tion 4.3 we present su
h an algorithm using

transformation to systems of linear Diophantine inequalities over the weights of

variables. Finally, in Se
tion 4.4 we 
omplete the proof of the main result and

present some examples.
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4.1 Preliminaries

In this 
hapter, f will always denote a unary fun
tion symbol of the weight 0.

In the sequel we assume a �xed weight fun
tion w on � and a �xed pre
eden
e

relation � on �, 
ompatible with w.

The main result of this 
hapter is the following.

Theorem 4.4.2: The existential �rst-order theory of any

term algebra with the Knuth-Bendix order in a signature

with at least two symbols is NP-
omplete.

To prove this result, we introdu
e a notion of Knuth-Bendix ordering 
on-

straint and show the following.

Theorem 4.4.1: For every Knuth-Bendix order, the

problem of solving ordering 
onstraints is 
ontained in

NP.

We also show that the systems of linear Diophantine equations and inequalities


an be represented as ordering 
onstraints for some Knuth{Bendix orders, and

as a 
orollary we obtain the following.

Theorem 4.4.4: For some Knuth-Bendix orders, the

problem of solving ordering 
onstraints is NP-
omplete.

Some authors [Martin 1987, Baader and Nipkow 1998℄ de�ne Knuth-Bendix

orders with real-valued weight fun
tions. We do not 
onsider su
h orders here,

be
ause for real-valued fun
tions even the 
omparison of ground terms 
an be un-

de
idable (see Example 4.4.7 in Se
tion 4.4). Sometimes it is useful to 
onsider


onstraint solving problem for the so-
alled extended signature semanti
s, where

we look for solutions to the 
onstraints in some possible extension of the signature.

For re
ursive path orders this problem is studied in [Nieuwenhuis 1993, Nieuwen-

huis and Rivero 1999℄. A possible dire
tion for future resear
h is to apply the

methods of this 
hapter for solving Knuth-Bendix ordering 
onstraints in the

extended signature semanti
s.

The proof of Theorem 4.4.2 will be given after a series of lemmas. The idea

of the proof is as follows. First, we will make TA(�) into a two-sorted stru
ture

by adding the sort of natural numbers, and extend its signature by

1. the weight fun
tion j � j on ground terms;
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2. the addition fun
tion + on natural numbers;

3. the Knuth-Bendix order �

KBO

on ground terms.

Given an existential formula of the �rst-order theory of a term algebra with

the Knuth-Bendix order, we will transform it step by step into an equivalent

disjun
tion of existential formulas of the extended signature. The main aim of

these steps is to repla
e all o

urren
es of�

KBO

by linear Diophantine inequalities

on the weights of variables. After su
h a transformation we will obtain existential

formulas 
onsisting of linear Diophantine inequalities on the weight of variables

plus statements expressing that, for some �xed natural number N , there exists at

least N terms of the same weight as jxj, where x is a variable. We will show how

these statements 
an be expressed using systems of linear Diophantine inequalities

on the weights of variables and then use the fa
t that the de
idability of systems

of linear Diophantine equations is in NP.

We denote by TA

+

(�) the following stru
ture with two sorts: the term al-

gebra sort and the arithmeti
al sort . The domains of the term algebra sort and

the arithmeti
al sort are the sets of ground terms of � and natural numbers,

respe
tively. The signature of TA

+

(�) 
onsists of

1. all symbols of � interpreted as in TA(�);

2. symbols 0; 1; >;+ having their 
onventional interpretation over natural num-

bers;

3. the binary relation symbol �

KBO

on the term algebra sort, interpreted as

the Knuth-Bendix order;

4. the unary fun
tion symbol j � j, interpreted as the weight fun
tion mapping

terms to numbers.

When we need to distinguish the equality = on the term algebra sort from the

equality on the arithmeti
al sort, we denote the former by =

TA

, and the latter

by =

N

.

We will prove that the existential theory of TA

+

(�) is in NP, from whi
h

the fa
t that the existential theory of any term algebra with the Knuth-Bendix

order belongs to NP follows immediately. We 
onsider satis�ability , validity ,

and equivalen
e of formulas with respe
t to the stru
ture TA

+

(�). We 
all a
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onstraint in the language of TA

+

(�) any 
onjun
tion of atomi
 formulas of this

language.

Lemma 4.1.1 The existential theory of TA

+

(�) is in NP if and only if so is the


onstraint satis�ability problem.

Proof. Obviously any instan
e A of the 
onstraint satis�ability problem 
an

be 
onsidered as validity of the existential senten
e 9x

1

: : : x

n

A, where x

1

; : : : ; x

n

are all variables of A, so the \only if" dire
tion is trivial.

To prove the \if" dire
tion, take any existential formula 9x

1

; : : : ; x

n

A. This

formula is satis�able if and only if so is the quanti�er-free formula A. By 
onvert-

ing A into disjun
tive normal form we 
an assume that A is built from literals

using ^;_. Repla
e in A

1. any formula :s �

KBO

t by s =

TA

t _ t �

KBO

s,

2. any formula :s =

TA

t by s �

KBO

t _ t �

KBO

s,

3. any formula :p > q by p =

N

q _ q > p,

4. any formula :p =

N

q by p > q _ q > p,

and 
onvert A into disjun
tive normal form again. It is easy to see that we obtain

a disjun
tion of 
onstraints. The transformation gives an equivalent formula sin
e

both orders �

KBO

and > are total.

It follows from these arguments that there exists a nondeterministi
 polynomial-

time algorithm whi
h, given an existential senten
e A, 
omputes on every bran
h

a 
onstraint C

i

su
h that A is valid if and only if one of the 
onstraints C

i

is

satis�able. �

A substitution � is 
alled grounding for an expression C (i.e., term or 
on-

straint) if for every variable x o

urring in C the term �(x) is ground. Let � be

a substitution grounding for an expression C. We denote by C� the expression

obtained from C by repla
ing in it every variable x by �(x). A substitution �

is 
alled a solution to a 
onstraint C if � is grounding for C and C� is valid in

TA

+

(�).

In the sequel we will often repla
e a 
onstraint C(�x) by a formula A(�x; �y)


ontaining extra variables �y and say that they are \equivalent". By this we mean

that TA

+

(�) j= 8�x(C(�x)$ 9�yA(�x; �y)). In other words, the set of solutions to C

is exa
tly the set solutions to A proje
ted on �x.
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4.2 Isolated forms

We are interested not only in satis�ability of 
onstraints, but also in their solu-

tions. Our algorithm will 
onsist of equivalen
e-preserving transformation steps.

When the signature 
ontains no unary fun
tion symbol of the weight 0, the trans-

formation will preserve equivalen
e in the following strong sense. At ea
h step,

given a 
onstraint C(�x), we transform it into 
onstraints C

1

(�x; �y); : : : ; C

n

(�x; �y)

su
h that for every sequen
e of ground terms

�

t, the 
onstraint C(

�

t) holds if and

only if there exist k and a sequen
e of ground terms �s su
h that C

k

(

�

t; �s) holds.

In other words, the following formula holds in TA

+

(�):

C(�x)$ 9�y(C

1

(�x; �y) _ : : : _ C

n

(�x; �y)):

Moreover this transformations will be presented as a nondeterministi
 polynomial-

time algorithm whi
h 
omputes on every bran
h some C

i

(�x; �y), and every C

i

(�x; �y)

is 
omputed on at least one bran
h. When the signature 
ontains a unary fun
-

tion symbol of the weight 0, the transformation will preserve a weaker form of

equivalen
e: some solutions will be lost, but solvability will be preserved. More

pre
isely, we will introdu
e a notion of an f -variant of a term and show that the

following formula holds:

C(�x)$ 9�y9�z(f-variant(�x; �z) ^ (C

1

(�z; �y) _ : : : _ C

n

(�z; �y))); (4.1)

where f-variant(�x; �z) expresses that �x and �z are f -variants.

In our proof, we will redu
e solvability of Knuth-Bendix ordering 
onstraints

to the problem of solvability of systems of linear Diophantine inequalities on

the weights of variables. Condition 1 in De�nition 3.3.8 of the Knuth-Bendix

order, jtj > jsj has a simple translation into a linear Diophantine inequality, but


onditions 2 and 3 do not have. So we will split the Knuth-Bendix order in

two partial orders: �

w


orresponding to 
ondition 1 and �

lex


orresponding to


onditions 2 and 3. Formally, we denote by t �

w

s the formula jtj > jsj and by

t �

lex

s the formula jtj =

N

jsj ^ t �

KBO

s. Obviously, t

1

�

KBO

t

2

if and only if

t

1

�

lex

t

2

_ t

1

�

w

t

2

. So in the sequel we will assume that �

KBO

is repla
ed by

the new symbols �

lex

and �

w

.

We use x

1

�

KBO

x

2

�

KBO

: : : �

KBO

x

n

to denote the formula x

1

�

KBO

x

2

^ x

2

�

KBO

x

3

^ : : : ^ x

n�1

�

KBO

x

n

, and similar for other binary symbols in
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pla
e of �

KBO

.

A term t is 
alled 
at if t is either a variable or has the form g(x

1

; : : : ; x

m

),

where g 2 �, m � 0, and x

1

; : : : ; x

m

are variables. We 
all a 
onstraint 
hained

if

1. it has a form t

1

#t

2

# : : :#t

n

, where ea
h o

urren
e of # is �

w

, �

lex

or

=

TA

;

2. ea
h term t

i

is 
at;

3. if some of the t

i

's has the form g(x

1

; : : : ; x

n

), then x

1

; : : : ; x

n

are some of

the t

j

's.

For example g(x; y) �

w

f(y) �

lex

y �

w

x =

TA

z is a 
hained 
onstraint.

Denote by ? the logi
al 
onstant \false".

Lemma 4.2.1 Any 
onstraint C is equivalent to a disjun
tion C

1

_ : : : _ C

k

of


hained 
onstraints. Moreover, there exists a nondeterministi
 polynomial-time

algorithm whi
h, for a given C, 
omputes on every bran
h either ? or some C

i

;

and every C

i

is 
omputed on at least one bran
h.

Proof. First, we 
an apply 
attening to all terms o

urring in C as follows. If

a non
at term g(t

1

; : : : ; t

m

) o

urs in C, take any i su
h that t

i

is not a variable.

Then repla
e C by v = t

i

^ C

0

, where v is a new variable and C

0

is obtained

from C by repla
ing all o

urren
es of t

i

by v. After a �nite number of su
h

repla
ements all terms will be
ome 
at.

Let s; t be 
at terms o

urring in C su
h that no 
omparison s#t o

urs in

C. Using the valid formula s �

w

t _ s �

lex

t _ s =

TA

t _ t �

w

s _ t �

lex

s we 
an

repla
e C by the disjun
tion of the 
onstraints

s �

w

t ^ C; s �

lex

t ^ C; s =

TA

t ^ C;

t �

w

s ^ C; t �

lex

s ^ C:

By repeatedly doing this transformation we obtain a disjun
tion of 
onstraints

C

1

_ : : : _ C

k

in whi
h for every i 2 f1; : : : ; kg and every terms s; t o

urring in

C

i

, some 
omparison 
onstraint s#t o

urs in C

i

.

To 
omplete the proof we show how to turn ea
h C

i

into a 
hained 
onstraint.

Let us 
all a 
y
le any 
onstraint s

1

#s

2

# : : :#s

n

#s

1

, where n � 1. We 
an

remove all 
y
les from C

i

using the following observation:
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1. if all # in the 
y
le are =

TA

, then s

n

#s

1


an be removed from the 
onstraint;

2. if some # in the 
y
le is �

w

or �

lex

, then the 
onstraint C

i

is unsatis�able.

After removal of all 
y
les the 
onstraint C

i


an still be not 
hained be
ause it


an 
ontain transitive sub
onstraints of the form s

1

#s

2

# : : :#s

n

^ s

1

#s

n

, n � 2.

Then either C

i

is unsatis�able or s

1

#s

n


an be removed using the following

observations:

1. Case: s

1

#s

n

is s

1

�

w

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then s

1

�

w

s

n

follows from s

1

#s

2

# : : :#s

n

, otherwise s

1

#s

2

# : : :#s

n

implies js

1

j = js

n

j

and hen
e C

i

is unsatis�able.

2. Case: s

1

#s

n

is s

1

�

lex

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then C

i

is

unsatis�able. If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then C

i

is unsatis�able

too. Otherwise, all # in s

1

#s

2

# : : :#s

n

are either �

lex

or =

TA

, and at least

one of them is �

lex

. It is not hard to argue that s

1

�

lex

s

n

follows from

s

1

#s

2

# : : :#s

n

.

3. Case: s

1

#s

n

is s

1

=

TA

s

n

. If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then

s

1

=

TA

s

n

follows from s

1

#s

2

# : : :#s

n

, otherwise C

i

is unsatis�able.

It is easy to see that after the removal of all 
y
les and transitive sub
onstraints

the 
onstraint C

i

be
omes 
hained.

Note that the transformation of C into the disjun
tion of 
onstraints C

1

_: : :_

C

k

in the proof 
an be done in nondeterministi
 polynomial time in the following

sense: there exists a nondeterministi
 polynomial-time algorithm whi
h, given C,


omputes on every bran
h either ? or some C

i

, and every C

i

is 
omputed on at

least one bran
h. �

We will now introdu
e several spe
ial kinds of 
onstraints whi
h will be used in

our proofs below, namely arithmeti
al, triangle, simple, and isolated.

A 
onstraint is 
alled arithmeti
al if it uses only arithmeti
al relations =

N

and

>, for example jf(x)j > jaj+ 3.

A 
onstraint y

1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

is said to be in triangle form if

1. y

1

; : : : ; y

n

are pairwise di�erent variables, and

2. for all j � i the variable y

i

does not o

ur in t

j

.



4.2 Isolated forms 45

The variables y

1

; : : : ; y

n

are said to be dependent in this 
onstraint.

A 
onstraint is said to be simple if it has the form

x

11

�

lex

x

12

�

lex

: : : �

lex

x

1n

1

^ : : : ^ x

k1

�

lex

x

k2

�

lex

: : : �

lex

x

kn

k

;

where x

11

; : : : ; x

kn

k

are pairwise di�erent variables.

A 
onstraint is said to be in isolated form if either it is ? or it has the form

C

arith

^ C

triang

^ C

simp

;

where C

arith

is an arithmeti
al 
onstraint, C

triang

is in triangle form, and C

simp

is

a simple 
onstraint su
h that no variable of C

simp

is dependent in C

triang

.

Our de
ision pro
edure for the Knuth-Bendix ordering 
onstraints is designed

as follows. By Lemma 4.2.1 we 
an transform any 
onstraint into an equivalent

disjun
tion of 
hained 
onstraints. Our next step is to give a transformation of

any 
hained 
onstraint into an equivalent disjun
tion of 
onstraints in isolated

form. Then in Se
tion 4.3 we show how to transform any 
onstraint in isolated

form into an equivalent disjun
tion of systems of linear Diophantine inequalities

on the weights of variables. Then we 
an use the result that the de
idability of

systems of linear Diophantine inequalities is in NP.

Let us show how to transform any 
hained 
onstraint into an equivalent dis-

jun
tion of isolated forms. The transformation will work on the 
onstraints of

the form

C


hain

^ C

arith

^ C

triang

^ C

simp

; (4.2)

su
h that

1. C

arith

; C

triang

; C

simp

are as in the de�nition of isolated form;

2. C


hain

is a 
hained 
onstraint;

3. ea
h variable of C


hain

neither o

urs in C

simp

nor is dependent in C

triang

.

We will 
all su
h 
onstraints (4.2) working . Let us 
all the size of a 
hained


onstraint C the total number of o

urren
es of fun
tion symbols and variables

in C. Likewise, the essential size of a working 
onstraint is the size of its 
hained

part C


hain

.



4.2 Isolated forms 46

At ea
h transformation step we will repla
e working 
onstraint (4.2) by a

disjun
tion of working 
onstraints but of smaller essential sizes. Evidently, when

the essential size is 0, we obtain a 
onstraint in isolated form.

Let us prove some lemmas about solutions to 
onstraints of the form (4.2).

Note that any 
hained 
onstraint is of the form

t

11

#t

12

# : : :#t

1m

1

�

w

� � �

�

w

t

k1

#t

k2

# : : :#t

km

k

;

(4.3)

where ea
h # is either =

TA

or �

lex

and ea
h t

ij

is a 
at term. We 
all a row in

su
h a 
onstraint any maximal subsequen
e t

i1

#t

i2

# : : :#t

im

i

in whi
h �

w

does

not o

ur. So 
onstraint (4.3) 
ontains k rows, the �rst one is t

11

#t

12

# : : :#t

1m

1

and the last one t

k1

#t

k2

# : : :#t

km

k

. Note that for any solution to (4.3) all terms

in a row have the same weight.

Lemma 4.2.2 There exists a polynomial-time algorithm whi
h transforms any


hained 
onstraint C into an equivalent 
hained 
onstraint C

0

su
h that the size

of C

0

is not greater than the size of C, either C

0

is ? or of the form (4.3), and

C

0

has the following property. Suppose some term of the �rst row t

1j

of C

0

is a

variable y. Then either

1. y has exa
tly one o

urren
e in C

0

, namely t

1j

itself; or

2. y has exa
tly two o

urren
es in C

0

, both in the �rst row: some t

1n

has the

form f(y) for n < j, and w(f) = 0; moreover in this 
ase there exists at

least one �

lex

between t

1n

and t

1j

.

Proof. Note that if y o

urs in any term t(y) whi
h is not in the �rst row, then

C is unsatis�able, sin
e for any solution � to C we have jy�j > jt(y)�j, whi
h is

impossible. Suppose that y has another o

urren
e in a term t

1n

of the �rst row.

Consider two 
ases.

1. t

1n


oin
ides with y. Then either C has no solution, or part of the �rst row

between t

1n

and t

1j

has the form y =

TA

: : : =

TA

y. In the latter 
ase part

y =

TA


an be removed from the �rst row, so we 
an assume that no term

in the �rst row ex
ept t

1j

is y.
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2. t

1n

is a nonvariable term 
ontaining y. Sin
e t

1n

and y are in the same row,

for every solution � to C we have jy�j = jt

1n

�j. Sin
e t

1n

is a 
at term, by

Lemma 3.3.9 the equality jy�j = jt

1n

�j is possible only if t

1n

is f(y), n < j

and there exists at least one �

lex

between t

1n

and t

1j

. Finally, if f(y) has

more than one o

urren
e in the �rst row, we 
an get rid of all of them but

one in the same way as we got rid of multiple o

urren
es of y.

Note that the transformation presented in this proof 
an be made in polynomial

time. It is also not hard to argue that the transformation does not in
rease the

size of the 
onstraint. �

We will now take a working 
onstraint C


hain

^C

arith

^ C

triang

^ C

simp

, whose


hained part satis�es Lemma 4.2.2 and transform it into an equivalent disjun
tion

of working 
onstraints of smaller essential sizes in Lemma 4.2.5 below. More

pre
isely, these 
onstraints will be equivalent when the signature 
ontains no

unary fun
tion symbol of the weight 0. When the signature 
ontains su
h a

symbol f , a weaker notion of equivalen
e will hold, see formula (4.1) on page 42.

A term s is 
alled an f -variant of a term t if s 
an be obtained from t by a

sequen
e of operations of the following forms: repla
ement of a subterm f(r) by

r or repla
ement of a subterm r by f(r). Evidently, f -variant is an equivalen
e

relation. Two substitutions �

1

and �

2

are said to be f -variants if for every variable

x the term x�

1

is an f -variant of x�

2

. In the proof of several lemmas below we will

repla
e a 
onstraint C(�x) by a formula A(�x; �y) 
ontaining extra variables �y and

say that C(�x) and A(�x; �y) are equivalent up to f . By this we mean the following.

1. For every substitution �

1

grounding for �x su
h that TA

+

(�) j= C(�x)�

1

, there

exists a substitution �

2

grounding for �x; �y su
h that TA

+

(�) j= A(�x; �y)�

2

,

and the restri
tion of �

2

to �x is an f -variant of �

1

.

2. For every substitution �

2

grounding for �x; �y su
h that TA

+

(�) j= A(�x; �y)�

2

,

there exists a substitution �

1

su
h that TA

+

(�) j= C(�x)�

1

and �

1

is an

f -variant of the restri
tion of �

2

to �x.

In other words, formula (4.1) on page 42 holds. Note that when the signature


ontains no unary fun
tion symbol of the weight 0, equivalen
e up to f is the

same as equality of terms in TA

+

(�).

Lemma 4.2.3 Let C = C


hain

^ C

arith

^ C

triang

^ C

simp

be a working 
onstraint

and �

1

be a solution to C. Let �

2

be an f -variant of �

1

su
h that
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1. �

2

is a solution to C


hain

and

2. �

2


oin
ides with �

1

on all variables not o

urring in C


hain

.

Then there exists an f -variant �

3

of �

2

su
h that

1. �

3

is a solution to C and

2. �

3


oin
ides with �

2

on all variables ex
ept for the dependent variables of

C

triang

.

Proof. Let us �rst prove that �

2

is a solution to both C

arith

and C

simp

. Sin
e

C

simp

and C


hain

have no 
ommon variables, it follows that �

1

and �

2

agree on all

variables of C

simp

, and so �

2

is a solution to C

simp

. Sin
e �

1

and �

2

are f -variants

and the weight of f is 0, for every term t we have jt�

1

j = jt�

2

j, whenever t�

1

is

ground. Therefore, �

2

is a solution to C

arith

if and only if so is �

1

. So �

2

is a

solution to C

arith

.

It is fairly easy to see that �

2


an be 
hanged on the dependent variables of

C

triang

obtaining a solution �

3

to C whi
h satis�es the 
onditions of the lemma.

�

This lemma will be used below in the following way. Instead of 
onsidering the

set �

1

of all solutions to C


hain

we 
an restri
t ourselves to a subset �

2

of �

1

as

soon as for every solution �

1

2 �

1

there exists a solution �

2

2 �

2

su
h that �

2

is

an f -variant of �

1

.

Let us 
all an f -term any term of the form f(t). By the f -height of a term

t we mean the number n su
h that t = f

n

(s) and s is not an f -term. Note that

the f -terms are exa
tly the terms of a positive f -height. We 
all the f -distan
e

between two terms s and t the di�eren
e between the f -height of s and f -height

of t. For example, the f -distan
e between the terms f(a) and f(f(g(a; b))) is �1.

Let us now prove a lemma whi
h implies that any solution to C 
an be trans-

formed into a solution with a \small" f -height.

Lemma 4.2.4 Let C


hain

be a 
hained 
onstraint of the form

p

l

#p

l�1

# : : :#p

1

�

w

: : : ;

where ea
h # is either =

TA

or �

lex

. Further, let C


hain

satisfy the 
onditions of

Lemma 4.2.2 and � be a solution to C


hain

. Then there exists an f -variant �

0

of

� su
h that
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1. �

0

is a solution to C


hain

and

2. for every k 2 f1; : : : ; lg, the f -height of p

k

�

0

is at most k.

Proof. Let us �rst prove the following statement

(4.4) The row p

l

#p

l�1

# : : :#p

1

has a solution �

1

, su
h that (i) �

1

is an f -

variant of �, (ii) for every 1 < k � l the f -distan
e between p

k

�

1

and

p

k�1

�

1

is at most 1.

Suppose that for some k the f -distan
e between p

k

� and p

k�1

� is d > 1. Evidently,

to prove (4.4) it is enough to show the following.

(4.5) There exists a solution �

2

su
h that (i) �

2

is an f -variant of �, (ii) the

f -distan
e between p

k

�

2

and p

k�1

�

2

is d � 1, and (iii) for every k

0

6= k

the f -distan
e between p

k

0

�

2

and p

k

0

�1

�

2


oin
ides with the f -distan
e

between p

k

0

� and p

k

0

�1

�.

Let us show (4.5), and hen
e (4.4). Sin
e � is a solution to the row, then for

every k

000

� k the f -distan
e between any p

k

000

� and p

k

� is nonnegative. Likewise,

for every k

00

< k � 1 the f -distan
e between any p

k�1

� and p

k

00

� is nonnegative.

Therefore, for all k

000

� k > k

00

, the f -distan
e between p

k

000

� and p

k

00

� is � d, and

hen
e is at least 2. Let us prove the following.

(4.6) Every variable x o

urring in p

l

#p

l�1

# : : :#p

k

does not o

ur in p

k�1

# : : :#p

1

.

Let x o

ur in terms p

i

and p

j

su
h that l � i � k and k � 1 � j � 1. Sin
e the


onstraint satis�es Lemma 4.2.2, then p

i

= f(x) and p

j

= x. Then the f -distan
e

between p

i

� and p

j

� is 1, but by our assumption it is at least 2, so we obtain a


ontradi
tion. Hen
e (4.6) is proved.

Now note the following.

(4.7) If for some k

000

� k a variable x o

urs in p

k

000

, then x� is an f -term.

Suppose, by 
ontradi
tion, that x� is not an f -term. Note that p

k

000

� has a positive

f -height, so p

k

000

is either x of f(x). But we proved before that the f -distan
e

between p

k

000

� and p

k�1

� is at least 2, so x must be an f -term.

Now, to satisfy (4.5), de�ne the substitution �

2

as follows:
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�

2

(x) =

(

�(x);

if x does not o

ur in p

l

; : : : ; p

k

;

t; if x o

urs in p

l

; : : : ; p

k

and �(x) = f(t):

By (4.6) and (4.7), �

2

is de�ned 
orre
tly. We 
laim that �

2

satis�es (4.5). The

properties (i){(iii) of (4.5) are straightforward by our 
onstru
tion, it only remains

to prove that �

2

is a solution to the row, i.e. for every k

0

we have p

k

0

�

2

#p

k

0

�1

�

2

.

Consider the 
ase when k

0

> k. Sin
e � is a solution to the row, for ea
h k

00

� k

we have p

k

00

� is an f -term and hen
e p

k

00

is either a variable or a term f(x)

for some variable x. Therefore, by de�nition of �

2

we have p

k

0

� = f(p

k

0

�

2

) and

p

k

0

�1

� = f(p

k

0

�1

�

2

), so p

k

0

�

2

#p

k

0

�1

�

2

follows from p

k

0

�#p

k

0

�1

�. When k

0

< k we

have p

k

0

� = p

k

0

�

2

and p

k

0

�1

� = p

k

0

�1

�

2

, hen
e p

k

0

�

2

#p

k

0

�1

�

2

. The only remaining


ase is k = k

0

.

Assume k = k

0

. Sin
e the f -distan
e between p

k

� and p

k�1

� is d > 1, we

have p

k

� 6= p

k�1

�, and hen
e p

k

#p

k�1

must be p

k

�

lex

p

k�1

. Sin
e � is a solution

to p

k

�

lex

p

k�1

and sin
e �

2

is an f -variant of �, the weights of p

k

�

2

and p

k�1

�

2


oin
ide. But then p

k

�

2

�

lex

p

k�1

�

2

follows from the fa
t that the f -distan
e

between p

k

�

2

and p

k�1

�

2

is d� 1 � 1.

Now the proof of (4.5), and hen
e of (4.4), is 
ompleted. In the same way as

(4.4), we 
an also prove

(4.8) The 
onstraint C


hain

has a solution �

0

su
h that (i) �

0

is an f -variant of

�, (ii) for every 1 < k � l the f -distan
e between p

k

�

1

and p

k�1

�

0

is at

most 1. (iii) the f -height of p

1

�

0

is at most 1; (iv) �

0

and � 
oin
ide on

all variables o

urring in the rows below the �rst one.

It is easy to see that �

0

from (4.8) satis�es all 
onditions required by our lemma.

�

The following lemma is the main lemma of this se
tion.

Lemma 4.2.5 Let C = C


hain

^ C

arith

^ C

triang

^ C

simp

be a working 
onstraint

in whi
h C


hain

is nonempty. There exists a nondeterministi
 polynomial-time

algorithm whi
h transforms C into a disjun
tion of working 
onstraints having

C


hain

of smaller sizes and equivalent to C up to f .

Proof. The proof is rather 
omplex, so we will give a plan of it. The proof

is presented as a series of transformations on the �rst row of C


hain

. These
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transformations may result in new 
onstraints added to C

arith

, C

triang

, and C

simp

.

First, we will get rid of equations s =

TA

t in the �rst row, by introdu
ing quasi-


at terms, i.e. terms f

k

(t), where t is 
at. If the �rst row 
ontained no fun
tion

symbols, then we will repla
e the �rst row by new 
onstraints added to C

simp

and C

arith

, thus de
reasing the size of the 
hained part. If there were fun
tion

symbols in the �rst row, we will 
ontinue as follows.

We will \guess" the values of some variables x of the �rst row, i.e. repla
e

them by some quasi-
at term f

m

(g(�y)), where �y is a sequen
e of new variables.

After these steps, the size of the �rst row 
an, in general, in
rease. Then we

will show how to repla
e the �rst row by new 
onstraints involving only variables

o

urring in the row, but not fun
tion symbols. Finally, we will prove that the

number of variables from the new 
onstraints that remain in the 
hained part is

not greater than the original number of variables in the �rst row, and therefore

the size of the 
hained part de
reases.

Formally, 
onsider the �rst row of C


hain

. Let this row be p

l

#p

l�1

# : : :#p

1

.

Then C


hain

has the form p

l

#p

l�1

# : : :#p

1

�

w

t

1

# : : :#t

n

. If l = 1, i.e., the �rst

row 
onsists of one term, we 
an remove this row and add jp

1

j > jt

1

j to C

arith

obtaining an equivalent 
onstraint with smaller essential size, that is, the size of

C


hain

. So we assume that the �rst row 
ontains at least two terms.

As before, we assume that f is a unary fun
tion symbol of the weight 0. By

Lemma 4.2.4, if some p

i

is either a variable x or a term f(x), it is enough to

sear
h for solutions � su
h that the height of x� is at most l.

A term is 
alled quasi-
at if it has the form f

k

(t) where t is 
at. We will now

get rid of equalities in the �rst row, but by introdu
ing quasi-
at terms instead

of the 
at ones. When we use notation f

k

(t) below, we assume k � 0, and f

0

(t)

will stand for t. We eliminate equalities from the �rst row in two steps. First we

will eliminate equalities among variables and f -terms transforming them into an

equivalent set of equalities in triangle form, then we eliminate all other equalities

in the �rst row.

Consider the set S of all equalities t =

TA

s o

urring in the �rst row of C


hain

,

where s and t are either variables or 
at f -terms. We will transform S into an

equivalent system F in triangle form su
h that all terms in F will be 
at. We

assume that before the transformation F is empty. First we repla
e all equalities

in S of the form f(x) =

TA

f(y) by x =

TA

y obtaining an equivalent system S

0

in whi
h all equalities are of the form x =

TA

t. Now, either S

0

is unsatis�able or
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there exists an equality x =

TA

t in S

0

, su
h that x does not o

ur in f -terms of

S

0

. We move su
h an equality x =

TA

t into F and repla
e all o

urren
es of x in

S

0

by t, obtaining S

00

. It is easy to see that the system F [ S

00

is equivalent to

S, all terms in F [ S

00

are 
at, F is in triangle form and the number of variables

o

urring into S

00

is less than the number of variables o

urring into S. Repeating

this pro
ess we 
an eliminate all variables from S and obtain the required F in

polynomial time.

Now we remove from C


hain

all equalities o

urring in S. Let us note that

variables of F 
an o

ur in C


hain

only in the �rst row, and only in the terms

f

r

(y) for 0 � r � 1. Next we repeatedly repla
e all o

urren
es of dependent

variables of F o

urring in C


hain

obtaining an equivalent 
onstraint in 
hained

form with terms of the form f

k

(x) where k is bounded by the size of F . Finally

we move F into C

triang

.

After all these transformations we 
an assume that equalities f

k

(x) =

TA

f

m

(y)

do not o

ur in the �rst row.

If the �rst row 
ontains an equality x =

TA

t between a variable and a term,

we repla
e this equality by t, repla
e all o

urren
es of x by t in the �rst row, and

add x =

TA

t to C

triang

obtaining an equivalent working 
onstraint. Sin
e x 
an

o

ur only in the terms of the form f

r

(x), it is easy to see that these repla
ements


an be done in polynomial time.

If the �rst row 
ontains an equality g(x

1

; : : : ; x

m

) =

TA

h(t

1

; : : : ; t

n

) where g

and h are di�erent fun
tion symbols, the 
onstraint is unsatis�able.

If the �rst row 
ontains an equality g(x

1

; : : : ; x

n

) =

TA

g(y

1

; : : : ; y

n

) we do

the following. If the term g(x

1

; : : : ; x

n

) 
oin
ides with g(y

1

; : : : ; y

n

), repla
e this

equality by g(x

1

; : : : ; x

n

). Otherwise, �nd the smallest number i su
h that x

i

is

di�erent from y

i

and

1. add y

i

=

TA

x

i

to C

triang

;

2. repla
e all o

urren
es of y

i

in C


hain

by x

i

.

We apply this transformation repeatedly until all equalities g(x

1

; : : : ; x

n

) =

TA

g(y

1

; : : : ; y

n

) disappear from the �rst row.

So we 
an now assume that the �rst row 
ontains no equalities and hen
e it

has the form q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

, where all of the terms q

i

are quasi-
at.

If all of the q

i

are variables, we 
an move q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

to C

simp

and add jq

1

j > jt

1

j to C

arith

obtaining an equivalent working 
onstraint of smaller
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essential size. Hen
e, we 
an assume that at least one of the q

i

is a nonvariable

term.

Take any term q

k

in the �rst row su
h that q

k

is either a variable x or a term

f

r

(x). Note that other o

urren
es of x in C


hain


an only be in the �rst row, and

only in the terms of the form f

k

(x).

Consider the formula G de�ned as

_

g2��ffg

_

m=0:::l

x =

TA

f

m

(g(�y)): (4.9)

where �y is a sequen
e of pairwise di�erent new variables. Sin
e we proved that it

is enough to restri
t ourselves to solutions � for whi
h the height of x� is at most

l, the formulas C and C ^G are equivalent up to f .

Using the distributivity laws, C ^ G 
an be turned into an equivalent dis-

jun
tion of formulas x =

TA

f

m

(g(�y)) ^ C. For every su
h formula, repla
e x by

f

m

(g(�y)) in the �rst row, and add x =

TA

f

m

(g(�y)) to the triangle part. We do

this transformation for all terms in the �rst row of the form f

k

(z), where k � 0

and z is a variable. Now all the terms in the �rst row are of the form f

m

(g(�y)),

where g is di�erent from f and m � 0.

Let us show how to repla
e 
onstraints of the �rst row with equivalent 
on-

straints 
onsisting of 
onstraints on variables and arithmeti
al 
onstraints. Con-

sider the pair q

n

; q

n�1

. Now q

n

= f

k

(g(x

1

; : : : ; x

u

)) and q

n�1

= f

m

(h(y

1

; : : : ; y

v

))

for some variables x

1

; : : : ; x

u

; y

1

; : : : ; y

v

and fun
tion symbols g; h 2 � � ffg.

Then q

n

�

lex

q

n�1

is f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)). If k < m or (k = m

and h � g), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is equivalent to ?. If

k > m or (k = m and g � h), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is

equivalent to the arithmeti
al 
onstraint jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j whi
h


an be added to C

arith

. If k = m and g = h (and hen
e u = v), then

f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

))$ jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j ^

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

�

KBO

y

i

):

We 
an now do the following. Add jg(x

1

; : : : ; x

u

)j =

N

jh(y

1

; : : : ; y

v

)j to C

arith

and

repla
e q

n

�

lex

q

n�1

with the equivalent disjun
tion

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

�

KBO

y

i

):
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Then using the distributivity laws turn this formula into the equivalent dis-

jun
tion of 
onstraints of the form C^x

1

=

TA

y

1

^: : :^x

i�1

=

TA

y

i�1

^x

i

�

KBO

y

i

for all i = 1 : : : u. For ea
h of these 
onstraints, we 
an move, as before, the equal-

ities x =

TA

y one by one to the triangle part C

triang

, and make C


hain

^x

i

�

KBO

y

i

into a disjun
tion of 
hained 
onstraints as in Lemma 4.2.1.

Let us analyze what we have a
hieved. After these transformations, in ea
h

member of the obtained disjun
tion the �rst row is removed from the 
hained part

C


hain

of C. Sin
e the row 
ontained at least one fun
tion symbol, ea
h member of

the disjun
tion will 
ontain at least one o

urren
e of a fun
tion symbol less than

the original 
onstraint. This is enough to prove termination of our algorithm,

but not enough to present it as a nondeterministi
 polynomial-time algorithm.

The problem is that, when p

n

is a variable x or a term f(x), one o

urren
e of x

in p

n


an be repla
ed by one or more 
onstraints of the form x

i

�

KBO

y

i

, where

x

i

and y

i

are new variables. To be able to show that the essential sizes of ea
h

of the resulting 
onstraints is stri
tly less than the essential size of the original


onstraint, we have to modify our algorithm slightly.

The modi�
ation will guarantee that the number of new variables introdu
ed

in the 
hained part of the 
onstraint is not greater than the number of variables

eliminated from the �rst row. We will a
hieve this by moving some 
onstraints to

the simple part C

simp

. The new variables only appear when we repla
e a variable

in the �rst row by a term f

k

(h(u

1

; : : : ; u

m

)) or by f

k

(h(v

1

; : : : ; v

m

)) obtaining a


onstraint f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)), whi
h is then repla
ed by

u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

�

KBO

v

i

: (4.10)

Let us 
all a variable u

i

(respe
tively, v

i

) new if f

k

(h(u

1

; : : : ; u

m

)) o

urred in

the terms of the �rst row when we repla
ed a variable by a nonvariable term


ontaining h using formula (4.9). In other words, new variables are those that

did not o

ur in the terms of the �rst row before our transformation, but appeared

in the terms of the �rst row during the transformation. All other variables are


alled old. After the transformation we obtain a 
onjun
tion E of 
onstraints

of the form x

i

=

TA

x

j

or x

i

�

KBO

x

j

, where x

i

; x

j


an be either new or old.

Without loss of generality we 
an assume that this 
onjun
tion of 
onstraints

does not 
ontain 
hains of the form x

1

# : : :#x

n

#x

1

where n � 2 and at least

one of the #'s is �

KBO

. Indeed, if E 
ontains su
h a 
hain, then it is unsatis�able.

We will now show that the number of new variables 
an be restri
ted by
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moving 
onstraints on these variables into the triangle or simple part. Among

the new variables, let us distinguish the following three kinds of variables. A new

variable x is 
alled blue in E if E 
ontains a 
hain x =

TA

x

1

=

TA

: : : =

TA

x

n

,

where x

n

is an old variable. Evidently, a blue variable x 
auses no harm sin
e it


an be repla
ed by an old variable x

n

. Let us denote by � the inverse relation to

�

KBO

. A new variable x is 
alled red in E if it is not blue in E and E 
ontains

a 
hain x#x

1

# : : :#x

n

, where x

n

is an old variable, and all of the #'s are either

=

TA

, or �

KBO

, or �. Red variables are troublesome, sin
e there is no obvious

way to get rid of them. However, we will show that the number of red variables

is not greater than the number of repla
ed variables (su
h as the variable x in

(4.9)). Finally, all new variables that are neither blue nor red in E are 
alled

green in E.

Getting rid of the green variables. We will now show that the green

variables 
an be moved to the simple part of the 
onstraint C

simp

. To this end,

note an obvious property: if E 
ontains a 
onstraint x#y and x is green, then

y is green too. We 
an now do the following with the green variables. As in

Lemma 4.2.1, we 
an turn all the green variables into a disjun
tion of 
hained


onstraints of the form v

1

# : : :#v

n

, where # are =

TA

, �

w

, or �

lex

, and use the

distributivity laws to obtain 
hained 
onstraints v

1

# : : :#v

n

. Let us 
all this


onstraint a green 
hain. Then, if there is any equality v

i

=

TA

v

i+1

in the green


hain, we add this equality to C

triang

and repla
e this equality by v

i+1

in the


hain. Further, if the 
hain has the form v

1

�

lex

: : : �

lex

v

k

�

w

v

k+1

# : : :#v

n

, we

add v

1

�

lex

: : : �

lex

v

k

to C

simp

and jv

k

j > jv

k+1

j to C

arith

, and repla
e the green


hain by v

k+1

# : : :#v

n

. We do this transformation until the green 
hain be
omes

of the form v

1

�

lex

: : : �

lex

v

k

. After this, the green 
hain 
an be removed from

E and added to C

simp

. Evidently, this transformation 
an be presented as a

nondeterministi
 polynomial-time algorithm.

The red variables. Let us show the following: in every term f

k

(h(u

1

; : : : ; u

m

))

in the �rst row at most one variable among u

1

; : : : ; u

m

is red. It is not hard to ar-

gue that it is suÆ
ient to prove a stronger statement: if for some i the variable u

i

is red or blue, then all variables u

1

; : : : ; u

i�1

are blue. So suppose that u

i

is either

red or blue and u

i

#y

n

# : : :#y

1

is a shortest 
hain in E su
h that y

1

is old. We

prove that the variables u

1

; : : : ; u

i�1

are blue, by indu
tion on n. When n = 1 and

u

i

is red, E 
ontains either u

i

�

KBO

y

1

or y

1

�

KBO

u

i

, where y

1

is old. Without
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loss of generality assume that E 
ontains u

i

�

KBO

y

1

. Then (
f. (4.10)) this equa-

tion appeared in E when we repla
ed f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)) by

u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

�

KBO

v

i

and y

1

= v

i

. But then E also 
on-

tains the equations u

1

=

TA

v

1

; : : : ; u

i�1

=

TA

v

i�1

, where the variables v

1

; : : : ; v

i�1

are old, and so the variables u

1

; : : : ; u

i�1

are blue. In the same way we 
an prove

that if u

i

is blue then u

1

; : : : ; u

i�1

are blue. The proof for n > 1 is similar, but

we use the fa
t that v

1

; : : : ; v

i�1

are blue rather than old.

To 
omplete the transformation, we add all 
onstraints on the red and the old

variables to C


hain

and make C


hain

into a disjun
tion of 
hained 
onstraints as in

Lemma 4.2.1.

Getting rid of the blue variables. If E 
ontains a blue variable x, then it

also 
ontains a 
hain of 
onstraints x =

TA

x

1

=

TA

: : : =

TA

x

n

, where x

n

is an old

variable. We repla
e x by x

n

in C and add x =

TA

x

n

to the triangle part C

triang

.

When we 
ompleted the transformation on the �rst row, the row disappears

from the 
hained part C


hain

of C. If the �rst row 
ontained no fun
tion symbols,

the size of C


hain

will be
ome smaller, sin
e several variables will be removed from

it. If C


hain


ontained at least one fun
tion symbol, then after the transformation

the number of o

urren
es of fun
tion symbols in C


hain

will de
rease. Some red

variables will be introdu
ed, but we proved that their number is not greater than

the number of variables eliminated from the �rst row. Therefore, the size of

C


hain

stri
tly de
reases after the transformation due to elimination of at least

one fun
tion symbol.

Again, it is not hard to argue that the transformation 
an be presented as

a nondeterministi
 polynomial-time algorithm 
omputing all members of the re-

sulting disjun
tion of 
onstraints.

�

Lemmas 4.2.1 and 4.2.5 imply the following:

Lemma 4.2.6 Let C be a 
onstraint. Then there exists a disjun
tion C

1

_: : :_C

n

of 
onstraints in isolated form equivalent to C up to f . Moreover, members of

su
h a disjun
tion 
an be found by a nondeterministi
 polynomial-time algorithm.

�

Our next aim is to present a nondeterministi
 polynomial-time algorithm solv-

ing 
onstraints in isolated form.
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4.3 From 
onstraints in isolated form to systems

of linear Diophantine inequalities

Let C be a 
onstraint in isolated form

C

simp

^ C

arith

^ C

triang

:

Our de
ision algorithm will be based on a transformation of the simple 
onstraint

C

simp

into an equivalent disjun
tion D of arithmeti
al 
onstraints. Then, in

Se
tion 4.4 we show how to 
he
k the satis�ability of the resulting formula D ^

C

arith

^ C

triang

by using an algorithm for solving systems of linear Diophantine

inequalities on the weights of variables.

To transform C

simp

into an arithmeti
al formula, observe the following. The


onstraint C

simp

is a 
onjun
tion of the 
onstraints of the form

x

1

�

lex

: : : �

lex

x

N

having no 
ommon variables. To solve su
h a 
onstraint we have to ensure that

there exist at least N di�erent terms of the same weight as x

1

(sin
e the Knuth-

Bendix order is total).

In this se
tion we will show that for ea
h N the statement \there exists at least

N di�erent terms of a weight w" 
an be expressed in the Presburger Arithmeti


as an existential formula of one variable w.

We say that a relation R(�x) on natural numbers is 9-de�nable, if there ex-

ists an existential formula of Presburger Arithmeti
 C(�x; �y) su
h that R(�x) is

equivalent to 9�yC(�x; �y). We 
all a fun
tion r(�x) 9-de�nable if so is the relation

r(�x) = y. Note that 
omposition of 9-de�nable fun
tions is 9-de�nable.

Let us �x an enumeration g

1

; : : : ; g

S

of the signature �. We assume that the

�rst B symbols g

1

; : : : ; g

B

is a sequen
e of all symbols in � of arity � 2, and the

�rst F symbols g

1

; : : : ; g

F

is a sequen
e all non
onstant symbols in �. The arity

of ea
h g

i

is denoted by arity

i

. In this se
tion we assume that B, F , S, and the

weight fun
tion w are �xed.

We 
all the 
ontents of a ground term t the tuple of natural numbers (n

1

; : : : ; n

S

)

su
h that n

i

is the number of o

urren
es of g

i

in t for all i. For example, if the

sequen
e of elements of � is g; h; a; b, and t = h(g(h(h(a)); g(b; b))), the 
ontents

of t is (2; 3; 1; 2).
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Lemma 4.3.1 The following relation exists(x; n

1

; : : : ; n

S

) is 9-de�nable: there

exists at least one ground term of � of the weight x and 
ontents (n

1

; : : : ; n

S

).

Proof. We will de�ne exists(x; n

1

; : : : ; n

S

) by a 
onjun
tion of two linear Dio-

phantine inequalities.

The �rst equation is

x =

X

1�i�S

w(g

i

) � n

i

: (4.11)

It is not hard to argue that this equation says: every term with the 
ontents

(n

1

; : : : ; n

S

) has weight x.

The se
ond formula says that the number of 
onstant and non
onstant fun
-

tion symbols in (n

1

; : : : ; n

S

) is appropriately balan
ed for 
onstru
ting a term:

1 +

X

1�i�S

(arity

i

� 1) � n

i

= 0: (4.12)

�

Let us prove some lower bounds on the number of terms of a �xed weight.

We leave the following two lemmas to the reader. The �rst one implies that,

if there exists any ground term t of a weight x with at least N o

urren
es of

non
onstant symbols, in
luding at least one o

urren
e of a fun
tion symbol of

an arity � 2, then there exists at least N di�erent ground terms of the weight x.

Lemma 4.3.2 Let x; n

1

; : : : ; n

S

be natural numbers su
h that exists(x; n

1

; : : : ; n

S

)

holds, n

1

+ : : : + n

B

� 1 and n

1

+ : : : + n

F

� N . Then there exist at least N

di�erent ground terms with the 
ontents (n

1

; : : : ; n

S

). �

The se
ond lemma implies that, if there exists any ground term t of a weight

x with at least N o

urren
es of non
onstant fun
tion symbols, in
luding at least

two di�erent unary fun
tion symbols, then there exists at least N di�erent ground

terms of the weight x.

Lemma 4.3.3 Let x; n

1

; : : : ; n

s

be natural numbers su
h that exists(x; n

1

; : : : ; n

S

)

holds, n

1

+: : :+n

F

� N and at least two numbers among n

B+1

; : : : ; n

F

are positive.

Then there exists at least N di�erent ground terms with the 
ontents (n

1

; : : : ; n

S

).

�
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Let us note that if our signature 
onsists only of a unary fun
tion symbol of a

positive weight and 
onstants, then the number of di�erent terms in any weight

is less or equal to the number of 
onstants in the signature.

The remaining types of signatures are 
overed by the following lemma.

Lemma 4.3.4 Let � 
ontain a fun
tion symbol of an arity greater than or equal

to 2, or 
ontain at least two di�erent unary fun
tion symbols. Then there exist

two natural numbers N

1

and N

2

su
h that for all natural numbers N and x su
h

that x > N �N

1

+N

2

, the number of terms of the weight x is either 0 or greater

than N .

Proof. If � 
ontains a unary fun
tion symbol of the weight 0 then the number

of di�erent terms of any weight is either 0 or ! and the lemma trivially holds.

Therefore we 
an assume that our signature 
ontains no unary fun
tion symbol

of the weight 0. De�ne

W = maxfw(g

i

)j1 � i � Sg;

A = maxfarity

i

j1 � i � Sg;

N

1

= W �A;

N

2

= W

2

� (A+ 1) +W:

Take any N and x su
h that x > N �N

1

+N

2

.

Let us prove that if there exists a term of the weight x then the number

of o

urren
es of non
onstant fun
tion symbols in this term is greater than N .

Assume the opposite, i.e. there exists a term t of the weight x su
h that the

number of o

urren
es of non
onstant fun
tion symbols in t is M � N . Let

(n

1

; : : : ; n

S

) be the 
ontents of t and L denote the number of o

urren
es of


onstants in t. Note that (4.12) implies L = 1 +

P

1�i�F

(arity

i

� 1) � n

i

. Then

using (4.11) we obtain

N �N

1

+N

2

< jtj =

P

1�i�S

w(g

i

) � n

i

� W �

P

1�i�S

n

i

=

W � (M + L) = W � (M + 1 +

P

1�i�F

(arity

i

� 1) � n

i

) �

W � (M + 1 + (A� 1)

P

1�i�F

n

i

) =W � (M + 1 + (A� 1) �M) =

W � (M � A+ 1) � W � (N � A+ 1) < N �N

1

+N

2

:

So we obtain a 
ontradi
tion.

Consider the following possible 
ases.
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1. There exists a term of the weight x with an o

urren
e of a fun
tion symbol

of an arity greater than or equal to 2. In this 
ase by Lemma 4.3.2 the

number of di�erent terms of the weight x is greater than N .

2. There exists a term of the weight x with o

urren
es of at least two di�erent

unary fun
tion symbols. In this 
ase by Lemma 4.3.3 the number of di�erent

terms of the weight x is greater than N .

3. All terms of the weight x have the form g

k

(
) for some unary fun
tion symbol

g and a 
onstant 
. We show that this 
ase is impossible. In parti
ular, we

show that for any non
onstant fun
tion symbol h there exists a term of the

weight x in whi
h g and h o

ur, therefore we obtain a 
ontradi
tion with

the assumption.

We have x = w(g) � k + w(
). Denote by H the arity of h. Let us de�ne

integers M

1

;M

2

;M

3

as follows

M

1

= w(g);

M

2

= k � w(h)� w(
) � (H � 1);

M

3

= w(g)(H � 1) + 1:

Let us prove that M

1

;M

2

;M

3

> 0 and there exists a term of the weight x

withM

1

o

urren
es of h, M

2

o

urren
es of g andM

3

o

urren
es of 
 and

hen
e obtain a 
ontradi
tion.

Sin
e g is unary, w(g) > 0, and so M

1

> 0. Sin
e H � 1, we have M

3

> 0.

Let us show that M

2

> 0, i.e. k > w(h) + w(
) � (H � 1). We have

k = (x� w(
))=w(g) > (N �N

1

+N

2

� w(
))=w(g) �

(N

2

� w(
))=w(g) = (W

2

� (A+ 1) +W � w(
))=w(g) �

(W

2

� (A+ 1))=w(g) � W � (A + 1) = W +W � A �

w(h) + w(
) � A > w(h) + w(
) � (H � 1):

It remains to show that there exists a term of the weight x with M

1

o

ur-

ren
es of h, M

2

o

urren
es of g and M

3

o

urren
es of 
. To this end we

have to prove (
f. (4.11) and (4.12))
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x = w(h) �M

1

+ w(g) �M

2

+ w(
) �M

3

;

1 + (H � 1) �M

1

+ (1� 1) �M

2

+ (0� 1)M

3

= 0:

This equalities 
an be veri�ed dire
tly by repla
ing M

1

;M

2

;M

3

by their

de�nitions and x by w(g) � k + w(
). �

De�ne the binary fun
tion tnt (trun
ated number of terms) as follows: tnt(N;M)

is the minimum of N and the number of terms of the weight M and let us show

that tnt 
an be 
omputed in time polynomial ofN+M . To give a polynomial-time

algorithm for this fun
tion we need an auxiliary de�nition and a lemma.

Definition 4.3.5 Let (n

1

; : : : ; n

s

) and (m

1

; : : : ; m

s

) be two tuples of natural

numbers. We say that (n

1

; : : : ; n

s

) extends (m

1

; : : : ; m

s

) if n

i

� m

i

for 1 � i � s.

�

The depth of a term is de�ned by indu
tion as usual: the depth of every


onstant is 1 and the depth of every non
onstant term g(t

1

; : : : ; t

n

) is equal to

the maximum of the depth of the t

i

's plus 1.

Lemma 4.3.6 Let t

1

; : : : ; t

n

be a 
olle
tion of di�erent terms of the same depth

and Con be the 
ontents of a term su
h that Con extends the 
ontents of all terms

t

i

, 1 � i � n. Then there exist at least n di�erent terms with the 
ontents Con.

Proof. Let us de�ne the notion of leftmost subterm of a term t as follows: every


onstant 
 has only one leftmost subterm, namely 
 itself, and leftmost subterms

of a non
onstant term g(r

1

; : : : ; r

n

) are this term itself and all leftmost subterms

of r

1

. Evidently, for ea
h positive integer d and term t, t has at most one leftmost

subterm of the depth d.

It is not hard to argue that from the 
ondition of the lemma it follows that

for every term t

i

there exists a term s

i

with the 
ontents Con su
h that t

i

is a

leftmost subterm of s

i

. But then the terms s

1

; : : : ; s

n

are pairwise di�erent, sin
e

they have di�erent leftmost subterms of the depth d. �

Lemma 4.3.7 Let the signature � 
ontain no unary fun
tion symbol of the weight

0 and 
ontain either a fun
tion symbol of an arity greater than or equal to 2 or 
on-

tain at least two di�erent unary fun
tion symbols. Then the fun
tion tnt(N;M)
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is 
omputable in time polynomial of M +N .

Proof. It is not hard to argue that for every 
ontents (n

1

; : : : ; n

S

) su
h that

some of the n

i

's is greater than M , any term with these 
ontents has the weight

greater thanM . The number of di�erent 
ontents in whi
h ea
h of the n

i

's is less

than or equal toM isM

S

, i.e. it is polynomial inM , moreover, all these 
ontents


an be obtained by an algorithm working in time polynomial in M .

Therefore it is suÆ
ient to des
ribe a polynomial-time algorithm whi
h for all


ontents (n

1

; : : : ; n

S

), where 1 � n

i

� M , returns the minimum of N and the

number of terms with these 
ontents.

Let us �x 
ontents Con = (n

1

; : : : n

S

) where 1 � n

i

� M . Using equations

(4.11) and (4.12), one 
an 
he
k in polynomial time whether there exists a term

with the 
ontents Con, so we assume that there exists at least one su
h term.

Our algorithm 
onstru
ts, step by step, sets T

0

; T

1

; : : :, of di�erent terms with


ontents whi
h 
an be extended to the 
ontents Con. Ea
h set T

i

will 
onsist

only of terms of the depth i.

1. Step 0. De�ne T

0

= ;.

2. Step i + 1. De�ne

T

i+1

= fg(t

1

; : : : ; t

m

) j g 2 �; t

1

; : : : ; t

m

2 T

1

[ : : : [ T

i

;

Con extends the 
ontent of g(t

1

; : : : ; t

m

); and

the depth of g(t

1

; : : : ; t

m

) is i+ 1g:

If T

i+1

has N or more terms, then by Lemma 4.3.6 there exists at least N

di�erent terms of the 
ontent Con, so we terminate and return N . If T

i+1

is

empty, we return as the result the minimum of N and the number of terms

with the 
ontent Con in T

1

[ : : : [ T

i+1

.

Let us prove some obvious properties of this algorithm.

1. If some T

i


ontains N or more terms, then there exists at least N terms

with the 
ontent Con. As we noted, this follows from Lemma 4.3.6.

2. At the end of step i + 1 the set T

1

[ : : : [ T

i+1


ontains all the terms with

the 
ontents Con of the depth � i + 1. This property obviously holds by

our 
onstru
tion.
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This property ensures that the algorithm is 
orre
t. To prove that it works in

time polynomial in M + N it is enough to note that ea
h step 
an be made in

time polynomial in N and the total number of steps is at most M + 1. �

Now we are ready to prove the main lemma of this se
tion.

Lemma 4.3.8 There exists a polynomial time of N algorithm, whi
h 
onstru
ts

an existential formula at least

N

(x) valid on a natural number x if and only if

there exists at least N di�erent terms of the weight x.

Proof. If the signature � 
ontains a unary fun
tion symbol of the weight 0 then

the number of di�erent terms in any weight is either 0 or !. Therefore we 
an

de�ne at least

N

(x) as 9n

1

: : :9n

S

exists(x; n

1

; : : : ; n

S

).

Let us 
onsider the 
ase when the signature � 
onsists of a unary fun
tion

symbol g of a positive weight and 
onstants. For every 
onstant 
 in � 
onsider

the formula G




(x) = 9k(w(g)k + w(
) = x). It is not hard to argue that G




(x)

holds if and only if there exists a term of the form g

k

(
) of weight x. Let P be

the set of all sets of 
ardinality N 
onsisting of 
onstants of � (the 
ardinality of

P is obviously polynomial in N). It is easy to see that

at least

N

(x)$

_

Q2P

^


2Q

G




(x):

It remains to 
onsider the 
ase when our signature 
ontains a fun
tion symbol

of an arity greater than or equal to 2, or 
ontains at least two di�erent unary

fun
tion symbols. By Lemma 4.3.4, there exist 
onstants N

1

and N

2

su
h that

for any natural number x su
h that x > N �N

1

+N

2

the number of terms of the

weight x is either 0 or greater than N . Let us denote N �N

1

+N

2

as M and the

set fM

0

jM

0

� M ^ tnt(N;M

0

) � Ng as W . By Lemmas 4.3.4, 4.3.7 we have

at least

N

(x)$ (9n

1

; : : : ; n

S

exists(x; n

1

; : : : ; n

S

) ^ x > M) _ (

_

M

0

2W

x =M

0

):

�

4.4 Main results

In this se
tion we 
omplete the proofs of the main results of this 
hapter.
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Theorem 4.4.1 For every Knuth-Bendix order, the problem of solving ordering


onstraints is 
ontained in NP.

Proof. Take a 
onstraint. By Lemma 4.2.5 it 
an be e�e
tively transformed

into an equivalent disjun
tion of isolated forms, so it remains to show how to


he
k satis�ability of 
onstraints in isolated form.

Suppose that C is a 
onstraint in isolated form. Re
all that C is of the form

C

arith

^ C

triang

^ C

simp

: (4.13)

Let C

simp


ontain a 
hain x

1

�

lex

: : : �

lex

x

N

su
h that x

1

; : : : ; x

N

does not

o

ur in the rest of C

simp

. Denote by C

0

simp

the 
onstraint obtained from C

simp

by removing this 
hain. It is easy to see that C is equivalent to the 
onstraint

C

arith

^ C

triang

^ C

0

simp

^

^

i=2:::N

(jx

i

j =

N

jx

1

j) ^ at least

N

(jx

1

j):

In this way we 
an repla
e C

simp

by an arithmeti
al 
onstraint, so we assume that

C

simp

is empty. Let C

triang

have the form

y

1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

:

Let Z be the set of all variables o

urring in C

arith

^ C

triang

. It is not hard to

argue that C

arith

^ C

triang

is satis�able if and only if the following 
onstraint is

satis�able:

C

arith

^ jy

1

j =

N

jt

1

j ^ : : : ^ jy

n

j =

N

jt

n

j ^

V

z2Z

at least

1

(jzj):

So we redu
ed the de
idability of the existential theory of term algebras with a

Knuth-Bendix order to the problem of solvability of systems of linear Diophantine

inequalities. Our proof 
an be represented as a nondeterministi
 polynomial-time

algorithm. �

This theorem implies the main result of this 
hapter. Let us 
all a signature

� trivial if it 
onsists of one 
onstant symbol. Evidently, the �rst-order theory

of the term algebra of a trivial signature is polynomial.

Theorem 4.4.2 The existential �rst-order theory of any term algebra of a non-

trivial signature with the Knuth-Bendix order is NP-
omplete.
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Proof. The 
ontainment in NP follows from Theorem 4.4.1. NP-hardness is

proved in Proposition 3.5.3 by redu
ing propositional satis�ability to the existen-

tial theory of the term algebra (even without the order). �

Let us show that for some Knuth-Bendix orders even 
onstraint solving 
an

be NP-hard.

Example 4.4.3 Consider the signature � = fs; g; h; 
g, where h is binary, s; g

are unary, and 
 is a 
onstant. De�ne the weight of all symbols as 1, and use any

order � on � su
h that g � s. Our aim is to represent any linear Diophantine

equation by Knuth-Bendix 
onstraints. To this end, we will 
onsider any ground

term t as representing the natural number jtj � 1.

De�ne the formula

equal weight(x; y)$

g(x) �

KBO

s(y) ^ g(y) �

KBO

s(x):

Obviously, for any ground terms r; t equal weight(r; t) holds if and only if jrj = jtj.

It is enough to 
onsider systems of linear Diophantine equations of the form

x

1

+ : : :+ x

n

+ k = x

0

; (4.14)

where x

0

; : : : ; x

n

are pairwise di�erent variables, and k 2 N . Consider the 
on-

straint

equal weight(s

k+2

(h(y

1

; h(y

2

; : : : ;

h(y

n�1

; y

n

))));

s

2n

(y

0

)):

(4.15)

It is not hard to argue that

(4.16) Formula (4.15) holds if and only if

jy

1

j � 1 + : : :+ jy

n

j � 1 + k = jy

0

j � 1:

Using (4.16), we 
an transform any system D(x

0

; : : : ; x

n

) of linear Diophantine

equations of the form (4.14) into a 
onstraint C(y

0

; : : : ; y

n

) su
h that for every

tuple of ground terms t

0

; : : : ; t

n

, C(t

0

; : : : ; t

n

) holds if and only if so does D(jt

0

j�

1; : : : ; jt

n

j � 1).
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Similar, using a formula

greater weight(x; y)$

s(x) �

KBO

g(y)

one 
an represent systems of linear inequalities using Knuth{Bendix 
onstraints.

It is easy to see that this redu
tion 
an be done in polynomial time, assuming

that 
oeÆ
ients of linear Diophantine equations and inequalities are represented

in the unary notation. �

Sin
e it is well-known that solving linear Diophantine equations with 
oeÆ-


ients represented in the unary notation is NP-hard, we have the following theo-

rem.

Theorem 4.4.4 For some Knuth-Bendix orders, the problem of solving ordering


onstraints is NP-
omplete. �

This result does not hold for all non-trivial signatures, as the following theorem

shows.

Lemma 4.4.5 There exists a polynomial time algorithm whi
h solves ordering


onstraints for any given term algebra over a signature 
onsisting of 
onstants

and any total ordering � on that term algebra.

Proof. Let � = f


1

; : : : ; 


n

g, w.l.o.g. we 
an assume that 


n

� 


n�1

� : : : � 


1

.

Let C be an ordering 
onstraint. First we get rid of equalities as follows. If

t =

TA

s o

urs in C and t is synta
ti
ally equal to s then we remove t =

TA

s from

C, if t is a variable then we repla
e all o

urren
es of t in C by s and remove

t =

TA

s from C, otherwise t and s are di�erent 
onstants and C is unsatis�able.

Now C 
onsists of 
onjun
tions of atomi
 formulas of the form t � s. We de�ne a

relation �

0

C

on terms as follows: t �

0

C

s if and only if t � s o

urs in C. Let �

C

denote a transitive 
losure of �

0

C

. It is easy to see, that using a polynomial time

algorithm for transitive 
losure, we 
an 
ompute the relation t �

C

s in polynomial

time. Note that if �

C

is not a stri
t order then the 
onstraint C is unsatis�able.

So we assume that �

C

is a stri
t partial order.

Now we repla
e all variables in C by 
onstants as follows. Take a variable x

su
h that there is no variable less than x w.r.t. �

C

. There are two possible 
ases:

1. x is a minimal term w.r.t. �

C

, then we repla
e all o

urren
es of x in C by




1

.
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2. there exist some 
onstants less than x w.r.t. �

C

, then let 


max

be the great-

est w.r.t. � 
onstant among su
h 
onstants. If 


max

is the maximal 
onstant

in TA(�) then the 
onstraint C is unsatis�able, otherwise we repla
e all o
-


urren
es of x by 


max+1

.

Repeating this pro
ess we repla
e all variables in C in polynomial time. To 
om-

plete the proof of the lemma, it remains to show that transformations 1,2 above,

preserve satis�ability of 
onstraints without equality. To this end, we 
onsider a


onstraint C without equality and a solution � to C. If the transformation 1 is

appli
able to C then it is easy to see that

�

0

(x) =

(




1

, if x is a minimal term w.r.t. �

C

,

�(x) otherwise.

is a solution to the 
onstraint obtained after applying the transformation 1 to C.

Similar one 
an show that the transformation 2 preserves satis�ability of 
on-

straints without equality. �

Corollary 4.4.6 There exists a polynomial time algorithm whi
h 
he
ks solv-

ability of ordering 
onstraints for any given Knuth{Bendix order on any term

algebra over a signature 
onsisting of 
onstants. �

As we mentioned in Se
tion 4.1, if we 
onsider real-valued Knuth-Bendix

orders then even 
omparison of ground terms might be unde
idable. Let us show

it on the following example.

Example 4.4.7 Consider a non-
omputable real number r su
h that 0 < r < 1,

i.e. there is no algorithm whi
h given a positive integer n 
omputes r with the

pre
ision 1=n, in other words �nds two natural numbers p; q su
h that jr�p=qj <

1=n.

Now we 
onsider a signature 
onsisting of two unary symbols g; h and a


onstant 
 and 
onsider any Knuth{Bendix order �

KBO

on the 
orresponding

term algebra, su
h that w(g) = 1 and w(h) = r. Let us show that 
omparison

of terms in this Knuth{Bendix order is unde
idable. Consider a positive inte-

ger n. Then, it is easy to see that there exists a positive integer m su
h that

g

m

(
) �

KBO

h

n

(
) �

KBO

g

m�1

(
). Sin
e jg

m

(
)j 6= jh

n

(
)j 6= jg

m�1

(
)j, we have

jg

m

(
)j > jh

n

(
)j > jg

m�1

(
)j. From the de�nition of the weight fun
tion we have
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that m > rn > m� 1 and therefore m=n > r >

m�1

n

. Let us take p = m� 1 and

q = n, then we have jr � p=qj < 1=n. Therefore using 
omparison of terms we


an 
ompute r with the pre
ision 1=n. This implies that 
omparison of terms for

this Knuth{Bendix order is unde
idable. �



Chapter 5

First{order Knuth{Bendix

ordering 
onstraints for unary

signatures

This 
hapter is based on the paper [Korovin and Voronkov 2002℄.

5.1 Introdu
tion

In resolution-based theorem proving there are important simpli�
ations whi
h

allow us to remove 
lauses from the sear
h spa
e (for example subsumption). It

turns out that in order to express appli
ability 
onditions for these simpli�
a-

tions, we need to 
onsider 
onstraints whi
h involve �rst-order quanti�ers (see

Chapter 2). Unfortunately the �rst-order theory of the re
ursive path orders is

unde
idable [Treinen 1990, Comon and Treinen 1997℄. Only re
ently the de
id-

ability of the �rst-order theory of re
ursive path orders over unary signatures has

been proven [Narendran and Rusinowit
h 2000℄. A signature is 
alled unary if it


onsists of unary fun
tion symbols and 
onstants.

In this 
hapter we prove the following result.

Theorem 5.3.2: The �rst-order theory of any Knuth-

Bendix order over any unary signature is de
idable.

Our de
ision pro
edure uses interpretation of unary terms as trees and uses

de
idability of the weak monadi
 se
ond-order theory of binary trees.
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This 
hapter is stru
tured as follows. In Se
tion 5.2 we introdu
e the notion of

interpretation and show how it 
an be used to prove de
idability of a given theory

by redu
ing this problem to de
idability of some known theory. In Se
tion 5.3

we show how to interpret unary terms with any Knuth-Bendix order in the weak

monadi
 se
ond-order theory of binary trees, whi
h de
idability is well-known.

In this 
hapter we will only 
onsider signatures 
onsisting of unary fun
tion

symbols and 
onstants.

5.2 Interpretations

Interpretations play an important role in mathemati
al logi
, allowing us to de-

s
ribe the properties of a given stru
ture based on the properties of another

stru
ture.

We will use an interpretation of �rst-order stru
tures with the Knuth-Bendix

order, in the stru
ture of two su

essors 
onsidered in the weak monadi
 se
ond-

order language. The weak monadi
 se
ond-order language is a language 
losed

under _;^;:, whi
h extends �rst-order language with variables X; Y; : : : ranging

over �nite sets, in
ludes atomi
 formulas t 2 X where t is a �rst order term and

allows quanti�ers over the set variables.

Let us introdu
e a simple notion of interpretation whi
h we will use later to

show the de
idability of the �rst-order theory of Knuth-Bendix orders over unary

signatures. For a more general theory of interpretations see, e.g., [Hodges 1993,

Ershov 1980, Rabin 1977℄. In the sequel we will use lower-
ase letters x; y; z; : : : to

denote �rst-order variables and upper-
ase letters X; Y; Z; : : : to denote se
ond-

order variables.

Definition 5.2.1 Let A be a stru
ture in a �rst-order language L

A

and B be a

stru
ture in a weak monadi
 se
ond-order language L

B

. We say that the stru
ture

A is interpretable in the stru
ture B if there exist a positive integer m and the

following formulas:

1. �

domain

(

�

X), where

�

X is a tuple of se
ond-order variables of the length m

su
h that the set A

0

= f

�

S j B j= �

domain

(

�

S)g is non-empty;

2. �

g

(

�

X

1

; : : : ;

�

X

n

;

�

Y ) for ea
h fun
tion symbol g in the language L

A

, where the

arity of g is n and

�

X

1

; : : : ;

�

X

n

;

�

Y are tuples of se
ond-order variables of the
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length m, and this formula de�nes a fun
tion, denoted by g

0

, on A

0

, i.e., we

have

g

0

(

�

S

1

; : : : ;

�

S

n

) =

�

T , B j= �

g

(

�

S

1

; : : : ;

�

S

n

;

�

T );

3. �

P

(

�

X

1

; : : : ;

�

X

n

) for ea
h predi
ate symbol P in L

A

, where the arity of P is

n and

�

X

1

; : : : ;

�

X

n

are tuples of se
ond-order variables of the length m, and

this formula de�nes a predi
ate on A

0

, denoted by P

0

, i.e., we have

P

0

(

�

S

1

; : : : ;

�

S

n

), B j= �

P

(

�

S

1

; : : : ;

�

S

n

);

su
h that the following 
ondition holds.

The stru
ture with the domain A

0

, in whi
h every fun
tion symbol f is interpreted

by the fun
tion f

0

and every predi
ate symbol P is interpreted by P

0

, is isomorphi


to the stru
ture A. �

We will use the following fundamental property of interpretability.

Proposition 5.2.2 If a stru
ture A is interpretable in the stru
ture B and the

theory of B (in the language L

B

) is de
idable, then the theory of A (in the language

L

A

) is also de
idable. �

The proof 
an be found, e.g. in [Hodges 1993, Ershov 1980, Rabin 1977℄.

5.3 Interpretation of the Knuth-Bendix order in

WS2S

We will use interpretations to show the de
idability of the �rst-order theory of

Knuth-Bendix orders over unary signatures. We show how to interpret Knuth-

Bendix orders in the stru
ture of two su

essors in the weak monadi
 language.

Then, using the result [That
her and Wright 1968℄ on the de
idability of the

weak monadi
 theory of two su

essors, we 
on
lude that the �rst-order theory

of Knuth-Bendix orders over unary signatures is de
idable.

Let us brie
y re
all the de�nition of the stru
ture of two su

essors (see, e.g.,

[Comon, Dau
het, Gilleron, Ja
quemard, Lugiez, Tison and Tommasi 1997℄ for

details). The domain 
onsists of �nite binary strings in
luding the empty string
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�. There are two fun
tions 0(x) and 1(x) whi
h add 0 and 1 respe
tively to the

end of the string. For example 0(101) = 1010. Instead of 0(t) and 1(t) we will

write, respe
tively, t �0 and t �1. The atomi
 formulas are equalities t = s between

�rst-order terms, and t 2 X where t is a �rst-order term. Formulas are built from

atomi
 formulas using logi
al 
onne
tives ^;_;:, the �rst-order quanti�ers 9x; 8x

and se
ond-order quanti�ers over �nite sets 9X; 8X. We will use the following

standard shorthands: 9x 2 X�(x;X) for 9x(x 2 X^�(x;X)) and 8x 2 X�(x;X)

for 8x(x 2 X � �(x;X)). Binary strings 
an be seen as positions in binary trees,

and in the sequel we sometimes will use the word position instead of string.

Below we will use the following de�nable relations on sets with a straightfor-

ward meaning.

Emptiness:

X = ; $ 8x(x 62 X):

Interse
tion:

X \ Y = Z $ 8x(x 2 Z $ (x 2 X ^ x 2 Y )):

Union:

X [ Y = Z $ 8x(x 2 Z $ (x 2 X _ x 2 Y )):

Partition:

Partition(X;X

1

; : : : ; X

n

)$ X =

[

1�i�n

X

i

^

^

1�i<j�n

X

i

\X

j

= ;:

Pre�xClosed:

Pre�xClosed(X)$ 8x((x � 0 2 X _ x � 1 2 X) � x 2 X):

Sets satisfying Pre�xClosed will be 
alled trees.

Pre�x order v:

x v y $ 8X((y 2 X ^ Pre�xClosed(X)) � x 2 X):

Likewise, we introdu
e
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x � y $ x v y ^ x 6= y:

Lexi
ographi
 order �

lex

:

x �

lex

y $ x v y

_

9z(z � 0 v x ^ z � 1 v y):

Likewise, we introdu
e

x <

lex

y $ x �

lex

y ^ x 6= y:

Maximal pre�x: Informally,MaxPref (m;X) says that m is a maximal element

in X w.r.t. the pre�x order.

MaxPref (m;X)$ m 2 X ^ 8z 2 X:(m � z):

Minimal pre�x: Informally, MinPref (m;X) says that m is a minimal element

in X w.r.t. the pre�x order.

MinPref (m;X)$ m 2 X ^ 8z 2 X:(z � m):

Maximal lexi
ographi
ally: Informally, MaxLex (m;X) says that m is a max-

imal element in X w.r.t. the lexi
ographi
 order.

MaxLex (m;X)$ m 2 X ^ 8z 2 X:(m <

lex

z):

Assuming a �xed Knuth-Bendix order we will show how to interpret it in the

stru
ture of two su

essors using the weak monadi
 se
ond-order language.

Let us 
onsider a signature � = fg

1

; : : : ; g

s

g 
onsisting of unary fun
tion

symbols and 
onstants. From now on we assume that � is �xed and denote by

s the number of fun
tion symbols and 
onstants in it. We denote the set of


onstants in � by �




and the set of unary fun
tion symbols by �

g

. Let w be a

weight fun
tion on � and� be a pre
eden
e relation 
ompatible with w. Also f

will always denote the fun
tion symbol of weight zero. Denote the Knuth-Bendix

order indu
ed by this weight fun
tion and pre
eden
e relation by �. Now we
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show how to interpret TA

�

(�) in the stru
ture of two su

essors using the weak

monadi
 language.

We de�ne the interpretation in three steps. First we map terms into labelled

trees and de�ne fun
tions and relations on them su
h that the obtained stru
ture

will be isomorphi
 to TA

�

(�). Then we show how labelled trees 
an be repre-

sented as s + 1-tuples of �nite sets of binary strings. Finally we show how to

de�ne these representations, and 
orresponding fun
tions and relations on them

in the stru
ture of two su

essor using weak monadi
 se
ond{order logi
.

Coding of terms.

The labelled trees are binary trees labelled with the fun
tion symbols. We

want tree representation of terms to satisfy the following properties

1. The fun
tions of TA

�

(�) 
an be de�ned in the monadi
 se
ond-order lan-

guage.

2. The fun
tion symbols of the term algebra are represented in su
h a way that

we 
an 
ompare weights of terms using the monadi
 se
ond-order language.

3. For the terms of equal weight we should be able to 
ompare their top fun
-

tion symbols and then lexi
ographi
ally 
ompare their subterms.

Let us start with an example. Consider a signature ff(); g(); h(); 
g, and a

weight fun
tion w su
h that w(f) = 0; w(g) = 2; w(h) = w(
) = 1. Figure 5.1

shows how to 
onstru
t a labelled tree representing the term f(h(f(f(g(
))))).

The labelled tree is built by traversing the tree inside-out, for example, the root

of the labelled tree is labelled with the 
onstant 
. We would like the rightmost

bran
h of the tree to have the length equal to the weight of the term. To this end,

we repeat every fun
tion symbol of a positive weight the number of times equal

to its weight. Sin
e the fun
tion symbol f has the weight 0, it is not in
luded on

the rightmost bran
h. To represent this symbol, we make bran
hing to the left

at the 
orresponding points of the tree.

Before giving a formal de�nition of the representation of terms as labelled

trees, let us 
onsider trees as sets of binary strings. Any binary tree without

labels 
an be de�ned as a set of binary strings, namely the positions of the nodes

in the tree. For example, the tree of Figure 5.1 
ontains the binary strings �
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g

g

f

f

h

f

Figure 5.1: The labelled tree representation of fhffg
, w(f) = 0; w(g) =

2; w(h) = w(
) = 1

labelled with 
, strings 1 and 11 labelled as g, string 111 labelled by h, and

strings 110, 1100, and 1110 labelled by f .

Formally, for ea
h term t we de�ne a labelled binary tree Tree

t

and two posi-

tions Right

t

and Top

t

in this tree. The de�nition is by indu
tion on t.

1. If t is a 
onstant 
 of a weight w, then Tree

t


onsists of the strings �; 1; : : : ; 1

w�1

,

labelled by 
, and Right

t

= Top

t

= 1

w�1

.

2. If t = f(t

0

), then Tree

t

is obtained from Tree

t

0

by adding the string Top

t

0

� 0

labelled by f , and we have Top

t

= Top

t

0

� 0, Right

t

= Right

t

0

.

3. If t = g(t

0

), where g has a positive weight w, then Tree

t

is obtained from

Tree

t

0

by adding the strings Right

t

0

� 1; : : : ;Right

t

0

� 1

w

labelled by g, and we

have Top

t

= Right

t

= Top

t

0

� 1

w

.

The mapping t 7! Tree

t

de�nes the embedding of terms into labelled trees.

Now it is easy to de�ne the fun
tions of the term algebra TA

�

(�) on the

labelled trees. We de�ne the value of a fun
tion g on the labelled tree represen-

tation of a term t to be equal to the labelled tree representation of the term g(t).

Likewise, we 
an de�ne the Knuth-Bendix order on su
h trees. It is evident that

the obtained stru
ture on the labelled trees is isomorphi
 to TA

�

(�).

Now we will show how to represent labelled trees by s + 1-tuples. Let T be

a labelled tree whose set of positions is X. Then we represent T as the tuple

hX;X

g

1

; : : : ; X

g

s

i, where ea
h set X

g

i

is the set of positions labelled by g

i

and X

is the set of all positions in this tree. If a term t is represented by a labelled tree

T , and T is represented by a tuple hX;X

g

1

; : : : ; X

g

s

i, we will also say that the

tuple hX;X

g

1

; : : : ; X

g

s

i represents the term t.
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To 
omplete our 
onstru
tion, we have to show how to de�ne in the se
ond-

order monadi
 language the set of tuples whi
h represent the terms of TA

�

(�),

and then show that all fun
tions and predi
ates of TA

�

(�) are de�nable on the

representation.

To this end we introdu
e some auxiliary de�nable predi
ates on sets of strings.

OneSu

: Informally, OneSu

(X) says that the set of strings X 
onsists of

strings of 1's, 
ontains the empty string, and is pre�x 
losed.

OneSu

(X)$ � 2 X ^ (8x 2 X(x 6= � � 9y 2 X x = y � 1 )):

Spine: The set of strings on rightmost bran
h of a tree will be 
alled the spine

of this tree. Spine(X; Y ) says that X is a tree and Y is its spine.

Spine(X; Y ) $ Pre�xClosed(X) ^OneSu

(Y ) ^ Y � X ^

8Y

0

((Y

0

� X ^ OneSu

(Y

0

)) � Y

0

� Y ):

Comb: Informally, Comb(X) says that X is a tree and all right-bran
hing posi-

tions in it are in its spine.

Comb(X) $ Pre�xClosed(X)^

8x(x � 1 2 X � 9Y Spine(X; Y ) ^ x 2 Y ):

LabelledTree: Informally, LabelledTree(X;X

g

1

; : : : ; X

g

s

) says that hX;X

g

1

; : : : ; X

g

s

i

is a tuple whi
h is a labelled tree (not ne
essarily representing a term) ap-

propriately labelled in the following sense: all positions along its spine are

labelled with fun
tion symbols of positive weights and all other positions

are labelled with the fun
tion symbol of the weight 0.

LabelledTree(X;X

g

1

; : : : ; X

g

s

) $ Partition(X;X

g

1

; : : : ; X

g

s

)

^ Comb(X)

^ Spine(X;[

g2�nffg

X

g

):

The labelled trees de�ned by LabelledTree(X;X

g

1

; : : : ; X

g

s

) are similar to those

representing terms, ex
ept that in our representation of terms ea
h o

urren
e of
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a fun
tion symbol of a positive weight should be repeated the number of times

equal to the weight. Let us express this restri
tion in the weak monadi
 se
ond-

order logi
.

A set 
onsisting of strings of 1's will be 
alled a 1-set. A 1-set whi
h is a

set of su

essive positions we be 
alled an interval. The length of an interval

is the number of elements in it. Consider a labelled tree hX;X

g

1

: : : ; X

g

s

i and a

fun
tion symbol g 2 �nffg. First we introdu
e notions of g-interval and maximal

g-interval. A g-interval is an interval whi
h is 
ontained in X

g

and 
ontains no

bran
hing positions with a possible ex
eption of the maximal position of this

interval.

g-interval: Let g 2 � n ffg. Informally Interval

g

(I;

�

X) says that

�

X is a labelled tree and I is a g-interval.

Interval

g

(I;

�

X) $ LabelledTree(

�

X) ^ I � X

g

^

9m

0

; m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)

^ 8y(m

0

v y v m

1

� y 2 I))

^8z 2 I( :MaxPref (z; I) � z � 0 62 X):

Maximal g-interval: is a g-interval that 
an not be properly extended.

MaxInterval

g

(I;

�

X) $ Interval

g

(I;

�

X) ^ 8J(Interval

g

(J;

�

X) � I 6� J):

Our next goal is to express that the length of every maximal g-interval is a

multiple of w(g). To this end we introdu
e a notion of n-interval, for ea
h positive

n. We say that a position x is the n-su

essor of a position y if x = y � 1

n

. An

n-interval is a 1-set whi
h 
onsists of a sequen
e of positions su
h that ea
h next

position is an n-su

essor of the previous. We always assume that an n-interval


ontains at least two elements. For example, the following set is a 2-interval

f1; 111; 11111g. Let us show that for a given n, the property of being an n-

interval is expressible in the monadi
 se
ond-order logi
.

1-set:

OneSet(X)$ 9Y X � Y ^ OneSu

(Y ):
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n-interval:

Interval

n

(X) $ OneSet(X) ^ 9m(MinPref (m;X) ^ 1

n

(m) 2 X)

^8y 2 X(MaxPref (y;X) _ (y � 1

n

2 X ^

V

1�i<n

y � 1

i

62 X)):

Now, to say that the length of every maximal g-interval in a tree is a multiple

of w(g), it is enough to say that for every maximal g-interval in the tree, its

minimal point and the su

essor of its maximal point are in some w(g)-interval.

Preterm: Informally, Preterm(

�

X) says that

�

X is a labelled tree and the length

of every maximal g-interval in this tree is a multiple of w(g).

Preterm(

�

X) $ LabelledTree(

�

X)^

V

g2�nffg

8I(MaxInterval

g

(I;

�

X) �

9m

0

9m

1

(MinPref (m

0

; I) ^MaxPref (m

1

; I)^

9Y Interval

w(g)

(Y ) ^m

0

2 Y ^m

1

� 1 2 Y )):

Finally, to de�ne terms we need to say that the root position of a term is a


onstant and there are no other o

urren
es of 
onstants.

Term:

Term(

�

X) $ Preterm(

�

X) ^ � 2

S

g2�




^

V

g2�




(X

g

6= ; � � 2 X

g

^MaxPref (1

(w(g)�1)

(�); X

g

)):

So, we have that Term(

�

X) de�nes the domain of our term algebra in the

stru
ture of two su

essors. Let us now show how to de�ne the fun
tions of the

term algebra and the Knuth-Bendix order on this domain. Ea
h 
onstant 
an be

easily de�ned as following.

Constants: For ea
h 
onstant 
 2 �




de�ne

�




(

�

X)$ Term(

�

X) ^X




= [

0�i<w(
)

f1

i

(�)g ^X = X




:

Now we 
onsider a fun
tion symbol g 2 �

g

n ffg. In order to say that

�

Y = g(

�

X) we need to say that the spine of

�

Y extends the spine of

�

X with g

repeated w(g) times.
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Fun
tion symbols of positive weight: For ea
h fun
tion symbol g 2 �

g

nffg

de�ne

�

g

(

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nfgg

X

h

= Y

h

^

9S9m(Spine(X;S) ^MaxLex (m;S)^

Y

g

= (X

g

[

S

1�i�w(g)

f1

i

(m)g)):

In order to say that

�

Y = f(

�

X) where f is the fun
tion symbol of zero weight

we need to say that

�

Y extends the greatest position in

�

X, w.r.t. lexi
ographi


order, with f .

Fun
tion symbol of zero weight: For the fun
tion symbol of zero weight de-

�ne

�

f

(

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y ) ^

V

h2�nffg

X

h

= Y

h

^

9m(MaxLex (m;X) ^ Y

f

= (X

f

[ fm � 0g)):

Finally, we will de�ne the Knuth-Bendix order. For this we need some auxil-

iary predi
ates.

Point of di�eren
e: Informally, PointOfDi�eren
e(x;

�

X;

�

Y ) says that

�

X;

�

Y rep-

resent terms and they di�er at the position x.

PointOfDi�eren
e(x;

�

X;

�

Y ) $ Term(

�

X) ^ Term(

�

Y )^

W

g2�

((x 2 X

g

^ x 62 Y

g

) _ (x 2 Y

g

^ x 62 X

g

)) :

Maximal point of di�eren
e: Informally,MaxPointOfDi�eren
e(x;

�

X;

�

Y ) says

that

�

X;

�

Y are terms, and x is the greatest point of di�eren
e w.r.t. the lex-

i
ographi
 order.

MaxPointOfDi�eren
e(x;

�

X;

�

Y ) $ PointOfDi�eren
e(x;

�

X;

�

Y )^

8y(PointOfDi�eren
e(y;

�

X;

�

Y ) � y �

lex

x):

Now we are ready to de�ne the Knuth-Bendix order. Indeed, to say that

�

X �

�

Y it is enough to say that

�

X;

�

Y are terms, the maximal point of their

di�eren
e is in X and the fun
tion symbol at this position in

�

X is greater in

the pre
eden
e relation� than the fun
tion symbol at this position in

�

Y , if this

position belongs to Y .
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Knuth-Bendix order:

�

X �

�

Y $ 9x(MaxPointOfDi�eren
e(x;

�

X;

�

Y ) ^ x 2 X^

V

g2�

(x 2 X

g

� (x 62 Y _

W

h�g

x 2 Y

h

))):

Lemma 5.3.1 The formulas Term(

�

X);

�

X �

�

Y and �

g

(

�

X;

�

Y ) for g 2 �, de�ne

an interpretation of the term algebra with the Knuth-Bendix order in the stru
ture

of two su

essors.

Proof. The 
laim follows from the de�nition of the Knuth-Bendix order. �

Using the de
idability of the weak monadi
 se
ond-order theory of two su

es-

sors, this lemma and Proposition 5.2.2 we obtain the main result of this 
hapter.

Theorem 5.3.2 The �rst-order theory of any Knuth-Bendix order over any unary

signature is de
idable. �

Let us note that this interpretation of Knuth-Bendix orders also works if we


onsider partial pre
eden
e order � on the signature, assuming that f is the

greatest symbol w.r.t. �.

Finally, let us remark that our result 
an be easily extended to the de
idability

of term algebras with several Knuth-Bendix orders whi
h have the same weight

fun
tions and di�erent pre
eden
e relations. Indeed, in this 
ase the interpreta-

tion of terms and term fun
tions is the same as above and we only need to add

formulas

�

X �

i

�

Y for ea
h Knuth-Bendix order �

i

.



Chapter 6

Orientability of rewrite rules by

Knuth-Bendix orders

This 
hapter is based on papers [Korovin and Voronkov 2001b, Korovin and

Voronkov 2003d℄.

Let us give an informal overview of the results proved in this 
hapter. The

formal de�nitions will be given in the next se
tion. Let � be any order on ground

terms and l ! r be a rewrite rule. We say that � orients l ! r, if for every

ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

. We write l � r if for every

ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

or l

0

= r

0

. There are situations

where we want to 
he
k if there exists a simpli�
ation order on ground terms

that orients a given system of (possibly non-ground) rewrite rules. We 
all this

problem orientability. Orientability 
an be useful when a theorem prover is run

on a new problem for whi
h no suitable simpli�
ation order is known, or when

termination of a rewrite system is to be established automati
ally (see Chapter 2).

We give a polynomial-time algorithm for 
he
king orientability by Knuth-

Bendix orders.

Theorem 6.9.1: The problem of the existen
e of a

Knuth-Bendix order whi
h orients a given term rewriting

system 
an be solved in polynomial time.

The main algorithmi
 
omplexity of our orientability algorithm arises from

the usage of solvability of homogeneous linear inequalities. We show that this

is unavoidable by redu
ing solvability of 
ertain homogeneous linear inequalities

to our orientability problem. Using this redu
tion and a redu
tion to the 
ir
uit

value problem we show the following hardness result.
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Theorem 6.9.2: The problem of orientability of term

rewriting systems by Knuth-Bendix orders is P-
omplete.

Moreover, it is P-hard even for ground rewriting systems.

A similar problem of orientability by the non-ground version of real-valued

Knuth-Bendix orders was studied in [Di
k et al. 1990℄ and an algorithm for ori-

entability was given. We prove that any term rewriting system orientable by a

real-valued Knuth-Bendix order is also orientable by an integer-valued Knuth-

Bendix order. This result also holds for the non-ground version of Knuth-Bendix

orders 
onsidered in [Di
k et al. 1990℄. In our proofs we use some te
hniques of

[Di
k et al. 1990℄. We also show that some rewrite systems 
ould not be ori-

ented by non-ground version of Knuth-Bendix orders, but 
an be oriented by our

algorithm.

The se
ond problem we 
onsider is solving ordering 
onstraints 
onsisting of a

single inequality, over a given Knuth-Bendix order. If � is total on ground terms,

then the problem of 
he
king if � orients l ! r has relation to the problem

of solving ordering 
onstraints over �. Indeed, � does not orient l ! r if and

only if there exists a ground instan
e l

0

! r

0

of l ! r su
h that r

0

� l

0

, i.e., if

and only if the ordering 
onstraint r � l has a solution. This means that any

pro
edure for solving ordering 
onstraints 
onsisting of a single inequality 
an

be used for 
he
king whether a given system of rewrite rules is oriented by �,

and vi
e versa. Using the same te
hnique as for the orientability problem, we

show that the problem of solving Knuth-Bendix ordering 
onstraints 
onsisting

of single inequalities 
an be solved in polynomial time. Let us remark that this

algorithm does not use solvability of systems of homogeneous linear inequalities

and runs in the time O(n

2

) of the size of the 
onstraint.

Theorem 6.9.3: The problem of solving a given Knuth-

Bendix ordering 
onstraint 
onsisting of a single inequal-

ity 
an be solved in the time O(n

2

).

6.1 Preliminaries

In the sequel we will often refer to the least and the greatest terms among the

terms of the minimal weight for a given Knuth-Bendix order. It is easy to see that

every term of the minimal weight is either a 
onstant of the minimal weight, or a

term f

n

(
), where 
 is a 
onstant of the minimal weight, and w(f) = 0. Therefore,
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the least term of the minimal weight is always the 
onstant of the minimal weight

whi
h is the least among all su
h 
onstants w.r.t. �. This 
onstant is also the

least term w.r.t. �.

The greatest term of the minimal weight exists if and only if there is no unary

fun
tion symbol of the weight 0. In this 
ase, this term is the 
onstant of the

minimal weight whi
h is the greatest among su
h 
onstants w.r.t. �.

Definition 6.1.1 (grounding substitution) A substitution � is grounding for an

expression E (i.e., term, rewrite rule et
.) if for every variable x o

urring in E

the term �(x) is ground. We denote by E� the expression obtained from E by

repla
ing in it every variable x by �(x). A ground instan
e of an expression E is

any expression E� whi
h is ground. �

A rewrite rule is a pair of terms (l; r), possibly with variables, usually denoted

by l ! r. A term rewriting system is a �nite set of term rewrite rules. The

following de�nition is 
entral to this 
hapter.

Definition 6.1.2 (orientability) AKnuth-Bendix order� orients a rewrite rule

l ! r if for every ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

. A Knuth-

Bendix order orients a system R of rewrite rules if it orients every rewrite rule

in R. �

We show that the problem of the existen
e of a Knuth-Bendix order whi
h orients

a given system of term rewrite rules 
an be solved in polynomial time. Moreover,

if the given system of rewrite rules is orientable by a Knuth-Bendix order, we 
an

�nd su
h an order in polynomial time.

The de
idability of the orientability problem for Knuth-Bendix orders does not

follow immediately from the de
idability of Knuth-Bendix ordering 
onstraints

(Chapter 4), as it is in the 
ase of re
ursive path orders. For a given �nite

signature, there exists only a �nite number of di�erent re
ursive path orders.

But there exists an in�nite number of di�erent Knuth-Bendix orders, sin
e the

weight fun
tion is not restri
ted.

We de�ne orientability in terms of ground instan
es of rewrite rules. One 
an

also de�ne orientability using the non-ground version of Knuth-Bendix orders as

originally de�ned by Knuth and Bendix [1970℄. But then we obtain a weaker

notion (fewer systems 
an be oriented) as the following example shows.

Example 6.1.3 Consider the following rewrite rule:
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g(x; a; b)! g(b; b; a): (6.1)

For any 
hoi
e of the weight fun
tion w and order �, g(x; a; b) �

KBO

g(b; b; a)

does not hold for the original Knuth-Bendix order with variables. However,

rewrite rule (6.1) 
an be oriented by any Knuth-Bendix order su
h that w(a) �

w(b) and a� b. �

In fa
t the order based on all ground instan
es is the greatest simpli�
ation order

extending the Knuth-Bendix order from ground terms to non-ground terms.

6.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous

linear inequalities. The de�nitions related to systems of linear inequalities 
an be

found in standard textbooks, see, e.g., S
hrijver [1998℄. We will denote 
olumn

ve
tors of variables by X, integer or real ve
tors by V;W , integer or real matri
es

by A;B. Column ve
tors 
onsisting of 0's will be denoted by 0. The set of real

numbers is denoted by R, and the set of non-negative real numbers by R

+

.

Definition 6.2.1 (homogeneous linear inequalities) A homogeneous linear in-

equality has the form either V X � 0 or V X > 0. A system of homogeneous

linear inequalities is a �nite set of homogeneous linear inequalities. �

Solutions (real or integer) to systems of homogeneous linear inequalities are de-

�ned as usual. When we write a system of homogeneous linear inequalities as

AX � 0, we assume that every inequality in the system is of the form V X � 0

(but not of the form V X > 0).

We will use the following fundamental property of system of homogeneous

linear inequalities:

Lemma 6.2.2 Let AX � 0 be a system of homogeneous linear inequalities, where

A is an integer matrix. Then there exists a �nite number of integer ve
tors

V

1

; : : : ; V

n

su
h that the set of solutions to AX � 0 is

fr

1

V

1

+ : : :+ r

n

V

n

j r

1

; : : : ; r

n

2 R

+

g: (6.2)

�
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The proof 
an be found in, e.g., [S
hrijver 1998℄.

The following lemma was proved in [Martin 1987℄ for the systems of linear

homogeneous inequalities over the real numbers. We will give a simpler proof of

it here.

Lemma 6.2.3 Let AX � 0 be a system of homogeneous linear inequalities where

A is an integer matrix and let Sol be the set of all real solutions to the system.

Then the system 
an be split into two disjoint subsystems BX � 0 and CX � 0

su
h that

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol su
h that CV > 0.

Proof. By Lemma 6.2.2 we 
an �nd integer ve
tors V

1

; : : : ; V

n

su
h that the

set Sol is (6.2). We de�ne BX � 0 to be the system 
onsisting of all inequalities

WX � 0 in the system su
h that WV

i

= 0 for all i = 1; : : : ; n; then property 1 is

obvious.

Note that the system CX � 0 
onsists of the inequalities WX � 0 su
h that

for some i we have WV

i

> 0. Take V to be V

1

+ : : :+ V

n

, then it is not hard to

argue that CV > 0. �

Let W be a system of homogeneous linear inequalities. We will 
all the subsystem

BX � 0 of W the degenerate subsystem if the following holds. Denote by C the

matrix of the 
omplement to BX � 0 in W and by Sol the set of all real solutions

to W . Then

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol su
h that CV > 0.

For every system W of homogeneous linear inequalities the degenerate subsystem

of W will be denoted by W

=

. Note that the degenerate subsystem is de�ned for

arbitrary systems, not only those of the form AX � 0.

Let us now prove another key property of integer systems of homogeneous

linear inequalities: the existen
e of a real solution implies the existen
e of an

integer solution.
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Lemma 6.2.4 Let W be a system of homogeneous linear inequalities with an in-

teger matrix. Let V be a real solution to this system and for some subsystem of

W with the matrix C we have CV > 0. Then there exists an integer solution V

0

to W for whi
h we also have CV

0

> 0.

Proof. Let W

0

be obtained from W by repla
ement of all stri
t equalities

WX > 0 by their non-stri
t versions WX � 0. Take ve
tors V

1

; : : : ; V

n

so that

the set of solutions to W

0

is (6.2). Evidently, for every inequality WX � 0 in

CX � 0 there exists some i su
h that WV

i

> 0. De�ne V

0

as V

1

+ : : : + V

n

,

then it is not hard to argue that CV

0

> 0. We 
laim that V

0

is a solution to

W . Assume the 
onverse, then there exists an inequality WX > 0 in W su
h

that WV

0

= 0. But WV

0

= 0 implies that WV

i

= 0 for all i, so W has no real

solution, 
ontradi
tion. �

The following lemma follows from Lemmas 6.2.3 and 6.2.4.

Lemma 6.2.5 Let W be a system of homogeneous linear inequalities with an inte-

ger matrix and its degenerate subsystem is di�erent from W . Let C be the matrix

of the 
omplement of the degenerate subsystem. Then there exists an integer

solution V to W su
h that CV > 0. �

The following result is well-known, see, e.g., [S
hrijver 1998℄.

Lemma 6.2.6 The existen
e of a real solution to a system of linear inequalities


an be de
ided in polynomial time. �

This lemma and Lemma 6.2.4 imply the following key result.

Lemma 6.2.7 (i) The existen
e of an integer solution to an integer system of ho-

mogeneous linear inequalities 
an be de
ided in polynomial time. (ii) If an integer

system W of homogeneous linear inequalities has a solution, then its degenerate

subsystem W

=


an be found in polynomial time.

Proof. (i) By Lemma 6.2.6 the existen
e of a real solution 
an be 
he
ked

in polynomial time. By Lemma 6.2.4 an integer solution exists if and only if

there exists a real solution. Therefore, the existen
e of an integer solution 
an be

de
ided in polynomial time.

(ii) Let WX � 0 be a linear inequality in W . By Lemma 6.2.3 and the

de�nition of the degenerate system W

=

, this inequality belongs to W

=

if and
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only if W [fWX > 0g has no solution. By (i) this 
an be 
he
ked in polynomial

time. �

6.3 States

In Se
tion 6.5 we will present an algorithm for orientability by Knuth-Bendix

orders. This algorithm will work on states whi
h generalize systems of rewrite

rules in several ways. A state will use a generalization of rewrite rules to tuples

of terms and some information about possible solutions.

Let � be any order on ground terms. We extend it lexi
ographi
ally to an

order on tuples of ground terms as follows: we write hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i if

for some i 2 f1; : : : ; ng we have l

1

= r

1

; : : : ; l

i�1

= r

i�1

and l

i

� r

i

. We 
all a

tuple inequality any expression hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i. The length of this tuple

inequality is n.

In the sequel we assume that � is a �xed signature and e is a 
onstant not

belonging to �. The 
onstant e will play the role of a temporary substitute for a


onstant of the minimal weight. We also assume that di�erent rewrite rules have

disjoint sets of variables. This 
an be a
hieved by renaming variables.

We will present the algorithm for orienting a system of rewrite rules as a

sequen
e of state 
hanges. We 
all a state a tuple (R; M ;W ;U; G ; L ;o), where

1. R is a set of tuple inequalities hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i, su
h that every

two di�erent tuple inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms

of the minimal weight.

3. W is a system of homogeneous linear inequalities over the following vari-

ables: fw

g

j g 2 � [ fegg. This system denotes 
onstraints on the weight

fun
tion 
olle
ted so far, and w

e

denotes the minimal weight of terms.

4. U is one of the following values one or any. The value one signals that

there exists exa
tly one term of the minimal weight, while any means that

no 
onstraints on the number of elements of the minimal weight have been

imposed.
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5. G and L are sets of 
onstants, ea
h of them 
ontains at most one element.

If d 2 G (respe
tively d 2 L), this signals that d is the greatest (respe
tively

least) term among the terms of the minimal weight.

6. o is a binary relation on �. This relation denotes the subset of the pre
e-

den
e relation 
omputed so far.

Let w be a weight fun
tion on �, � a pre
eden
e relation on � 
ompatible with

w, and � the Knuth-Bendix order indu
ed by (w;�). A substitution � grounding

for a set of variables X is said to be minimal for X if for every variable x 2 X

the term �(x) is of the minimal weight. We extend w to e by de�ning w(e) to be

the minimal weight of a 
onstant of �.

We say that the pair (w;�) is a solution to a state (R; M ;W ;U; G ; L ;o) if

1. For every tuple inequality hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i in R and every substi-

tution � grounding for this tuple inequality and minimal for M we have

hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. The weight fun
tion w solves every inequality in W in the following sense:

repla
ement of ea
h w

g

by w(g) gives a tautology. In addition, w(e) 
oin-


ides with the minimal weight w(
) of 
onstants 
 2 �.

3. If U = one, then there exists exa
tly one term of the minimal weight.

4. If d 2 G (respe
tively d 2 L) for some 
onstant d, then d is the greatest

(respe
tively least) term among the terms of the minimal weight. Note that

if d is the greatest term of the minimal weight, then the signature 
ontains

no unary fun
tion symbol of the weight 0.

5. � extendso.

We will now show how to redu
e the orientability problem for the systems of

rewrite rules to the solvability problem for states.

Let R be a system of rewrite rules su
h that every two di�erent rules in R

have disjoint variables. Denote by S

R

the state (R; M ;W ;U; G ; L ;o) de�ned as

follows.

1. R 
onsists of all tuple inequalities hli > hri su
h that l ! r belongs to R.

2. M = ;.
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3. W 
onsists of (a) all inequalities w

g

� 0, where g 2 � is a non-
onstant;

(b) the inequality w

e

> 0 and all inequalities w

d

� w

e

� 0, where d is a


onstant of �.

4. U = any.

5. G = L = ;.

6. o is the empty binary relation on �.

Lemma 6.3.1 Let w be a weight fun
tion, � a pre
eden
e relation on � 
ompat-

ible with w, and � a Knuth-Bendix order indu
ed by (w;�). Then � orients R

if and only if (w;�) is a solution to S

R

. �

The proof is straightforward.

6.4 Trivial signatures

For te
hni
al reasons, we will distinguish two kinds of signatures. Essentially, our

algorithm depends on whether the weights of terms are restri
ted or not. For the

so-
alled non-trivial signatures, the weights are not restri
ted. When we present

the orientability algorithm for the non-trivial signatures, we will use the fa
t that

terms of suÆ
iently large weights always exist. For the trivial signatures we will

present a simpler orientability algorithm in Se
tion 6.6.

A signature is 
alled trivial if it 
ontains no fun
tion symbols of arity � 2, and

at most one unary fun
tion symbol. Note that a signature is non-trivial if and

only if it 
ontains either a fun
tion symbol of arity � 2 or at least two fun
tion

symbols of arity 1.

Lemma 6.4.1 Let � be a non-trivial signature and w be a weight fun
tion for �.

Then for every integer m there exists a ground term of the signature � su
h that

jtj > m.

Proof. It is enough to show how for every term t build a term of the weight

greater than jtj. Note that the weight of any term is positive. If � 
ontains a

fun
tion symbol g of arity n � 2, then jg(t; : : : ; t)j = w(g) + n � jtj > jtj. If �


ontains two unary fun
tion symbols, then for at least one of them g we have

w(g) > 0. Then jg(t)j = w(g) + jtj > jtj. �
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6.5 An algorithm for orientability in the 
ase of

non-trivial signatures

In this se
tion we only 
onsider non-trivial signatures. An algorithm for trivial

signatures is given in Se
tion 6.6. The algorithm given in this se
tion will be

illustrated below in Se
tion 6.5.5 on the rewrite rule of Example 6.1.3.

Our algorithm works as follows. Given a system R of rewrite rules, we build

the initial state S

R

= (R; M ;W ;U; G ; L ;o). Then we repeatedly transform

(R; M ;W ;U; G ; L ;o) as des
ribed below. We 
all the size of the state the total

number of o

urren
es of fun
tion symbols and variables in R. Every transfor-

mation step will terminate with either su

ess or failure, or else de
rease the size

of R.

At ea
h step we assume that R 
onsists of k tuple inequalities

hl

1

; L

1

i > hr

1

; R

1

i;

� � �

hl

k

; L

k

i > hr

k

; R

k

i;

(6.3)

su
h that all of the L

i

; R

i

are tuples of terms.

We will label parts of the algorithm. These labels will be used in the proof of

its soundness. The algorithm 
an make a non-deterministi
 
hoi
e of a 
onstant

of the minimal weight, but at most on
e at step (T3) below, and the number

of non-deterministi
 bran
hes is bounded by the number of 
onstants in �. If

we allow to extend our signature with an extra 
onstant, whi
h is appropriate

for most appli
ations, then this non-deterministi
 
hoi
e 
an be repla
ed by by

adding e as a new 
onstant in our signature.

When the set W of linear inequalities 
hanges, we assume that we 
he
k the

new set for satis�ability, and terminate with failure if it is unsatis�able. Likewise,

when we 
hange o, we 
he
k if it 
an be extended to an order and terminate

with failure if it 
annot.

6.5.1 The algorithm

The algorithm works as follows. Every step 
onsists of a number of state trans-

formations, beginning with PREPROCESS de�ned below. During the algorithm,

we will perform two kinds of 
onsisten
y 
he
ks:
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� The 
onsisten
y 
he
k on W is the 
he
k whether W has a solution. If it

does not, we terminate with failure.

� The 
onsisten
y 
he
k on o is the 
he
k whethero 
an be extended to

an order, i.e., the transitive 
losure � ofo is irre
exive, i.e., for no g 2 �

we have g � g. Ifo 
annot be extended to an order, we terminate with

failure.

It is not hard to argue that both kinds of 
onsisten
y 
he
ks 
an be performed

in polynomial time. The 
onsisten
y 
he
k on W is polynomial by Lemma 6.2.7.

The 
onsisten
y 
he
k ono is polynomial sin
e the transitive 
losure of a binary

relation 
an be 
omputed in polynomial time, see, e.g., [Cormen, Leiserson and

Rivest 1991℄.

PREPROCESS. Do the following transformations while possible. If R 
on-

tains a tuple inequality hl

1

; : : : ; l

n

i > hl

1

; : : : ; l

n

i, terminate with failure. Other-

wise, if R 
ontains a tuple inequality hl; l

1

; : : : ; l

n

i > hl; r

1

; : : : ; r

n

i, repla
e it by

hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

If R be
omes empty, pro
eed to TERMINATE, otherwise 
ontinue with MAIN.

MAIN. Now we 
an assume that in (6.3) ea
h l

i

is a term di�erent from the


orresponding term r

i

. For every variable x and term t denote by n(x; t) the

number of o

urren
es of x in t. For example, n(x; g(x; h(y; x))) = 2. Likewise,

for every fun
tion symbol g 2 � and term t denote by n(g; t) the number of

o

urren
es of g in t. For example, n(h; g(x; h(y; x))) = 1.

(M1) For all x and i su
h that n(x; l

i

) > n(x; r

i

), add x to M .

(M2) If for some i there exists a variable x 62 M su
h that n(x; l

i

) < n(x; r

i

),

then terminate with failure.

For every pair of terms l; r, denote by W (l; r) the linear inequality obtained

as follows. Let v

l

and v

r

be the numbers of o

urren
es of variables in l and r

respe
tively. Then

W (l; r) =

X

g2�

(n(g; l)� n(g; r))w

g

+ (v

l

� v

r

)w

e

� 0: (6.4)

For example, if l = h(x; f(y)) and r = f(g(x; g(x; y))), then
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W (l; r) = w

h

� 2 � w

g

� w

e

� 0:

(M3) Add to W all the linear inequalities W (l

i

; r

i

) for all i and perform the


onsisten
y 
he
k on W .

Now 
ompute W

=

. If W

=


ontains none of the inequalities W (l

i

; r

i

), pro
eed to

TERMINATE. Otherwise, for all i su
h that W (l

i

; r

i

) 2 W

=

apply the appli
able


ase below, depending on the form of l

i

and r

i

.

(M4) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)), where g is di�erent from

h, then extend o by adding g o h and remove the tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i from R. Perform the 
onsisten
y 
he
k ono.

(M5) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then repla
e hl

i

; L

i

i >

hr

i

; R

i

i by hs

1

; : : : ; s

n

; L

i

i > ht

1

; : : : ; t

n

; R

i

i.

(M6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do the

following. (Note that at this point x; y 2 M .) If L

i

is empty, then terminate

with failure. Otherwise, set U to one and repla
e hl

i

; L

i

i > hr

i

; R

i

i by

hL

i

i > hR

i

i.

(M7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If

t is not a 
onstant, or L

i

is empty, then terminate with failure. So assume

that t is a 
onstant 
. If L = fdg for some d di�erent from 
, then terminate

with failure. Otherwise, set L to f
g. Repla
e in L

i

and R

i

the variable x

by 
, obtaining L

0

i

and R

0

i

respe
tively, and then repla
e hl

i

; L

i

i > hr

i

; R

i

i

by hL

0

i

i > hR

0

i

i.

(M8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following.

If t 
ontains x, remove hl

i

; L

i

i > hr

i

; R

i

i from R. Otherwise, if t is a non-


onstant or L

i

is empty, terminate with failure. (Note that at this point

x 2 M and W (t; x) 2 W

=

.) Let now t be a 
onstant 
. If G = fdg for some

d di�erent from 
, then terminate with failure. Otherwise, set G to f
g.

Repla
e in L

i

and R

i

the variable x by 
, obtaining L

0

i

and R

0

i

respe
tively,

and then repla
e hl

i

; L

i

i > hr

i

; R

i

i by hL

0

i

i > hR

0

i

i.

After this step repeat PREPROCESS.
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TERMINATE. Let (R; M ;W ;U; G ; L ;o) be the 
urrent state. Do the follow-

ing.

(T1) If d 2 G , then for all 
onstants 
 di�erent from d su
h that w




� w

e

� 0

belongs to W

=

extend o by adding do 
. Likewise, if 
 2 L, then for

all 
onstants d di�erent from 
 su
h that w

d

� w

e

� 0 2 W

=

extendo by

adding do 
. Perform the 
onsisten
y 
he
k ono.

(T2) For all f in � do the following. If f is a unary fun
tion symbol and w

f

� 0

belongs to W

=

, then extend o by adding f o h for all h 2 � � ffg.

Perform the 
onsisten
y 
he
k ono. If U = one or G 6= ;, then terminate

with failure.

(T3) If there exists no 
onstant 
 su
h that w




� w

e

� 0 is in W

=

, then non-

deterministi
ally 
hoose a 
onstant 
 2 �, add w

e

� w




� 0 to W , perform

the 
onsisten
y 
he
k on W and repeat PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one


onstant 
 su
h that w




� w

e

� 0 belongs to W

=

.

(T5) Terminate with su

ess.

We will show how to build a solution at step (T5) below in Lemma 6.5.19.

6.5.2 Corre
tness

In this se
tion we prove 
orre
tness of the algorithm. In Se
tion 6.5.3 we show

how to �nd a solution when the algorithm terminates with su

ess. The 
orre
t-

ness will follow from a series of lemmas asserting that the transformation steps

performed by the algorithm preserve the set of solutions. We will use notation

and terminology of the algorithm. We say that a step of the algorithm is 
orre
t if

the set of solutions to the state before this step 
oin
ides with the set of solutions

after the step. When we prove 
orre
tness of a parti
ular step, we will always

denote by S = (R; M ;W ;U; G ; L ;o) the state before this step, and by S

0

the

state after this step. When we use substitutions in the proof, we always assume

that the substitutions are grounding for the relevant terms.

The following two lemmas 
an be proved by a straightforward appli
ation of

the de�nition of solution to a state.
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Lemma 6.5.1 (
onsisten
y 
he
k) If 
onsisten
y 
he
k on W or on o termi-

nates with failure, then S has no solution. �

Lemma 6.5.2 Step PREPROCESS is 
orre
t. �

Let us now analyzeMAIN. For every weight fun
tion w and pre
eden
e relation

� 
ompatible with w we 
all a 
ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�)

any substitution � minimal for M su
h that hr

i

�;R

i

�i � hl

i

�; L

i

�i for the order

� indu
ed by (w;�).

Denote by S

�i

the state obtained from S by removal of the ith tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i from R. The following lemma follows immediately from the

de�nition of solution.

Lemma 6.5.3 (
ounterexample) If for every solution (w;�) to S

�i

there exists

a 
ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�), then S has no solution. If for

every solution (w;�) to S

�i

there exists no 
ounterexample to the tuple inequality

hl

i

; L

i

i > hr

i

; R

i

i, then removing this tuple inequality from R does not 
hange the

set of solutions to S. �

This lemma means that we 
an 
hange hl

i

; L

i

i > hr

i

; R

i

i into a di�erent tuple

inequality or 
hange M , if we 
an prove that this 
hange does not in
uen
e the

existen
e of a 
ounterexample.

Let � be a substitution, x a variable and t a term. Denote by �

t

x

the substi-

tution de�ned by

�

t

x

(y) =

(

�(y); if y 6= x;

t; if y = x:

Lemma 6.5.4 Let w be a weight fun
tion on � and� a pre
eden
e relation on �


ompatible with w. Suppose also that for some x and i we have n(x; l

i

) > n(x; r

i

)

and there exists a 
ounterexample � to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�). Then

there exists a 
ounterexample �

0

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�) minimal for

fxg.

Proof. Suppose that � is not minimal for fxg. Denote by 
 a minimal 
onstant

w.r.t. w and by t the term x�. Sin
e � is not minimal for fxg, we have jtj > j
j.

Consider the substitution �




x

. Sin
e � is a 
ounterexample, we have jr

i

�j � jl

i

�j.

We have
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jl

i

�




x

j = jl

i

�j � n(x; l

i

) � (jtj � j
j);

jr

i

�




x

j = jr

i

�j � n(x; r

i

) � (jtj � j
j):

Then

jr

i

�




x

j = jr

i

�j � n(x; r

i

) � (jtj � j
j) � jl

i

�j � n(x; r

i

) � (jtj � j
j)

> jl

i

�j � n(x; l

i

) � (jtj � j
j) = jl

i

�




x

j:

Therefore, jr

i

�




x

j > jl

i

�




x

j, and so �




x

is a 
ounterexample too. �

One 
an immediately see that this lemma implies 
orre
tness of step (M1).

Lemma 6.5.5 Step (M1) is 
orre
t.

Proof. Evidently, every solution to S is also a solution to S

0

. But by Lemma 6.5.4,

every 
ounterexample to S 
an be turned into a 
ounterexample to S

0

, so every

solution to S

0

is also a solution to S. �

Let us now turn to step (M2).

Lemma 6.5.6 (M2) If for some i and x 62 M we have n(x; l

i

) < n(x; r

i

), then S

has no solution. Therefore, step (M2) is 
orre
t.

Proof. We show that for every (w;�) there exists a 
ounterexample to hl

i

; L

i

i >

hr

i

; R

i

i w.r.t. (w;�). Let � be any substitution grounding for this tuple inequal-

ity. Take any term t and 
onsider the substitution �

t

x

. We have

jr

i

�

t

x

j � jl

i

�

t

x

j = jr

i

�j � jl

i

�j+ (n(x; r

i

)� n(x; l

i

)) � (jtj � jx�j):

By Lemma 6.4.1 there exist terms of an arbitrarily large weight, so for a term t

of a large enough weight we have jr

i

�

t

x

j > jl

i

�

t

x

j, and so �

t

x

is a 
ounterexample

to hl

i

; L

i

i > hr

i

; R

i

i.

Corre
tness of (M2) is straightforward. �

Note that after step (M2) for all i and x 62 M we have n(x; l

i

) = n(x; r

i

).

Denote by �




the substitution su
h that �




(x) = 
 for every variable x.

Lemma 6.5.7 (M3) Let for all i and x 62 M we have n(x; l

i

) = n(x; r

i

). Every

solution (w;�) to S is also a solution toW (l

i

; r

i

). Therefore, step (M3) is 
orre
t.
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Proof. Let 
 be a 
onstant of the minimal weight. Consider the substitution

�




. Note that this substitution is minimal for M . It follows from the de�nition

of W that (w;�) is a solution to W (l

i

; r

i

) if and only if jl

i

�




j � jr

i

�




j. But

jl

i

�




j � jr

i

�




j is a straightforward 
onsequen
e of the de�nition of solutions to

tuple inequalities.

Corre
tness of (M3) is straightforward. �

Lemma 6.5.8 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2

W

=

. Then for every solution to S

�i

and every substitution � minimal for M we

have jl

i

�j = jr

i

�j.

Proof. Using the fa
t that n(x; l

i

) = n(x; r

i

) for all x 62 M , it is not hard to

argue that jl

i

�j � jr

i

�j does not depend on �, whenever � is minimal for M .

Let 
 be a 
onstant of the minimal weight. It follows from the de�nition of

W that if W (l

i

; r

i

) 2 W

=

, then for every solution to W (and so for every solution

to S

�i

) we have jl

i

�




j = jr

i

�




j. Therefore, jl

i

�j = jr

i

�j for all substitutions �

minimal for M . �

The proof of 
orre
tness of steps (M4){(M8) will use this lemma in the fol-

lowing way. A pair (w;�) is a solution to S if and only if it is a solution to

S

�i

and a solution to hl

i

; L

i

i > hr

i

; R

i

i. Equivalently, (w;�) is a solution to S

if and only if it is a solution to S

�i

and for every substitution � minimal for M

we have hl

i

�; L

i

�i � hr

i

�;R

i

�i. But by Lemma 6.5.8 we have jl

i

�j = jr

i

�j, so

hl

i

�; L

i

�i � hr

i

�;R

i

�i must be satis�ed by either 
ondition 2 or 
ondition 3 of

the de�nition of Knuth-Bendix orders (De�nition 3.3.8).

This 
onsideration 
an be summarized as follows.

Lemma 6.5.9 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2

W

=

. Then a pair (w;�) is a solution to S if and only if it is a solution to S

�i

and

for every substitution � minimal for M the following holds. Let l

i

� = g(t

1

; : : : ; t

n

)

and r

i

� = h(s

1

; : : : ; s

p

). Then at least one of the following 
onditions holds

1. l

i

� = r

i

� and L

i

� � R

i

�; or

2. g � h; or

3. g = h and for some 1 � i � n we have t

1

� = s

1

�; : : : ; t

i�1

� = s

i�1

� and

t

i

� �

KBO

s

i

�.
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�

Lemma 6.5.10 Step (M4) is 
orre
t.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

) for g 6= h.

Take any substitution � minimal for M . Obviously, l

i

� = r

i

� is impossible, so

hl

i

; L

i

i� � hr

i

; R

i

i� if and only if l

i

� � r

i

�. By Lemma 6.5.9 this holds if and

only if g � h, so step (M4) is 
orre
t. �

Lemma 6.5.11 Step (M5) is 
orre
t.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

). Note that

due to PREPROCESS, l

i

6= r

i

, so n � 1. It follows from Lemma 6.5.9 that

hl

i

; L

i

i� � hr

i

; R

i

i� if and only if hs

1

; : : : ; s

n

; L

i

i� � ht

1

; : : : ; t

n

; R

i

i�, so step

(M5) is 
orre
t. �

Lemma 6.5.12 Step (M6) is 
orre
t.

Proof. We know that l

i

= x and r

i

= y, where x; y are di�erent variables. Note

that if L

i

is empty, then the substitution �




, where 
 is of the minimal weight,

is a 
ounterexample to hx; L

i

i > hy; R

i

i. So assume that L

i

is non-empty and


onsider two 
ases.

1. If there exist at least two terms s; t of the minimal weight, then there exists

a 
ounterexample to hx; L

i

i > hy; R

i

i. Indeed, if s � t, then y� � x� for

every � su
h that �(x) = t and �(y) = s.

2. If there exists exa
tly one term t of the minimal weight, then x� = y�

for every � minimal for M . Therefore, hx; L

i

i > hy; R

i

i is equivalent to

hL

i

i > hR

i

i.

In either 
ase it is not hard to argue that step (M6) is 
orre
t. �

Lemma 6.5.13 Step (M7) is 
orre
t.

Proof. We know that l

i

= x and r

i

= t. Let 
 be the least 
onstant in the

signature. If t 6= 
, then �




is obviously a 
ounterexample to hx; L

i

i > ht; R

i

i.

Otherwise t = 
, then for every 
ounterexample � we have �(x) = 
. In either


ase it is not hard to argue that step (M7) is 
orre
t. �



6.5 An algorithm for orientability in the 
ase of non-trivial signatures 98

Lemma 6.5.14 Step (M8) is 
orre
t.

Proof. We know that l

i

= t and r

i

= x. Note that t 6= x due to the

PREPROCESS step, so if x o

urs in t we have t� � x� for all �. Assume

now that x does not o

ur in t. Then x 2 M . Consider two 
ases.

1. t is a non-
onstant. For every substitution � minimal for M we have jt�j =

jx�j, hen
e t� is a non-
onstant term of the minimal weight. This implies

that the signature 
ontains a unary fun
tion symbol f of the weight 0. Take

any substitution �. It is not hard to argue that �

f(t)�

x

is a 
ounterexample

to ht; L

i

i > hx;R

i

i.

2. t is a 
onstant 
. Let d be the greatest 
onstant in the signature among the


onstants of the minimal weight. If d 6= 
, then �

d

is obviously a 
ounterex-

ample to h
; L

i

i > hx;R

i

i. Otherwise d = 
, then for every 
ounterexample

� we have �(x) = 
.

In either 
ase it is not hard to argue that step (M8) is 
orre
t. �

Let us now analyze steps TERMINATE. Note that for every 
onstant 
 the

inequality w




�w

e

� 0 belongs to W and for every fun
tion symbol g the inequality

w

g

� 0 belongs to W too.

Lemma 6.5.15 Step (T1) is 
orre
t.

Proof. Suppose d 2 G , 
 6= d, and w




� w

e

� 0 belongs to W

=

. Then for

every solution to S we have w(
) = w(e), and therefore 
 is a 
onstant of the

minimal weight. But sin
e for every solution d is the greatest 
onstant among

those having the minimal weight, we must have d� 
.

The 
ase 
 2 L is similar. �

Lemma 6.5.16 Step (T2) is 
orre
t.

Proof. If f is a unary fun
tion symbol and w

f

� 0 belongs to W

=

, then for

every solution w(f) = 0. By the de�nition of Knuth-Bendix orders we must have

f � g for all g 2 �� ffg. But then (i) there exists an in�nite number of terms

of the minimal weight and (ii) a 
onstant d 2 G 
annot be the greatest term of

the minimal weight (sin
e for example f(d) � d and jf(d)j = jdj). �
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Step (T3) makes a non-deterministi
 
hoi
e, whi
h 
an result in several states

S

1

; : : : ;S

n

. We say that su
h a step is 
orre
t if the set of solutions to S is the

union of the sets of solutions to S

1

; : : : ;S

n

.

Lemma 6.5.17 Step (T3) is 
orre
t.

Proof. Note that w is a solution to w

e

� w




� 0 if and only if w(
) is the

minimal weight, so addition of w

e

� w




� 0 to W amounts to stating that 
 has

the minimal weight. Evidently, for every solution, there must be a 
onstant 
 of

the minimal weight, so the step is 
orre
t. �

Lemma 6.5.18 Step (T4) is 
orre
t.

Proof. Suppose U = one, then for every solution there exists a unique term of

the minimal weight. If, 
 is a 
onstant su
h that w




� w

e

� 0 belongs to W

=

,

then 
 must be a term of the minimal weight. Therefore, there 
annot be more

than one su
h a 
onstant 
. �

6.5.3 Extra
ting a solution

In this se
tion we will show how to �nd a solution when the algorithm terminates

with su

ess.

Lemma 6.5.19 Step (T5) is 
orre
t.

Proof. To prove 
orre
tness of (T5) we have to show the existen
e of solution.

In fa
t, we will show how to build a parti
ular solution.

Note that when we terminate at step (T5), the system W is solvable, sin
e it

was solvable initially and we performed 
onsisten
y 
he
ks on every 
hange of W .

By Lemma 6.2.5 there exists an integer solution w to W whi
h is also a solution

to the stri
t versions of every inequality in W �W

=

. Likewise, there exists a linear

order � extending o, sin
e we performed 
onsisten
y 
he
ks on every 
hange

ofo. We 
laim that (w;�) is a solution to (R; M ;W ;U; G ; L ;o). To this end

we have to show that w is weight fun
tion,� is 
ompatible with w and all items

1{5 of the de�nition of solution are satis�ed.

Let us �rst show that w is a weight fun
tion. Note that W 
ontains all

inequalities w

g

� 0, where g 2 � is a non-
onstant, the inequality w

e

> 0 and the
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inequalities w

d

�w

e

� 0 for every 
onstant d 2 �. So to show that w is a weight

fun
tion it remains to show that at most one unary fun
tion symbol f has weight

0. Indeed, if there were two su
h fun
tion symbols f

1

and f

2

, then at step (T2)

we would add both f

1

o f

2

and f

2

o f

1

, but the following 
onsisten
y 
he
k

ono would fail.

The proof that � is 
ompatible with w is similar.

Denote by � the Knuth-Bendix order indu
ed by (w;�).

1. For every tuple inequality hl

i

; L

i

i > hr

i

; R

i

i in R and every substitution �

minimal for M we have hl

i

�; L

i

�i � hr

i

�;R

i

�i. In the proof we will use the

fa
t that w(e) is the minimal weight.

By step (M3), the inequality W (l

i

; r

i

) does not belong to W

=

(otherwise

hl

i

; L

i

i > hr

i

; R

i

i would be removed at one of steps (M4){(M8)). It follows

from the de�nition of W and the 
onstru
tion of w that if W (l

i

; r

i

) 2

W � W

=

, then jl

i

�




j > jr

i

�




j, where 
 is any 
onstant of the minimal

weight. In Lemma 6.5.8 we proved that jl

i

�j � jr

i

�j does not depend on �,

whenever � is minimal for M . Therefore, jl

i

�j > jr

i

�j for all substitutions

� minimal for M .

2. The weight fun
tion w solves every inequality in W and w(e) 
oin
ides with

the minimal weight. This follows immediately from our 
onstru
tion, if we

show that w(e) is the minimal weight. Let us show that w

e

is the minimal

weight. Indeed, sin
e W initially 
ontains the inequalities w




�w

e

� 0 for all


onstants 
, we have that w(e) is less than or equal to the minimal weight.

By step (T3), there exists a 
onstant 
 su
h that w




� w

e

� 0 is in W

=

,

hen
e w(
) = w(e), and so w(e) is greater than or equal to the minimal

weight.

3. If U = one, then there exists exa
tly one term of the minimal weight. As-

sume U = one. We have to show that (i) there exists no unary fun
tion

symbol f of weight 0 and (ii) there exists exa
tly one 
onstant of the mini-

mal weight. Let f be a unary fun
tion symbol. By our 
onstru
tion, w

f

� 0

belongs to W . By step (T2) w

f

� 0 does not belong to W

=

, so by the de�ni-

tion of w we have w(f) > 0. By our 
onstru
tion, w




�w

e

� 0 belongs to W

for every 
onstant 
. By step (T4), at most one of su
h inequalities belongs

to W

=

. But if w




� w

e

� 0 does not belong to W

=

, then w(
)� w(e) > 0
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by the 
onstru
tion of w. Therefore, there exists at most one 
onstant of

the minimal weight.

4. If d 2 G (respe
tively d 2 L) for some 
onstant d, then d is the greatest

(respe
tively least) term among the terms of the minimal weight. We 
on-

sider the 
ase d 2 G , the 
ase d 2 L is similar. But by step (T2) there

is no unary fun
tion symbol f su
h that w

f

� 0 belongs to W

=

, therefore

w(f) > 0 for all unary fun
tion symbols f . This implies that only 
onstants

may have the minimal weight. But by step (T1) and the de�nition of w,

for all 
onstants 
 of the minimal weight we have do 
, and hen
e also

d� 
.

5. � extendso. This follows immediately from our 
onstru
tion.

�

6.5.4 Time 
omplexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear

inequalities, and a polynomial-time algorithm for transitive 
losure, we 
an prove

the following lemma.

Lemma 6.5.20 The algorithm runs in time polynomial of the size of the system

of rewrite rules.

Proof. Note that the algorithm makes polynomial number of steps. Indeed,

initially the size of R is O(n logn) of the size of the system of rewrite rules (and


an even be made linear, if we avoid renaming variables). Ea
h of the steps (M4){

(M8) de
reases the size of R. The algorithm 
an make a non-deterministi
 
hoi
e,

but at most on
e, and the number of non-deterministi
 bran
hes is bounded by

the number of 
onstants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It

remains to prove that every step 
an be made in polynomial time of the size of a

state and that the size of every state is polynomial in the size of the input.

Solvability of W 
an be 
he
ked in polynomial time by Lemma 6.2.7. The

system W

=


an be built in polynomial time by the same lemma. The relation

o 
an be extended to an order if and only if the transitive 
losureo

0

ofo
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is irre
exive, i.e., there is no g su
h that go

0

g. The transitive 
losure 
an be

built in polynomial time. The 
he
k for irre
exivity 
an be obviously done in

polynomial time too. Therefore, every step 
an be performed in polynomial time

of the size of the state.

It remains to show that the size of S is bound by a polynomial. The only part

of S that is not immediately seen to be polynomial is W . However, it is not hard

to argue that the number of equations in S of the form W (l; r) is bound by the

size of the input, and every equation obviously has a polynomial size. It is also

easy to see that the size of the remaining equations is polynomial too. �

6.5.5 A simple example

Let us 
onsider how the algorithm works on the rewrite rule g(x; a; b)! g(b; b; a)

of Example 6.1.3. Initially, R 
onsists of one tuple inequality

hg(x; a; b)i > hg(b; b; a)i (6.5)

and W 
onsists of the following linear inequalities:

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0:

At step (M1) we note that n(x; g(x; a; b)) = 1 > 0 = n(x; g(b; b; a)). Therefore,

we add x to M .

At step (M3) we add the linear inequality w

e

� w

b

� 0 to W obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0:

Now we 
ompute W

=

. It 
onsists of two equations w

b

�w

e

� 0 and w

e

�w

b

� 0,

so we have to apply one of the steps (M4){(M8), in this 
ase the appli
able step

is (M5). We repla
e (6.5) by

hx; a; bi > hb; b; ai: (6.6)

At the next iteration of step (M3) we should add to W the linear inequality

w

e

� w

b

� 0, but this linear inequality is already a member of W , and moreover

a member of W

=

. So we pro
eed to step (M7). At this step we set L = fbg and

repla
e (6.6) by
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ha; bi > hb; ai: (6.7)

Then at step (M2) we add w

a

� w

b

� 0 to W obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0; w

a

� w

b

� 0:

Now w

a

�w

b

� 0 does not belong to the degenerate subsystem of W , so we pro
eed

to TERMINATE. Steps (T1){(T4) 
hange neither W noro, so we terminate with

su

ess.

Solutions extra
ted a

ording to Lemma 6.5.19 will be any pairs (w;�) su
h

that w(a) > w(b). Note that these are not all solutions. There are also solutions

su
h that w(a) = w(b) and a� b. However, if we try to �nd a des
ription of all

solutions we 
annot any more guarantee that the algorithm runs in polynomial

time.

6.6 Orientability for trivial signatures

Consider a trivial signature whi
h 
onsists of a unary fun
tion symbol g and some


onstants. Let R be a system of rewrite rules in this signature. If some rule in

R has the form t ! g

n

(x) su
h that x does not o

ur in t, then the system is

evidently not orientable. If R 
ontains no su
h rule, then R 
an be repla
ed by

an equally orientable ground system, as the following lemma shows.

Lemma 6.6.1 Let R be a system of rewrite rules in a trivial signature � su
h

that no rule in R 
ontains a variable o

urring in its right-hand side but not the

left-hand side. De�ne the ground system R

0

obtained from R by the following

transformations:

1. Repla
e every rule g

m

(x) ! g

n

(d) in R by all rules g

m

(
) ! g

n

(d) su
h

that 
 is a 
onstant in �.

2. For every rule g

m

(x)! g

n

(x) in R, if m > n then remove this rule, other-

wise terminate with failure.

Then a Knuth-Bendix order � orients R if and only if it orients R

0

.

�
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We leave the proof of this lemma to the reader. Note that the size of R

0

in the

lemma is polynomial in the sum of the sizes of R and �. Therefore, we 
an

restri
t ourselves to ground systems.

Moreover, we 
an assume that for every rule in R

0

the fun
tion symbol g

never o

urs in both left-hand side and right-hand side of R. Indeed, this 
an

be a
hieved by repla
ing every rewrite rule g(s) ! g(t) in R

0

by s ! t until g

o

urs in at most one side of the rule. Evidently, we 
an assume that R

0


ontains

no trivial rules 
 ! 
. So we obtain a system 
onsisting of rules g

n

(
) ! d,


! g

n

(d), where n > 0, or 
! d su
h that 
; d are di�erent 
onstants. In other

words, for every rule l ! r in R

0

the outermost symbol of l is di�erent from the

outermost symbol of r.

In order to 
he
k orientability of R

0

, 
onsider the system of homogeneous

linear inequalities W whi
h 
onsists of

1. the inequalities w




> 0 for all 
onstants 
 2 � and the inequality w

g

� 0;

2. for every rule l ! r in R

0

the inequalities W (l; r) =

P

h2�

(n(h; l) �

n(h; r))w

h

� 0.

Evidently, W 
an be built in time polynomial in the size of R

0

. Evidently, if

W is unsatis�able, then R

0

is not orientable. If W is satis�able, let W

=

be the

degenerate subsystem of W . Let us build a binary relationo on � as follows:

1. for every rule l ! r in R

0

, if W (l; r) 2 W

=

, then we take the outermost

symbols h

1

and h

2

of l and r respe
tively and add h

1

o h

2

too;

2. if w

g

� 0 belongs to W

=

, then add go 
 too for all 
onstants 
 2 �.

We leave it to the reader to 
he
k that R

0

is orientable if and only ifo 
an be

extended to a linear order. We 
an prove in the same way as before, that the


he
k for orientability of R

0


an be done in polynomial time.

6.7 The problem of orientability by Knuth-Bendix

orders is P-
omplete

In Se
tion 6.5.4 we have shown that the orientability problem 
an be solved

in polynomial time. In this se
tion we show that this problem is P-
omplete,
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and moreover it is P-hard even for ground rewrite systems. To this end, we

redu
e the 
ir
uit value problem whi
h is known to be P-
omplete (see, e.g.,

[Papadimitriou 1994℄), to the orientability problem. Our redu
tion 
onsists of

two steps:

1. we redu
e the problem of solving systems of linear inequalities AX � 0,

X > 0, where A is an integer matrix, to the orientability problem;

2. we redu
e the 
ir
uit value problem to solvability of su
h systems.

In the systems of linear inequalities, we assume all 
oeÆ
ients to be written in

the unary notation. Both redu
tions will be LOGSPACE.

Let AX � 0 be a system of linear inequalities and we are looking for stri
tly

positive solutions to it. For every variable x

i

in the system we introdu
e a unary

fun
tion symbol f

i

. We 
onsider the signature � 
onsisting of all su
h symbols

f

i

, two unary symbols g; h, and a 
onstant 
. We will 
onstru
t a ground rewrite

rule system R whose orientability will be equivalent to the existen
e of a solution

to AX � 0; X > 0 as follows. First of all, R 
ontains the rewrite rule

gh
! hgg
:

A Knuth-Bendix order with parameters (w;�) orients this rule if and only if

w(g) = 0 (and hen
e also g � h). For ea
h linear inequality I in the system,

we add to R a rewrite rule r(I), whi
h will be demonstrated by an example (in

order to avoid double indi
es). Suppose, for example, that the inequality 
an be

rewritten in the form

a

1

x

1

+ : : :+ a

k

x

k

� a

k+1

x

k+1

+ : : :+ a

n

x

n

: (6.8)

where x

1

; : : : ; x

n

are di�erent variables and a

1

; : : : ; a

n

are non-negative 
oeÆ-


ients. Then r(I) has the form

ghf

a

1

1

� � � f

a

k

k


! hgf

a

k+1

k+1

� � � f

a

n

n


 (6.9)

Note that for every solution we must have w(f

i

) > 0 sin
e there may be at most

one fun
tion symbol of the weight 0. For every weight fun
tion w 
onsider the

substitution s of integers to variables su
h that w(f

i

) = s(x

i

) and let � be an

arbitrary pre
eden
e relation su
h that g is maximal w.r.t.�. We leave it to the
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reader to 
he
k that (w;�) is a solution to R if and only if s is a solution to

AX � 0; X > 0.

It is not hard to argue that the redu
tion of A to R is LOGSPACE, provided

that the 
oeÆ
ients of the linear inequalities are written in the unary notation.

Let us now des
ribe a redu
tion of the 
ir
uit value problem to the problem

of whether a given system of linear integer inequalities has a positive solution.

Consider a 
ir
uit with gates g

1

; : : : ; g

n

. For ea
h gate g

i

we introdu
e a new

numeri
al variable x

i

. We will also use an auxiliary numeri
al variable y. We


onstru
t a system of linear integer inequalities W in su
h a way that the 
ir
uit

has the value TRUE if and only if W has a positive solution. For ea
h gate g

i

we introdu
e a system of numeri
al 
onstraints W

i

in the following way. If g

i

is

a FALSE gate then W

i

is fx

i

= yg, likewise if g

i

is a TRUE gate then W

i

is

fx

i

= 2yg. If g

i

is a NOT gate with an input g

j

then W

i

is fx

i

= 3y � x

j

g.

If g

i

is an AND gate with inputs g

j

and g

k

then W

i

is fy � x

i

� 2y, x

i

� x

j

,

x

i

� x

k

, x

j

+ x

k

� 2y � x

i

g. Let W

0

be the union of all W

i

for 1 � i � n. It is

straightforward to 
he
k that for every positive solution to the system W

0

ea
h

variable x

i

has the value of the variable y or twi
e that value, moreover it has

the value of y if and only if the gate g

i

has the value FALSE . To 
omplete the


onstru
tion we obtain W by adding to W

0

an equation x

n

= 2y. Note that the


oeÆ
ients of W are small, so they 
an be 
onsidered as written in the unary

notation.

We have shown how to redu
e the 
ir
uit value problem to the orientabil-

ity problem. It is 
lear that all redu
tions 
an be done by a logarithmi
-spa
e

algorithm.

6.8 Solving 
onstraints 
onsisting of a single in-

equality

In Chapter 4 we show that the problem of solving Knuth-Bendix ordering 
on-

straints is NP-
omplete. Let us show that the problem of solving Knuth-Bendix

ordering 
onstraints 
onsisting of a single inequality 
an be solved in polynomial

time. Let us �x a Knuth-Bendix order on ground terms, i.e., a pre
eden
e rela-

tion on the signature � and a weight fun
tion w. Our problem is to de
ide for

a given pair of terms s and t whether there exists a grounding substitution �

su
h that s� �

KBO

t�. Sin
e every Knuth-Bendix order is total on ground terms
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our problem is equivalent to the following problem: for a given pair of terms t

and s de
ide whether for every grounding substitutions �, t� � s� holds. The

algorithm we present is similar to the algorithm for the orientability. The main

di�eren
e is that there is no need to solve systems of linear inequalities for this

problem. Sin
e the order is given, we 
an use a simpler version of the notion of

state S = (R; M ), where R is a single tuple inequality and M is a set of vari-

ables. Instead of tuple inequalities hLi > hRi we will 
onsider a new kind of

tuple inequalities hLi � hRi with a natural interpretation. Initially R 
onsists of

the tuple inequality hti � hsi and M = ;. Let e denote the 
onstant that is the

minimal term w.r.t. �. Instead of using the inequality W (l; r), we will use the

inequality W

0

(l; r) =

P

g2�

(n(g; l) � n(g; r))w(g) + (v

l

� v

r

)w(e) � 0, where v

l

and v

r

are the numbers of o

urren
es of variables in l and r respe
tively. Let us

present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the

form hi � hi, then terminate with su

ess. If R 
onsists of a tuple inequality

hl; l

1

; : : : ; l

n

i � hl; r

1

; : : : ; r

n

i, repla
e it by hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i.

MAIN. Now we 
an assume that R 
onsists of a tuple hl; Li � hr; Ri and the

term l is di�erent from the term r.

(M1) For all x su
h that n(x; l) > n(x; r), add x to M .

(M2) If there exists a variable x 62 M su
h that n(x; l) < n(x; r), then terminate

with failure.

(M3) If W

0

(l; r) > 0 then terminate with su

ess. IfW

0

(l; r) < 0 then terminate

with failure.

Note that at this point we have W

0

(l; r) = 0.

(M4) If (l; r) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)) where g and h are distin
t,

then do the following. If g � h terminate with su

ess, otherwise terminate

with failure.

(M5) If (l; r) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then repla
e hl; Li �

hr; Ri by hs

1

; : : : ; s

n

; Li � ht

1

; : : : ; t

n

; Ri.
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(M6) If (l; r) has the form (x; y), where x and y are di�erent variables, do the

following. (Note that at this point x; y 2 M .) If there exists only one term

of the minimal weight, then repla
e hl; Li � hr; Ri by hLi � hRi. Otherwise

terminate with failure.

(M7) If (l; r) has the form (x; t), where t is not a variable, do the following.

If t is di�erent from e, then terminate with failure. Otherwise, repla
e all

o

urren
es of x in L and R by e obtaining L

0

and R

0

. Repla
e hl; Li � hr; Ri

by hL

0

i � hR

0

i.

(M8) If (l; r) has the form (t; x), where t is not a variable, do the following. If t


ontains x then terminate with su

ess. Otherwise, if t is not the greatest

term among the terms of the minimal weight, then terminate with failure.

Otherwise, repla
e all o

urren
es of x in L and R by t obtaining L

0

and

R

0

, and repla
e hl; Li � hr; Ri by hL

0

i � hR

0

i. Note that this step does not

in
rease the size of the tuple inequality sin
e t must be a 
onstant, when

we substitute it for x.

After this step repeat PREPROCESS.

The proof of 
orre
tness of ea
h step is almost the same as the proof of 
or-

re
tness for the 
orresponding steps in the orientability algorithm, so we leave it

to the reader. Let us estimate the 
omplexity of this algorithm assuming a stan-

dard RAM model and 
onsidering integer addition and 
omparison as 
onstant

time operations. Sin
e every iteration of the algorithm de
reases the size of R

(measured as the number of symbols), the number of iterations is at most linear

in the size of the input. By the routine inspe
tion of the steps (M1){(M8) it is

not hard to argue that every step also requires at most a linear number of elemen-

tary operations. For example, 
omputing n(x; l) and n(x; r) simultaneously for

all variables x at the step (M1) 
an be done in linear time, as well as 
omputing

W (l

0

; r

0

) at the step (M3). Therefore, our algorithm de
ides ordering 
onstraints


onsisting of a single inequality in the time O(n

2

).

6.9 Main results

Lemmas 6.5.1{6.5.19 guarantee that the orientability algorithm is 
orre
t and

Lemma 6.5.20 implies that it runs in polynomial time. Hen
e we obtain the

following theorem.
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Theorem 6.9.1 The problem of the existen
e of a Knuth-Bendix order whi
h

orients a given term rewriting system 
an be solved in the time polynomial in the

size of the system. �

From the redu
tions of Se
tion 6.7 we also obtain the following.

Theorem 6.9.2 The problem of orientability of term rewriting systems by Knuth-

Bendix orders is P-
omplete. Moreover, it is P-hard even for ground rewriting

systems. �

In Se
tion 6.8 we proved the following theorem.

Theorem 6.9.3 The problem of solving a given Knuth-Bendix ordering 
on-

straint 
onsisting of a single inequality 
an be solved in the time O(n

2

). �

The real-valued Knuth-Bendix order is de�ned in the same way as above, ex-


ept that the range of the weight fun
tion is the set of non-negative real numbers.

Real-valued Knuth-Bendix orders was introdu
ed by Martin [1987℄. Note that in

view of the results of Se
tion 6.2 on systems of homogeneous linear inequali-

ties (Lemmas 6.2.4 and 6.2.5) the algorithm is also sound and 
omplete for the

real-valued orders. Therefore, we have

Theorem 6.9.4 If a rewrite rule system is orientable by a real-valued Knuth-

Bendix order, then it is also orientable by an integer-valued Knuth-Bendix order.

�

It follows from this theorem that all our results formulated for integer-valued

Knuth-Bendix orders also hold for real-valued Knuth-Bendix orders.

It is worth noting that unlike integer-valued Knuth-Bendix orders, real-valued

Knuth-Bendix orders allow one to 
lassify and topologise the spa
e of all simpli-

�
ation orders, for details see [Martin and Shand 2000℄.



Chapter 7

Orientability of equalities by

Knuth-Bendix Orders

This 
hapter is based on the paper [Korovin and Voronkov 2003
℄.

In this 
hapter we extend orientability results for term rewriting systems,

studied in the previous 
hapter, to orientability of systems 
onsisting of equalities

and term rewrite rules.

Let � be any order on ground terms and s ' t be an equality. We say

that � orients an equality s ' t, if it orients either the rewrite rule s! t or the

rewrite rule t! s. The orientability problem is a problem of determining whether

there exists a simpli�
ation order whi
h orders a given system of equalities and

rewrite rules. A straightforward algorithm for 
he
king orientability of systems

of equalities would be to try all possible orientations of equalities and apply an

orientability algorithm for term rewriting systems. Su
h an algorithm would

require to test an exponential number of possible orientations of equalities. We

show how to avoid this problem for Knuth-Bendix orders.

Theorem 7.7.1 The problem of the existen
e of a

Knuth-Bendix order whi
h orients a given system of

equalities and rewrite rules 
an be solved in the time poly-

nomial in the size of the system. Moreover, if the system

of equalities and rewrite rules is orientable by a Knuth-

Bendix order we 
an �nd su
h an order in polynomial

time.

As a basis for our orientability algorithm for systems 
onsisting of equalities
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and rewrite rules we will take the orientability algorithm for systems of rewrite

rules studied in Chapter 6.

We also show that orientability of systems of equalities is at least as hard as

orientability of term rewriting systems.

Theorem 7.7.2 The problem of orientability of systems

of equalities and rewrite rules by Knuth-Bendix orders

is P-
omplete. Moreover, it is P-hard even for systems


onsisting only of equalities or only of rewrite rules.

7.1 Preliminaries

An equality is a multiset of two terms s; t, usually denoted by s ' t. Note that

s ' t and t ' s are regarded as the same equality. A system of equalities and

rewrite rules is a �nite set of equalities and rewrite rules. An expression E (e.g.

a term, equality, or a rewrite rule) is 
alled ground if no variable o

urs in E.

The following de�nition is 
entral to this 
hapter.

Definition 7.1.1 (orientability) A Knuth-Bendix order orients an equality s '

t if it orients either the rewrite rule s ! t or the rewrite rule t ! s. A Knuth-

Bendix order orients a system R of equalities and rewrite rules if it orients every

equality and rewrite rule in R. �

In Chapter 6 we have proved that orientability 
an be solved in polynomial time

for systems 
onsisting of rewrite rules only.

Let us show that the problem of orientability of systems of equalities is at

least as hard as the problem of orientability of systems of rewrite rules.

Proposition 7.1.2 There exists a logarithmi
-spa
e algorithm whi
h for a given

system of rewrite rules R produ
es a system of equalities E su
h that R is ori-

entable by Knuth-Bendix orders if and only if so is E.

Proof. Consider a rewrite system R. Let g be a new binary symbol and 
 be

a new 
onstant whi
h do not o

ur in R. Consider a rewrite system R

0

whi
h

is obtained from R by repla
ing ea
h rewrite rule l ! r with a rewrite rule

g(l; x)! g(r; 
) where x is a variable whi
h does not o

ur in l ! r. Let us 
he
k

that R is orientable by Knuth{Bendix orders if and only if R

0

is. Indeed, let � be

a Knuth{Bendix order whi
h orients R then we extend parameters of this order
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to the new symbols in su
h a way that 
 be
omes a minimal term in this order.

Now it is straightforward to 
he
k that the obtained order �

0

orients R

0

. For the


onverse dire
tion let us note that if a Knuth{Bendix order orients R

0

then the

same order also orients R.

To 
on
lude the proof we 
onsider the system of equalities E indu
ed by R

0

.

Sin
e in ea
h rewrite rule from R

0

there exists a variable o

urring in the left

hand-side and not o

urring in the right hand-side it is easy to see that E is

orientable if and only if R

0

is orientable. �

Note that this redu
tion also works for the lexi
ographi
 path orders.

7.2 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous

linear inequalities. In the previous 
hapter, Se
tion 6.2 we have studied properties

of homogeneous linear inequalities that we will use here as well.

Lemma 7.2.1 Consider a system of homogeneous linear inequalities W and an

integer homogeneous linear inequality UX > 0. If there exists a solution S to the

system W [ fUX > 0g then the degenerate subsystem of W 
oin
ides with the

degenerate subsystem of W [ fUX > 0g.

Proof. We 
an assume that W is of the form AX � 0. By Lemma 6.2.2 we 
an

�nd integer ve
tors V

1

; : : : ; V

n

su
h that the set of solutions to AX � 0 is (6.2).

Sin
e we have that US > 0 for a solution to AX � 0 then for some 1 � i � n

we have UV

i

> 0. Also from Lemma 6.2.3 we have that there exists a solution

S to AX � 0 su
h that for ea
h inequality WX � 0 from the nondegenerate

subsystem of AX � 0 we have WS > 0. Now we 
onsider a positive number r

su
h that rUV

i

+ US > 0, su
h a number always exists sin
e we have UV

i

> 0.

It is straightforward to 
he
k that rV

i

+ S satis�es the required properties. �

Corollary 7.2.2 Consider a system of homogeneous linear inequalities W , then

W

=


oin
ides with (W

=

)

=

.

Proof. From the previous lemma it follows that if we add to the system W

=

an

inequality from the non-degenerate subsystem of W then we obtain a new system

with the degenerate part equal to (W

=

)

=

. If we 
ontinue this pro
ess until we
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have added all inequalities from the non-degenerate subsystem of W we obtain

that W

=


oin
ides with (W

=

)

=

. �

Let us 
onsider a system of homogeneous linear inequalities W . We say that an

equality V X = 0 follows from W if for every solution S to W we have V S = 0.

Now our goal is to show that for every equality V X = 0 if it follows from W

then it already follows from the degenerate subsystem of W . For this we use the

following theorem.

Theorem 7.2.3 (Fundamental theorem of linear inequalities.) Let A

1

; : : : ; A

m

; U

be ve
tors in n{dimensional spa
e. Then, either

1. U is a non-negative linear 
ombination of linearly independent ve
tors from

A

1

; : : : ; A

m

, or

2. there exists a ve
tor W su
h that UW < 0 and A

i

W � 0 for 1 � i � m.

Proof. The proof 
an be found in, e.g. [S
hrijver 1998℄. �

Lemma 7.2.4 Consider a system of homogeneous linear inequalities W with an

integer matrix and an integer homogeneous linear equality UX = 0. If UX = 0

follows from W then it follows from the degenerate subsystem of W .

Proof. We 
an assume that W is of the form AX � 0. First we prove that

if UX = 0 follows from AX � 0 then the ve
tor U is a non-negative linear


ombination of the row ve
tors of the degenerate subsystem of AX � 0. For this

we apply Theorem 7.2.3 to the row ve
tors of the matrix A and the ve
tor U .

There are two possible 
ases.

� U is a non-negative linear 
ombination of the row ve
tors from the matrix

A. 1 � i � k Let us show that in this 
ombination all 
oeÆ
ients of the

ve
tors from the non-degenerate subsystem of AX � 0 are equal to zero.

Otherwise, we 
onsider su
h a ve
tor C. Sin
e C is a row ve
tor from the

non-degenerate subsystem, there exists a solution S to AX � 0 su
h that

CS > 0 and therefore US > 0, whi
h 
ontradi
ts to the assumption that

UX = 0 follows from AX � 0.

� there exists a ve
tor W su
h that for ea
h row ve
tor Q of A we have

QW � 0 and also UW < 0. But this 
ontradi
ts to the assumption that

UX = 0 follows from AX � 0.
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We have shown that U is a non-negative linear 
ombination of the row ve
tors

from the degenerate subsystem of AX � 0.

Now using Corollary 7.2.2 it is easy to see that UX = 0 follows from the

degenerate subsystem of AX � 0. �

7.3 Constraints

In Se
tion 7.5 we will present an algorithm for orientability by Knuth-Bendix

orders. The algorithm works not only with equalities and rewrite rules. It also

uses linear inequalities on the weights of the signature symbols, 
onstraints on

the pre
eden
e relation, and some additional information. All this information

will be formalized using the notion of 
onstraint.

Let > be any binary relation on ground terms. We extend it lexi
ographi-


ally to a relation on tuples of ground terms as follows: we have hl

1

; : : : ; l

n

i >

hr

1

; : : : ; r

n

i if for some i 2 f1; : : : ; ng we have l

1

= r

1

; : : : ; l

i�1

= r

i�1

and l

i

> r

i

.

In the sequel we assume that � is a �xed signature. We also assume that

di�erent equalities and rewrite rules have disjoint sets of variables. This 
an be

a
hieved by renaming variables.

Our algorithm will work on 
onstraints. Orientability of a rewrite rule or an

equality are spe
ial kinds of 
onstraints. In addition, there are 
onstraints on

the pre
eden
e relation and on the weights of the symbols in �. The algorithm

will transform 
onstraints step by step. We will show that every step preserves

satis�ability of 
onstraints. Before de�ning 
onstraints, we introdu
e spe
ial kind

of variables, 
alledmarked variables. Intuitively, marked variables range only over

terms of the minimal weight.

Definition 7.3.1 (Constraint) An atomi
 
onstraint is an expression having

one of the following forms:

1. hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i, where l

1

; : : : ; l

n

; r

1

; : : : ; r

n

are terms. Su
h 
on-

straints are 
alled rewriting 
onstraints.

2. hl

1

; : : : ; l

n

i �?� hr

1

; : : : ; r

n

i, where l

1

; : : : ; l

n

; r

1

; : : : ; r

n

are terms. Su
h 
on-

straints are 
alled orientability 
onstraints.

3. A (stri
t or non-stri
t) homogeneous linear inequality over the variables

fw

g

j g 2 �g. Su
h 
onstraints are 
alled weight 
onstraints.
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4. g ?� h, where g; h 2 �. Su
h 
onstraints are 
alled pre
eden
e 
onstraints.

5. gtmw(
), where 
 is a 
onstant.

A 
onstraint C is a 
onjun
tion C

1

^ : : :^C

n

of (zero or more) atomi
 
onstraints.

Alternatively, we will sometimes regard a 
onstraint as the set fC

1

; : : : ; C

n

g of

all atomi
 
onstraints in it. In this 
ase we say that C 
ontains the atomi



onstraints C

1

; : : : ; C

n

. Conjun
tions (or sets) of atomi
 rewriting 
onstraints

are 
alled rewriting 
onstraints, and similar for the orientability, weight, and

pre
eden
e 
onstraints. �

We 
onsider 
onstraints as 
onditions on the Knuth-Bendix order. Every Knuth-

Bendix order whi
h satis�es all atomi
 
onstraints in C is 
alled a solution to

this 
onstraint. In order to de�ne solutions, let us give a te
hni
al de�nition. A

substitution � is 
alled an admissible substitution for a weight fun
tion w if for

every marked variable x the term �(x) is a ground term of the minimal weight,

that is w(�(x)) is equal to the smallest weight of a 
onstant in �.

Definition 7.3.2 (Solution) Let� be the Knuth-Bendix order indu
ed by (w;�).

This order is 
alled a solution to an atomi
 
onstraint C if one of the following


onditions holds.

1. C is a rewriting 
onstraint hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i, and for every admis-

sible substitution � we have hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. C is an orientability 
onstraint hl

1

; : : : ; l

n

i �?� hr

1

; : : : ; r

n

i and � is a so-

lution to either hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i or hr

1

; : : : ; r

n

i ?� hl

1

; : : : ; l

n

i.

3. C is a weight 
onstraint and w solves C in the following sense: repla
ement

of ea
h w

g

by w(g) gives a tautology.

4. C is a pre
eden
e 
onstraint g ?� h, and g � h.

5. C is a 
onstraint gtmw(
), and 
 is the greatest term of the minimal weight.

A solution to an arbitrary 
onstraint C is a solution to every atomi
 
onstraint

in C. A 
onstraint C is satis�able if it has a solution. A 
onstraint C

1

implies a


onstraint C

2

, denoted by C

1

� C

2

, if every solution to C

1

is also a solution to

C

2

. Two 
onstraints are equivalent if they have the same solutions. �
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We will often write atomi
 
onstraints in W in an equivalent form, for example

write w




> w

e

instead of w




� w

e

> 0.

We will now show how to redu
e the orientability problem for the systems of

equalities and rewrite rules to the satis�ability problem for 
onstraints.

Let R be a system of equalities and rewrite rules su
h that every two di�erent

rules in R have disjoint variables. Denote by C

R

the 
onjun
tion of the following


onstraints:

1. rewriting 
onstraints hli ?� hri su
h that l ! r belongs to R.

2. orientability 
onstraints hli �?� hri su
h that l ' r belongs to R.

The following lemma is straightforward.

Lemma 7.3.3 A Knuth-Bendix order � orients R if and only if � is a solution

to C

R

.

�

7.4 Ri
h 
onstraints and trivial signatures

For te
hni
al reasons, it will be 
onvenient for us to work with 
onstraints whi
h


ontain enough information to de
ide some properties of its solutions, for example,

whi
h of the 
onstants of � is the smallest. Su
h 
onstraints are introdu
ed here

and 
alled ri
h 
onstraints.

Definition 7.4.1 (Ri
h Constraint) A 
onstraint C is 
alled ri
h if

1. C 
ontains all the 
onstraints w




> 0, where 
 2 � is a 
onstant, and all

the 
onstraints w

g

� 0, where g 2 � is a non-
onstant fun
tion symbol.

2. There is a 
onstant e 2 � su
h that for all 
onstants 
 2 � distin
t from e,

C 
ontains the atomi
 
onstraint 
 ?� e.

3. Exa
tly one of the following 
onditions holds. (i) There is a unary fun
tion

symbol f 2 � su
h that C 
ontains the atomi
 
onstraint w

f

� 0, all of the

atomi
 
onstraints f ?� g for g 2 � distin
t from f , and all of the atomi



onstraints w

g

> 0 for unary fun
tion symbols g distin
t from f . (ii) For

some 
onstant d 2 �, C 
ontains the 
onstraint gtmw(d). For every unary

fun
tion symbol g 2 �, C 
ontains the atomi
 
onstraint w

g

> 0.
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�

Lemma 7.4.2 Let C be a ri
h 
onstraint and the Knuth-Bendix order � indu
ed

by (w;�) satis�es C.

1. e is the least term with respe
t to �.

2. There exists a unary fun
tion symbol f 2 � su
h that w(f) = 0 if and

only if (i) holds. In addition, if su
h a fun
tion f does not exist, then

the 
onstraint 
ontains gtmw(d), and hen
e d is the greatest term of the

minimal weight.

3. There exists more than one term of the minimal weight if and only if either

there exists a unary fun
tion symbol f 2 � su
h that w(f) = 0 or there

exists a 
onstant d 2 � distin
t from e su
h that C 
ontains the atomi



onstraint gtmw(d).

�

Lemma 7.4.3 The orientability problem 
an be solved in polynomial time if the

orientability problem for ri
h 
onstraints 
an be solved in polynomial time. �

The idea of the proof of the lemma is as follows: one 
an \guess" the following

properties of solutions: (a) whi
h of the 
onstants is smallest one, (b) does there

exist a unary fun
tion symbol of the weight 0, (
) if su
h a fun
tion does not

exist, then whi
h of the 
onstants is the greatest term of the minimal weight.

Note that we make only a 
onstant number of guesses.

For te
hni
al reasons, we will distinguish two kinds of signatures. Essentially,

our algorithm depends on whether the weights of terms are restri
ted or not. For

the non-trivial signatures, the weights are not restri
ted. Note that a signature

is non-trivial if and only if it 
ontains either a fun
tion symbol of arity � 2 or at

least two fun
tion symbols of arity 1. When we present the orientability algorithm

for the non-trivial signatures, we will use the fa
t that terms of suÆ
iently large

weights always exist (see Lemma 6.4.1). A (straightforward) algorithm for trivial

signatures is presented in Se
tion 7.6.
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7.5 The orientability algorithm

In this se
tion we only 
onsider non-trivial signatures. Our algorithm works as

follows.

Given a system R of equalities or rewrite rules, we build the initial 
onstraint

C = C

R

. Using Lemma 7.4.3 we 
an assume that C is ri
h. We will always denote

by e the 
onstant su
h that C 
ontains all atomi
 
onstraints 
 ?� e, where 
 is

a 
onstant distin
t from e (su
h a 
onstant e exists, sin
e C is ri
h). Then

we repeatedly transform C as des
ribed below. We 
all the essential size of a


onstraint the total number of o

urren
es of fun
tion symbols and variables in its

rewriting and orientability part. Every transformation step will either terminate

with su

ess or failure, or repla
e an equality by a rewrite rule, or de
rease the

essential size of C.

At ea
h step the 
onstraint C 
an be represented as a 
onjun
tion R ^ W ^

O ^ P ^ G , where R is a rewrite 
onstraint, W a weight 
onstraint, O an ori-

entability 
onstraints, P a pre
eden
e 
onstraint, and G either empty or has the

form gtmw(
).

For every variable x and term t, denote by n(x; t) the number of o

urren
es of

x in t. For example, n(x; g(x; h(y; x))) = 2. Likewise, for every fun
tion symbol

g 2 � and term t, denote by n(g; t) the number of o

urren
es of g in t. For

example, n(h; g(x; h(y; x))) = 1.

For every term t, denote by W (t) the linear expression obtained as follows.

Let v be the number of o

urren
es of variables in t. Then

W (t) =

X

g2�

n(g; t)w

g

+ vw

e

: (7.1)

For example, if t = h(x; x; 
; e; f(y)), then

W (l) = w

h

+ w




+ w

f

+ 4w

e

:

7.5.1 The algorithm

The algorithm works as follows. Every step 
onsists of a number of state transfor-

mations, beginning with REWRITE RULE de�ned below. During the algorithm,

we will perform two kinds of satis�ability 
he
ks:

� The satis�ability 
he
k on W is the 
he
k whether W has a solution. If it

does not, we terminate with failure.



7.5 The orientability algorithm 119

� The satis�ability 
he
k on P is the 
he
k whether P is satis�able, that is the

transitive 
losure of the set f(g; h) j g ?� h is an atomi
 
onstraint in Pg

is irre
exive. i.e., 
ontains no pair (g; g). If P is in
onsistent, then we

terminate with failure.

It is not hard to argue that both kinds of satis�ability 
he
ks 
an be performed

in polynomial time. The satis�ability 
he
k on W is polynomial by Lemma 6.2.7.

The satis�ability 
he
k on P is polynomial sin
e the transitive 
losure of a binary

relation 
an be 
omputed in polynomial time, see, e.g. [Cormen et al. 1991℄.

When any of the sets W or P 
hanges, we assume that we perform the 
orre-

sponding satis�ability 
he
k and terminate with failure if it fails.

We will label parts of the algorithm, these labels will be used in the proof of

its soundness.

REWRITE RULE.

(R0) Do the following transformations while possible. If R 
ontains a tuple

inequality hl

1

; : : : ; l

n

i ?� hl

1

; : : : ; l

n

i, terminate with failure. Otherwise, if

R 
ontains a tuple inequality hl; l

1

; : : : ; l

n

i ?� hl; r

1

; : : : ; r

n

i, repla
e it by

hl

1

; : : : ; l

n

i ?� hr

1

; : : : ; r

n

i.

Now R has the form

hl

1

; L

1

i ?� hr

1

; R

1

i;

� � �

hl

k

; L

k

i ?� hr

k

; R

k

i;

(7.2)

su
h that ea
h l

i

is a term di�erent from the 
orresponding term r

i

.

(R1) For all x and i su
h that n(x; l

i

) > n(x; r

i

), mark the variable x.

(R2) If for some i there exists an unmarked variable x su
h that n(x; l

i

) <

n(x; r

i

), then terminate with failure.

(R3) Add to W all the linear inequalities W (l

i

) � W (r

i

) for all i and perform

the satis�ability 
he
k on W .

Now 
ompute W

=

. If W

=


ontains none of the inequalitiesW (l

i

) � W (r

i

) pro
eed

to EQUALITY. Otherwise, for all i su
h that (W (l

i

) � W (r

i

)) 2 W

=

apply the

appli
able 
ase below, depending on the form of l

i

and r

i

.
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(R4) If l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

), where g is di�erent from h, then

repla
e the 
onstraint hl

i

; L

i

i ?� hr

i

; R

i

i by g ?� h. Perform the satis�abil-

ity 
he
k on P.

(R5) If l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

), then repla
e hl

i

; L

i

i ?� hr

i

; R

i

i

by hs

1

; : : : ; s

n

; L

i

i ?� ht

1

; : : : ; t

n

; R

i

i.

(R6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do

the following. (Note that at this point both x and y are marked.) If L

i

is empty, then terminate with failure. If the 
onstraint guarantees the

existen
e of more than one term of the minimal weight (see Lemma 7.4.2),

then also terminate with failure. Otherwise, repla
e hl

i

; L

i

i ?� hr

i

; R

i

i by

hL

i

i ?� hR

i

i.

(R7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If

t is di�erent from e, or L

i

is empty, then terminate with failure. Otherwise

repla
e in L

i

and R

i

the variable x by e, obtaining L

0

i

and R

0

i

respe
tively,

and then repla
e hl

i

; L

i

i ?� hr

i

; R

i

i by hL

0

i

i ?� hR

0

i

i.

(R8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following.

If t 
ontains x, remove hl

i

; L

i

i ?� hr

i

; R

i

i from C. Otherwise, if t is a non-


onstant or L

i

is empty, terminate with failure. (Note that at this point

x is marked and (W (t) � W (x)) 2 W

=

.) Let now t be a 
onstant 
. If

C does not 
ontain the atomi
 
onstraint gtmw(
), then terminate with

failure. Otherwise repla
e in L

i

and R

i

the variable x by 
, obtaining L

0

i

and R

0

i

respe
tively, and then repla
e hl

i

; L

i

i ?� hr

i

; R

i

i by hL

0

i

i ?� hR

0

i

i.

After this step repeat REWRITE RULE.

EQUALITY.

(E0) Do the following transformations while possible. If O 
ontains an atomi



onstraint hs

1

; : : : ; s

n

i �?� hs

1

; : : : ; s

n

i, terminate with failure. Otherwise,

if O 
ontains an atomi
 
onstraint hs; s

1

; : : : ; s

n

i �?� hs; t

1

; : : : ; t

n

i, repla
e

it by hs

1

; : : : ; s

n

i �?� ht

1

; : : : ; t

n

i.

If O is empty, pro
eed to TERMINATE. Otherwise, O now has the form

hs

1

; S

1

i �?� ht

1

; T

1

i;

� � �

hs

k

; S

k

i �?� ht

k

; T

k

i;

(7.3)
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su
h that ea
h s

i

is a term di�erent from the 
orresponding term t

i

.

(E1) If, for some i and variable x we have n(x; s

i

) > n(x; t

i

), then repla
e

hs

i

; S

i

i �?� ht

i

; T

i

i by hs

i

; S

i

i ?� ht

i

; T

i

i and pro
eed to REWRITE RULE.

Likewise, if for some i and variable x we have n(x; t

i

) > n(x; s

i

), repla
e

hs

i

; S

i

i �?� ht

i

; T

i

i by ht

i

; T

i

i ?� hs

i

; S

i

i and pro
eed to REWRITE RULE.

Note that after this step for every i and variable x, the number of o

urren
es of

x in s

i


oin
ides with its number of o

urren
es in t

i

.

Now for ea
h hs

i

; S

i

i �?� ht

i

; T

i

i in O su
h that W � W (s

i

) = W (t

i

) apply

(E2) below, if there is no su
h tuples in O then pro
eed to TERMINATE.

(E2) If the top symbols of s

i

and t

i


oin
ide, i.e., we have s

i

= g(u

1

; : : : ; u

m

)

and t

i

= g(v

1

; : : : ; v

m

), then we repla
e the 
onstraint hs

i

; S

i

i �?� ht

i

; T

i

i

by hu

1

; : : : ; u

m

; S

i

i �?� hv

1

; : : : ; v

m

; T

i

i and pro
eed to REWRITE RULE.

Otherwise, remove hs

i

; S

i

i �?� ht

i

; T

i

i from the 
onstraint, and pro
eed to

EQUALITY.

TERMINATE. If the 
onstraint 
ontains gtmw(d), then for all 
onstants 
 dif-

ferent from d su
h that w




� w

e

belongs to W

=

add d ?� 
 to the 
onstraint.

Perform the satis�ability 
he
k on P. Terminate with su

ess.

Note that after TERMINATE, for ea
h hs

i

; S

i

i �?� ht

i

; T

i

i in O either W ^

W (s

i

) > W (t

i

) or W ^W (t

i

) > W (s

i

) is satis�able.

7.5.2 Corre
tness

In this se
tion we prove 
orre
tness of the algorithm and show how to �nd a

solution when the algorithm terminates with su

ess. The 
orre
tness will follow

from a series of lemmas asserting that all of the transformation steps performed by

the algorithm preserve the set of solutions. Although the algorithm 
an terminate

with su

ess without eliminating all orientability 
onstraints, we will be able to

show that in this 
ase the resulting 
onstraint is always satis�able. To prove this

we employ lemmas on homogeneous linear inequalities from Se
tion 7.2.

We will use the following notation and terminology in the proof. We say

that a step of the algorithm is equivalen
e-preserving if the set of solutions to

the 
onstraint before this step 
oin
ides with the set of solutions after the step.
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When we use substitutions in the proof, we always assume that the substitutions

are grounding for the relevant terms.

The following lemma 
an be proved by a straightforward appli
ation of the

de�nition of solution to a state.

Lemma 7.5.1 (satis�ability 
he
k) If satis�ability 
he
k on W or on P termi-

nates with failure, then S has no solution. �

In Chapter 6we presented an algorithm for 
he
king orientability of systems

of rewrite rules by Knuth-Bendix orders. Sin
e REWRITE RULE uses the same

steps as the algorithm in Chapter 6, we 
an dedu
e the following lemma about

REWRITE RULE.

Lemma 7.5.2 Steps (R0){(R8) are equivalen
e-preserving.

Proof. The proof is the same as for the steps PREPROCESS, (M1){(M8) of the

orientability algorithm for term rewrite rules, see Chapter 6. �

Lemma 7.5.3 Step (E1) is equivalen
e-preserving .

Proof. Consider hs

i

; S

i

i �?� ht

i

; T

i

i in O su
h that for some variable x, n(x; s

i

) >

n(x; t

i

). To prove the lemma it suÆ
es to show that if we repla
e hs

i

; S

i

i �?� ht

i

; T

i

i

by ht

i

; S

i

i ?� hs

i

; T

i

i in our 
onstraint, then we obtain an unsatis�able 
onstraint

C

0

. Assume that C

0

has a solution�. Let � be any substitution grounding for this

tuple inequality. Take any term u and modify � by mapping x into u, obtaining

�

u

x

. We have

js

i

�

u

x

j � jt

i

�

u

x

j =

js

i

�j � jt

i

�j+ (n(x; s

i

)� n(x; t

i

)) � (juj � jx�j):

Sin
e there exist terms of an arbitrarily large weight, for a term u of a large enough

weight we have js

i

�

u

x

j > jt

i

�

u

x

j, whi
h 
ontradi
ts to the assumption ht

i

; S

i

i�

u

x

�

hs

i

; T

i

i�

u

x

. �

Lemma 7.5.4 Step (E2) is equivalen
e-preserving.

Proof. At this step we have that for ea
h variable x the number of o

urren
es

of x in s

i

is the same as the the number of o

urren
es of x in t

i

and therefore
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neither s

i

nor t

i

is a variable. Also, for every solution to the 
onstraint and every

grounding substitution � we have js

i

�j = jt

i

�j.

Consider the 
ase when top symbols of s

i

and t

i


oin
ide, i.e., s

i

= g(u

1

; : : : ; u

m

)

and t

i

= g(v

1

; : : : ; v

m

). Then it easy to see that if we have a solution to our 
on-

straint su
h that hs

i

; S

i

i �?� ht

i

; T

i

i the same solution will satisfy the 
onstraint

hu

1

; : : : ; u

m

; S

i

i �?� hv

1

; : : : ; v

m

; T

i

i and vi
e versa.

Now we 
onsider the 
ase when top symbols of s

i

and t

i

are di�erent, i.e.

s

i

= g(�u) and t

i

= h(�v). It suÆ
es to show that if we have a solution � to

the 
onstraint after removing hs

i

; S

i

i �?� ht

i

; T

i

i, denoted as C

0

, then � is also a

solution to hs

i

; S

i

i �?� ht

i

; T

i

i. Consider a solution � to C

0

indu
ed by (w;�).

Assume that g � h, then for every substitution � we have s

i

� � t

i

� sin
e

js

i

�j = jt

i

�j. Similar, if h � g then for every substitution � we have t

i

� � s

i

�.

�

Let us show that TERMINATE preserves satis�ability.

Lemma 7.5.5 TERMINATE is equivalen
e-preserving.

Proof. Let us show that the addition of all atomi
 
onstraints d ?� 
 at this

step preserves equivalen
e. If C has no solution, then this is obvious. Otherwise,

take any solution � to C and let this solution be indu
ed by (w;�). We know

C 
ontains gtmw(d), hen
e d must be the greatest term of the minimal weight.

It is not hard to argue that at the TERMINATE step, W 
ontains all 
onstraints

w




� w

e

, where 
 is a 
onstant di�erent from d. If su
h a 
onstraint belongs to

W

=

, then we have w(
) = w(e), hen
e 
 is a term of the minimal weight. But

then we must have d � 
. By the 
onstru
tion, C also 
ontains w

e

� w

d

, so

C � w

e

= w

d

. Therefore, d � 
 also implies d � 
, and the addition of d ?� 


does not 
hange the set of solutions. �

We have shown that all steps of our algorithm preserve satis�ability of 
on-

straints. Now we show that if the algorithm terminates with su

ess then the


onstraint is satis�able, moreover we will be able to �nd a solution to the 
on-

straint in polynomial time.

We 
all a 
onstraint C saturated if appli
ation of our orientability algorithm

to C does not 
hange C and terminates with su

ess.

Lemma 7.5.6 If a 
onstraint C = R ^ W ^ P ^ G ^ O is saturated then the


onstraint C

0

= R ^ W ^ P ^ G is satis�able.
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Proof. We have that W is satis�able, and in addition, for ea
h rewriting 
on-

straint hl

i

; L

i

i ?� hr

i

; R

i

i the weight 
onstraint W (l

i

) � W (r

i

) does not belong to

W

=

. By Lemma 6.2.5 there exists a solution w to W su
h that for ea
h rewrit-

ing 
onstraint hl

i

; L

i

i ?� hr

i

; R

i

i we have W (l

i

)w > W (r

i

)w. Let � be an order

indu
ed by (w;�), where � is an arbitrary extension of P to a linear order. We

need to show that � satis�es the rewriting 
onstraint R (
onstraints W ,P,G , are

obviously satis�ed). For this let us 
onsider a tuple hl

i

; L

i

i ?� hr

i

; R

i

i in R and

an admissible substitution � and show that hl

i

; L

i

i� � hr

i

; R

i

i�. From algorithm

(rules (R1), (R2)) we have that for ea
h unmarked variable x, n(x; l

i

) = n(x; r

i

),

also for ea
h marked variable y we have jy�j = w(e). Therefore

jl

i

�j � jr

i

�j = W (l

i

)w �W (r

i

)w > 0;

this shows that hl

i

; L

i

i� � hr

i

; R

i

i�. �

Lemma 7.5.7 Every saturated 
onstraint is satis�able.

Proof. Consider a saturated 
onstraint

C = R ^ W ^ P ^ G ^ O :

We show that C is satis�able by indu
tion on the number of atomi
 
onstraints

in O . If O is empty then the 
laim follows from Lemma 7.5.6. Now assume that

O is not empty. Sin
e C is saturated we have that for ea
h atomi
 
onstraint

hs

i

; S

i

i �?� ht

i

; T

i

i in O either W ^W (s

i

) > W (t

i

) or W ^W (t

i

) > W (s

i

) is sat-

is�able. Assume that W ^W (s

i

) > W (t

i

) is satis�able, then add W (s

i

) > W (t

i

)

to W and remove hs

i

; S

i

i �?� ht

i

; T

i

i from O , obtaining W

0

and O

0

respe
tively.

Let us show that the obtained 
onstraint

C

0

= R ^ W

0

^ P ^ G ^ O

0

is saturated. From Lemma 7.2.1 it follows that the degenerate subsystem of

W

0


oin
ides with the degenerate subsystem of W and sin
e C is saturated we

have that none of the rules (R0){(R8), (E0), (E1) 
an 
hange the 
onstraint C

0

.

Also from Lemma 7.2.4 it follows that for ea
h hs

0

i

; S

0

i

i �?� ht

0

i

; T

0

i

i in O

0

either

W

0

^W (s

0

i

) > W (t

0

i

) or W

0

^W (t

0

i

) > W (s

0

i

) is satis�able. Hen
e, rule (E2) also


an not 
hange the 
onstraint C

0

and we 
on
lude that C

0

is saturated. Sin
e O

0
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ontains less atomi
 
onstraints than O

0

and C

0

is saturated, we 
an apply the

indu
tion hypothesis.

�

7.5.3 Time 
omplexity

Provided that we use a polynomial-time algorithm for solving systems of homoge-

neous linear inequalities, and a polynomial-time algorithm for transitive 
losure,

a 
areful analysis of our algorithm shows the following.

Lemma 7.5.8 The algorithm runs in time polynomial of the size of the system

of rewrite rules. �

7.6 Orientability for trivial signatures

In this se
tion we 
onsider only trivial signatures. Let us remind that a signature

is 
alled trivial if it 
ontains no fun
tion symbols of arity � 2, and at most one

unary fun
tion symbol. Consider a trivial signature whi
h 
onsists of a unary

fun
tion symbol g and some 
onstants. Consider a 
onstraint C = R ^ O where

R is a rewriting 
onstraint and O is an orientability 
onstraint. If O 
ontains an

orientability 
onstraint t�?� t then C is obviously unsatis�able, and therefore

we will assume that for all orientability 
onstraints t�?� s 2 O , t is di�erent

from s. If O 
ontains nonground 
onstraints then we 
an transform C into an

equally orientable 
onstraint C

0

= R

0

^ O

0

su
h that all 
onstraints in O

0

are

ground.

Lemma 7.6.1 Let C = R^O be a 
onstraint in a trivial signature � su
h that O


ontains nonground atomi
 
onstraints. De�ne a 
onstraint C

0

= R

0

^O

0

obtained

by the following transformations.

1. Repla
e every atomi
 orientability 
onstraint g

m

(x) �?� g

n

(d) with the rewrit-

ing 
onstraint g

m

(x) ?� g

n

(d).

2. Repla
e every atomi
 orientability 
onstraint g

m

(x) �?� g

n

(x), where m >

n, with the rewriting 
onstraint g

m

(x) ?� g

n

(x).

Then a Knuth-Bendix order � orients C if and only if it orients C

0

. All 
on-

straints in O

0

are ground. �
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The proof of this lemma is straightforward and we 
an restri
t ourselves to 
on-

straints with ground orientability part. Now, 
onsider su
h a 
onstraint C = R^O

and let � be a Knuth-Bendix order whi
h is a solution to R. Then � is also a so-

lution to O , sin
e every Knuth-Bendix order is total on ground terms. Therefore,

we redu
e our problem to the problem of orientability of rewriting systems for

trivial signatures whi
h is shown to be solvable in polynomial time in Se
tion 6.6.

7.7 Main results

Lemmas 7.5.1{7.5.7 guarantee that the orientability algorithm is 
orre
t and

Lemma 7.5.8 implies that it runs in polynomial time. Hen
e we obtain the fol-

lowing theorem.

Theorem 7.7.1 The problem of the existen
e of a Knuth-Bendix order whi
h

orients a given system of equalities and rewrite rules 
an be solved in the time

polynomial in the size of the system. Moreover, if the system of equalities and

rewrite rules is orientable by a Knuth-Bendix order we 
an �nd su
h an order in

polynomial time. �

In Chapter 6 we have proved that the problem of orientability by Knuth-

Bendix orders is P-
omplete for systems of rewrite rules, moreover it is P-hard

even for ground rewrite rule systems. Therefore, the following result follows from

Theorem 6.9.2 and Proposition 7.1.2.

Theorem 7.7.2 The problem of orientability of systems of equalities and rewrite

rules by Knuth-Bendix orders is P-
omplete. Moreover, it is P-hard even for

systems 
onsisting only of equalities or only of rewrite rules. �



Chapter 8

AC-Compatible Knuth-Bendix

Orders

8.1 Introdu
tion

This 
hapter is based on the paper [Korovin and Voronkov 2003a℄.

E-
ompatible simpli�
ation orders for various equational theories E 
an be

used for building-in equational theories in theorem provers and rewriting modulo

equational theories (see Chapter 2).

Among various equational theories, theories axiomatized by the axioms of as-

so
iativity and 
ommutativity, so-
alled AC-theories, play a spe
ial role. Su
h

theories very often o

ur in appli
ations and require spe
ial treatment in auto-

mated systems, where AC-
ompatible simpli�
ation orders is a 
ru
ial ingredient.

The existen
e of an AC-
ompatible simpli�
ation order AC-total on ground

terms had been a 
hallenging problem for many years, whi
h was �nally solved

in [Narendran and Rusinowit
h 1991℄. Re
ently, a lot of work has been done

to modify re
ursive path orders to obtain AC-
ompatible simpli�
ation orders

AC-total on ground terms [Rubio and Nieuwenhuis 1993, Rubio 2002, Rubio

1999, Kapur and Sivakumar 1998, Kapur and Sivakumar 1997, Kapur et al. 1995,

Kapur et al. 1990℄. Despite the fa
t that Knuth-Bendix orders are widely used in

automated dedu
tion, to our knowledge no AC-
ompatible simpli�
ation variant

of Knuth-Bendix orders have been known. (There was an attempt to introdu
e

su
h an order in [Steinba
h 1990℄ but this order is la
king the 
ru
ial monotoni
ity

property, as we will show later).

In this 
hapter we de�ne a family of AC-
ompatible Knuth-Bendix orders
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�

ACKBO

. These orders enjoy attra
tive features of the standard Knuth-Bendix

orders, for example

1. a polynomial-time algorithm for term 
omparison;

2. 
omputationally eÆ
ient approximations based on weight 
omparison, so in

many pra
ti
al 
ases we do not need to traverse the whole term ea
h time

to 
ompare it with another term;

3. light terms are smaller than heavier ones.

Our approa
h share some ideas with the AC-RPO of Rubio [Rubio 2002, Rubio

1999℄, but a 
areful exploitation of some properties of weight fun
tions enable us

to avoid 
ompli
ations leading to an exponential behavior in the AC-RPO 
ase.

8.2 Preliminaries

We will use multisets and multiset extension of an order, as de�ned in Chapter 3,

where key properties of su
h extensions are dis
ussed.

Definition 8.2.1 Let > be a binary relation on a set S. A lexi
ographi
 exten-

sion of >, denoted by >

lex

, is a relation on tuples of elements of S de�ned as

follows. Let �a = (a

1

; : : : ; a

m

) and

�

b = (b

1

; : : : ; b

n

) be two tuples. Then �a >

lex

�

b if

one of the following 
onditions holds:

1. m > n;

2. m = n and there exists i su
h that 1 � i � m, a

i

> b

i

, and for all

j 2 f1; : : : ; i� 1g we have a

j

= b

j

.

�

The following fa
t is not hard to 
he
k, see, e.g., [Baader and Nipkow 1998℄.

Lemma 8.2.2 If > is an order, then so is >

lex

. If > is a total order, then so is

>

lex

. If > is a well-founded order, then so is >

lex

. �

For every pre-order � we denote by > the 
orresponding stri
t order > de�ned

as follows: s > t if and only if s � t and t 6� s. We will use this notation for

various pre-orders, for example � will denote the stri
t version of �.
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Let �

1

;�

2

be pre-orders. We 
all the lexi
ographi
 produ
t of �

1

and �

2

,

denoted �

1


 �

2

, the relation � de�ned as follows: s � t if and only if either

s >

1

t, or s �

1

t and s �

2

t. It is not hard to argue that �

1


 �

2

is a pre-order.

We de�ne lexi
ographi
 produ
t >

1


 >

2

of stri
t parts of �

1

;�

2

as the stri
t

part of �

1


 �

2

.

We will also 
onsider lexi
ographi
 produ
ts of more than two orders.

Lemma 8.2.3 If >

1

; >

2

are orders, then so is >

1


 >

2

. If >

1

; >

2

are total orders,

then so is >

1


 >

2

. If >

1

; >

2

are well-founded orders, then so is >

1


 >

2

. �

In our proofs below we will often 
ompose the multiset order, the lexi
ographi


extension, and the lexi
ographi
 produ
t of various orders and use Lemmas 3.2.4,

8.2.2 and 8.2.3 to establish properties of the 
ompositions.

8.3 AC-
ompatible orders

Let E be an equational theory and > be a partial order on ground terms of a

signature �. Denote equality with respe
t to E by =

E

. We say that an order >

is E-
ompatible if it satis�es the following property: if s > t, s =

E

s

0

and t =

E

t

0

,

then s

0

> t

0

. The order > is 
alled E-total , if for all ground terms s; t, if s 6=

E

t,

then either s > t or t > s.

Let + be a binary fun
tion symbol. The AC-theory for + is the equational

theory axiomatized by set of two formulas

8x8y8z((x + y) + z ' x+ (y + z));

8x8y(x + y ' y + x):

From now on we assume that we are given a �xed signature � with a distinguished

subset �

AC

of binary fun
tion symbols. The members of �

AC

will be 
alled

AC-symbols. Two terms s; t are 
alled AC-equal , denoted s =

AC

t, if they are

equal in the equational theory generated by the union of the AC-theories for all

g 2 �

AC

. An order is 
alled AC-
ompatible if it is E-
ompatible with respe
t to

this equational theory.
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8.4 Main results

Our main aim is to �nd AC-
ompatible AC-total simpli�
ation orders whi
h

generalize standard Knuth-Bendix orders for the 
ase of AC-theories. In the rest

of this 
hapter we de�ne a family of su
h orders, ea
h order �

ACKBO

in this family

is indu
ed by a weight fun
tion w and a pre
eden
e relation � 
ompatible with

w. We prove the following results.

1. �

ACKBO

is an AC-
ompatible AC-total simpli�
ation order,

2. On the terms without AC-symbols, �

ACKBO


oin
ides with the standard

Knuth-Bendix order indu
ed by w and �.

3. If � 
ontains no unary fun
tion symbols of the weight 0, then for every

ground term t there exists a �nite number of terms s su
h that t �

ACKBO

s.

Further, we extend the orders �

ACKBO

to non-ground terms in su
h a way that

for all terms s; t and substitutions �, if s �

ACKBO

t, then s� �

ACKBO

t�.

8.5 The Ground Case

8.5.1 Flattened terms

In the sequel the symbol + will range over �

AC

. Let us 
all a term normalized if

it has no subterms of the form (r+ s)+ t. Evidently, every term is AC-equal to a

normalized term. Sin
e we aim at �nding AC-
ompatible simpli�
ation orders, it

is enough for us to de�ne these orders only for normalized terms. For normalized

terms, we introdu
e a spe
ial well-known notation, 
alled 
attened term.

To this end, we 
onsider all AC-symbols to be varyadi
, i.e., having an un-

bounded arity greater than or equal to 2. A term s using the varyadi
 symbols

is 
alled 
attened if for every non-variable subterm t of s, if t has the form

+(t

1

; : : : ; t

n

), then the top symbols of t

1

; : : : ; t

n

are distin
t from +. We identify

a subterm +(t

1

; : : : ; t

m

) with the normalized term (t

1

+ (t

2

+ : : :+ t

n

)). We will

sometime write subterms of 
attened terms as t

1

+ : : :+ t

n

. In the sequel we will

only deal with 
attened terms.

Note that we have to be 
areful with de�ning substitutions into 
attened terms

and the subterm property for them. When we substitute a term s

1

+ : : :+ s

m

for

a variable x in x+ t

1

+ : : :+ t

n

, we obtain s

1

+ : : :+ s

m

+ t

1

+ : : :+ t

n

. To prove
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the subterm property for an order > on ordinary terms, we also have to prove the

following 
an
ellation property for 
attened terms: s

1

+s

2

+: : :+s

n

> s

2

+: : :+s

n

.

Similarly, we have to be 
areful with de�ning weights of terms with varyadi


symbols. We want the weight to be invariant under =

AC

, in parti
ular, the weight

of a term must 
oin
ide with the weight of a 
attened term equal to it modulo

AC. Therefore, we modify the de�nition of weight as follows.

Definition 8.5.1 (Weight) The weight of a ground term t, denoted jtj, is de-

�ned as follows. Let t = g(t

1

; : : : ; t

n

), where n � 0. Then

1. if g 62 �

AC

, then jtj = w(g) + jt

1

j+ : : :+ jt

n

j.

2. if g 2 �

AC

, then jtj = (n� 1)w(g) + jt

1

j+ : : :+ jt

n

j.

�

We have the following straightforward result.

Lemma 8.5.2 Let r; s; t be terms. If jsj = jtj, then jr[s℄j = jr[t℄j. Likewise, if

jsj > jtj, then jr[s℄j > jr[t℄j. �

8.5.2 Relation �

+

All relations introdu
ed below will be AC-
ompatible. Therefore, in the sequel

we will 
onsider the AC-equality instead of the synta
ti
 equality and 
onsider

relations on the equivalen
e 
lasses modulo =

AC

.

To de�ne an AC-
ompatible weight-based simpli�
ation order, let us �rst

de�ne, for ea
h AC-symbol +, an auxiliary partial order �

+

on multisets of


attened terms.

If a term t has the form g(t

1

; : : : ; t

n

), where n � 0, then g is 
alled the top

symbol of t, denoted by top(t), and t

1

; : : : ; t

n

the arguments of t. We de�ne the

top symbol of a variable x to be x itself.

First we introdu
e the following pre-order �

top

on terms: s �

top

t if and only

if top(s) � top(t) or top(s) = top(t). Note that this order is also de�ned for

non-ground terms. Likewise, we introdu
e the pre-order �

w

on ground terms as

follows: s �

w

t if jsj � jtj. Naturally, the stri
t versions of �

top

and �

w

are

denoted by >

top

and >

w

, respe
tively.
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Definition 8.5.3 (Relation �

+

) LetM;N be two multisets of 
attened ground

terms and let

M

0

=

_

ft

_

2M j top(t)� +

_

g;

N

0

=

_

ft

_

2 N j top(t)� +

_

g:

We de�ne M �

+

N if and only if

M

0

(�

w


 �

top

)

mul

N

0

:

�

In other words, we 
an de�ne the order �

+

as follows. First, remove fromM and

N all elements with top symbols smaller than or equal to +. Then 
ompare the

remaining multisets using the multiset order in whi
h the terms are �rst 
ompared

by weight and then by their top symbol.

Lemma 8.5.4 For ea
h symbol + 2 �

AC

the relation �

+

is a well-founded order.

Proof. Follows immediately from the observation that the stri
t part of (�

w


 �

top

)

mul

is a well-founded order (by Lemmas 3.2.4 and 8.2.3). �

Let us give a 
hara
terization of the relation �

+

. Let M be a multiset of

ground terms and v be a positive integer. Denote by sele
ted(+; v;M) the mul-

tiset of top fun
tors of all terms in M of the weight v whose top symbol is

greater than + w.r.t. �. Then we have M �

+

N if and only if there exists an

integer v su
h that sele
ted(+; v;M) >

mul

top

sele
ted(+; v; N) and for all v

0

> v,

sele
ted(+; v

0

;M) =

mul

sele
ted(+; v

0

; N). Let �

+

denote the in
omparability re-

lation on multisets of terms w.r.t. �

+

. That is, given two multisets M;N , we

have M �

+

N if and only if neither M �

+

N nor N �

+

M . Now it is easy

to 
he
k that two multisets of terms M and N are in
omparable w.r.t. �

+

if

and only if for ea
h weight v we have sele
ted(+; v;M) = sele
ted(+; v; N) and

therefore �

+

is indeed an equivalen
e relation on terms. So �

+


an be seen as a

total well-founded order on the equivalen
e 
lasses of multisets modulo �

+

.

8.5.3 Order �

ACKBO

Using the relation �

+

, we 
an de�ne an AC-
ompatible simpli�
ation order

�

ACKBO

.
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Definition 8.5.5 (Order �

ACKBO

) Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

)

be 
attened ground terms. Then t �

ACKBO

s if and only if one of the following


onditions holds:

1. jtj > jsj; or

2. jtj = jsj and h� g; or

3. jtj = jsj, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g; or

ii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and n > k; or

iii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g, n = k and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g.

�

Let us remark that similar to the AC-RPO of Rubio [Rubio 2002, Rubio 1999℄

we make a spe
ial treatment of the immediate subterms below + having top sym-

bols greater than +. To this end, we use the relation �

+

, whi
h allows us to avoid

re
ursive 
omputations deeper into subterms at this stage (we need only to 
om-

pare weights and top symbols of the immediate subterms). As a result, we gain

some eÆ
ien
y. More importantly, using properties of the weight fun
tions we 
an

avoid the exponential behavior of AC-RPO 
aused by enumerating embeddings

of 
ertain subterms.

Lemma 8.5.6 �

ACKBO

is an AC-
ompatible AC-total order on ground terms.

Proof. It is easy to see that �

ACKBO

is AC-
ompatible. The AC-totality 
an be

proved by a routine indu
tion on terms.

Let us prove that �

ACKBO

is an order. Let us 
all the f -height of a term r,

denoted by height

f

(r), the greatest number n su
h that r = f

n

(r

0

). The proof is

by indu
tion on the order >

0

on ground terms de�ned as follows: t >

0

s if jtj > jsj

or jtj = jsj and height

f

(t) > height

f

(s). Obviously, >

0

is the lexi
ographi
 produ
t

of two well-founded orders, and so a well-founded order itself.
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Note the following property of >

0

: if t >

0

s, then t �

ACKBO

s. Therefore, it is

enough to prove that for ea
h pair of natural numbers (k; l), the relation �

ACKBO

is an order on the set of ground terms

ft j jtj = k and height

f

(t) = lg:

But this follows from the following observation: �

ACKBO

on this set of terms is

de�ned as a lexi
ographi
 produ
t of the following �ve orders:

t >

1

s, h� g;

t >

2

s, (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

) and h = g 62 �

AC

;

t >

3

s,

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and h = g 2 �

AC

;

t >

4

s, n > k and h = g 2 �

AC

;

t >

5

s,

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g and h = g 2 �

AC

:

Note that �

lex

ACKBO

and �

mul

ACKBO

used in this de�nition are orders by the indu
tion

hypothesis and by Lemmas 8.2.2 and 3.2.4. �

Theorem 8.5.7 The relation �

ACKBO

is an AC-
ompatible AC-total simpli�
ation

order on ground terms.

Proof. By Lemma 8.5.6, �

ACKBO

is an order, so it only remains to prove the sub-

term property, 
an
ellation property, and monotoni
ity. The 
an
ellation prop-

erty is obvious, sin
e js

0

+ s

1

+ : : :+ s

n

j > js

1

+ : : :+ s

n

j. The subterm property

is 
he
ked in the same way as for the standard Knuth-Bendix order.

Let us prove the monotoni
ity. By Lemma 8.5.6, �

ACKBO

is an AC-
ompatible

AC-total order. In parti
ular, �

ACKBO

is transitive, so it remains to prove the

following property: if t �

ACKBO

s, then for every fun
tion symbol g we have

g(r

1

; : : : ; r

i�1

; t; r

i+1

; : : : ; r

n

) � g(r

1

; : : : ; r

i�1

; s; r

i+1

; : : : ; r

n

). When g 62 �

AC

,

the proof is identi
al to that for the standard Knuth-Bendix order, so we only


onsider the 
ase when g is an AC-symbol +.

We have to prove the following statement for all terms s; t; r

1

; : : : ; r

m

: let

u = t + r

1

+ : : : + r

m

and v = s + r

1

+ : : :+ r

m

, then t �

ACKBO

s implies u �

ACKBO

v. Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

). Consider all possible 
ases of

De�nition 8.5.5 of �

ACKBO

.

1. jtj > jsj. In this 
ase by Lemma 8.5.2 we have juj > jvj, and so u �

ACKBO

v.
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Now we 
an assume jtj = jsj, hen
e by Lemma 8.5.2 juj = jvj. Denote by

U and V the multisets of arguments of u and v, respe
tively. Note that U

is not ne
essarily equal to

_

ft; r

1

; : : : ; r

m

_

g: indeed, the top symbol of t may

be +, and then we have to 
atten t+ r

1

+ : : :+ r

m

to obtain the arguments

of u. Likewise, V is not ne
essarily equal to

_

fs; r

1

; : : : ; r

m

_

g. Denote by p; q

the number of elements in U; V respe
tively. Note that

p =

(

m + 1; if top(t) 6= +;

m + n; if top(t) = +:

q =

(

m+ 1; if top(s) 6= +;

m+ k; if top(s) = +:

Sin
e juj = jvj and top(u) = top(v) = +, the 
omparison of u and v should

be done using 
lauses (3(b)i){(3(b)iii) of De�nition 8.5.5. That is, �rst we


he
k U �

+

V . Then, if U �

+

V , we 
he
k if p > q. Finally, if p = q, we


ompare U and V using the multiset order �

mul

ACKBO

. Consider the remaining


ases.

2. h� g. Let us show that if h� + then U �

+

V and so u �

ACKBO

v. If +� g

then we have U �

+

U

_

�

_

ft

_

g =

_

fr

1

; : : : ; r

m

_

g = V

_

�

_

fs

_

g �

+

V . If g � + then

_

ft

_

g �

+

_

fs

_

g and hen
e U =

_

ft; r

1

; : : : ; r

m

_

g �

+

_

fs; r

1

; : : : ; r

m

_

g = V . If g = +

then s is of the form s

1

+ : : : + s

k

. We have

_

ft

_

g �

+

_

fs

1

; : : : ; s

k

_

g, sin
e

the weight of ea
h arguments of s is stri
tly less than the weight of t, and

therefore U �

+

V .

Now if +� h, then U �

+

V and p = q. In this 
ase u �

ACKBO

v , U �

mul

ACKBO

V , t �

ACKBO

s, so u �

ACKBO

v. It remains to 
onsider the 
ase h = +. In

this 
ase we have U �

+

V

_

�fsg �

+

V and either U �

+

V , so u �

ACKBO

v, or

we have U �

+

V and p > q, so u �

ACKBO

v, by (3(b)ii) of De�nition 8.5.5.

3. h = g.

(a) h 6= +. Then U �

+

V and p = q. In this 
ase u �

ACKBO

v , U �

mul

ACKBO

V , t �

ACKBO

s.

(b) Now it remains to 
onsider the 
ase h = g = +. In this 
ase U =

_

ft

1

; : : : ; t

n

; r

1

; : : : ; r

m

_

g and V =

_

fs

1

; : : : ; s

k

; r

1

; : : : ; r

m

_

g. Sin
e t �

ACKBO

s, it is enough to 
onsider the following 
ases.
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i.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g. In this 
ase U �

+

V , hen
e u �

ACKBO

v.

ii.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g and n > k. In this 
ase U �

+

V but

p > q, hen
e u �

ACKBO

v.

iii.

_

ft

1

; : : : ; t

n

_

g �

+

_

fs

1

; : : : ; s

k

_

g, n = k, and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g. In this 
ase U �

+

V , p = q, but

U �

mul

ACKBO

V , hen
e u �

ACKBO

v.

The proof is 
omplete. �

Suppose that � does not 
ontains a unary fun
tion symbol f of the weight 0.

In this 
ase for ea
h weight v there is only a �nite number of ground terms of the

weight v. Therefore, we have the following result.

Proposition 8.5.8 If � does not 
ontain a unary fun
tion symbol f of the

weight 0, then for every term t, there exists only a �nite number of terms s

su
h that t �

ACKBO

s. �

Now let us show that if our signature 
ontains only two AC-symbols and

in addition one of them is maximal and another is minimal w.r.t. �, then we


an 
onsiderably simplify de�nition of AC-KBO by avoiding �

h


omparisons. In

parti
ular the following de�nition will satisfy all required properties.

Definition 8.5.9 (Simpli�ed AC-KBO for two AC symbols) Consider a signa-

ture � 
ontaining only two AC-symbols, su
h that one of them is maximal and

another is minimal w.r.t. � in �.

Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

) be 
attened ground terms. Then

t �

0

ACKBO

s if and only if one of the following 
onditions holds:

1. jtj > jsj; or

2. jtj = jsj and h� g; or

3. jtj = jsj, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

0 lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i. n > k and h is maximal in � w.r.t. �; or
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ii. k > n and h is minimal in � w.r.t. �; or

iii. k = n and

_

ft

1

; : : : ; t

n

_

g �

0 mul

ACKBO

_

fs

1

; : : : ; s

k

_

g.

�

Theorem 8.5.10 The relation �

0

ACKBO

is an AC-
ompatible AC-total simpli�
a-

tion order on ground terms.

Proof. We skip the proof whi
h is similar to the general 
ase. �

8.6 Non-Ground Order

In this se
tion we will generalize AC-
ompatible Knuth-Bendix orders �

ACKBO

to

non-ground terms. The de�nition will be very similar to the ground 
ase. We will

have to 
hange the de�nitions of the weight and slightly 
hange the de�nition of

�

+

. As before, we will be dealing with 
attened terms.

Let us modify the notion of weight to non-ground terms. In fa
t, we will

introdu
e two di�erent weights jtj and jjtjj. As before, we assume that we are

given a weight fun
tion w and a pre
eden
e relation � 
ompatible with w. Let

e denote the 
onstant in � having the least weight among all 
onstants in �. It

is not hard to argue that jej is also the least weight of a ground term.

Definition 8.6.1 (Weight jtj) The weight of a term t, denoted jtj, is de�ned as

follows.

1. If t is a variable, then jtj = w(e).

2. If t = g(t

1

; : : : ; t

n

) and g 62 �

AC

, then jtj = w(g) + jt

1

j+ : : :+ jt

n

j.

3. If t = g(t

1

; : : : ; t

n

) and g 2 �

AC

, then jtj = (n� 1)w(g) + jt

1

j+ : : :+ jt

n

j.

�

It is not hard to argue that the weight of a term t is equal to the weight of

the ground term obtained from t by repla
ing all variables by e. Therefore,

Lemma 8.5.2 also holds for non-ground terms.

Lemma 8.6.2 Let r; s; t be terms. If jsj = jtj, then jr[s℄j = jr[t℄j. Likewise, if

jsj > jtj, then jr[s℄j > jr[t℄j. �
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Let t be a term. Denote by vars(t) the multiset of variables of t. For example,

vars(g(x; a; h(y; x))) =

_

fx; y; x

_

g.

Definition 8.6.3 (Generalized Weight) A generalized weight is a pair (n; V ),

where n is a positive integer and V is a multiset of variables. Let us introdu
e a

pre-order � and an order > on generalized weights as follows. We let (m;M) �

(n;N) if m � n and N is a submultiset of M . We let (m;M) > (n;N) if m > n

and N is a submultiset of M . The generalized weight of a term t, denoted jjtjj, is

the pair (jtj; vars(t)). We write t �

W

s if jjtjj � jjsjj and t >

W

s if jjtjj > jjsjj. �

Note that >

W

is not a stri
t version of �

W

. However, it is easy to see that >

W

is a well-founded order. The following properties of �

W

and >

W

are also not

diÆ
ult to 
he
k.

Lemma 8.6.4 Let r; s; t be terms. If s �

W

t, then r[s℄ �

W

r[t℄. Likewise, if

s >

W

t, then r[s℄ >

W

r[t℄. Moreover, if s; t are ground terms, then s �

w

t if and

only if s �

W

t, and s >

w

t if and only if s >

W

t. �

Note that �

W

is not a total pre-order. For example, if x; y are two di�erent

variables, then neither x �

W

y nor y �

W

x holds.

8.6.1 Relation �

+

Let us now generalize the relation�

+

to non-ground terms. The de�nition is more


omplex that in the ground 
ase be
ause of one te
hni
al problem: the order >

W

is not the stri
t version of �

W

. Therefore, we 
annot 
ompose orders using �

W

to

obtain new orders as before. In parti
ular, the de�nition of a multiset extension

of an order does not work any more and should be repla
ed.

First, instead of the pre-order �

w


 �

top

used in the de�nition of �

+

on

ground terms, we introdu
e a pre-order �

W;top

de�ned as �

W


 �

top

. We also

write s =

W;top

t if jjsjj = jjtjj and top(s) = top(t). Then let us de�ne an order

>

W;top

as follows: s >

W;top

t if either s >

W

t or s �

W

t and top(s)� top(t).

Now, to de�ne an analogue of (�

w


 �

top

)

mul

used in the de�nition of �

+

for

ground terms, let us de�ne the following deletion operation on pairs of multisets

M;N : if t

_

2 M , s

_

2 N , and t =

W;top

s, then delete one o

urren
e of t from M

and one o

urren
e of s from N .
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Definition 8.6.5 (Relation �

+

) Let M;N be two multisets of 
attened terms

and let

M

0

=

_

ft

_

2M j t is a variable or top(t)� +

_

g;

N

0

=

_

ft

_

2 N j t is a variable or top(t)� +

_

g:

Let M

00

; N

00

be obtained by applying the deletion operation to M

0

; N

0

while pos-

sible. Then we de�ne M �

+

N if M

00


ontains a non-variable term and for every

s 2 N

00

there exists t 2 M

00

su
h that t >

W;top

s. We also de�ne M �

+

N if either

M �

+

N or N

00

is empty and M

00


ontains only variables. �

Similarly to the ground 
ase, we have the following lemma.

Lemma 8.6.6 For ea
h symbol + 2 �

AC

the relation �

+

is a well-founded order.

Moreover, on ground terms it 
oin
ides with the order �

+

of De�nition 8.5.3. �

8.6.2 Order �

ACKBO

Using the relation�

+

, we 
an de�ne an AC-
ompatible simpli�
ation order �

ACKBO

in essentially the same way as for ground terms.

Definition 8.6.7 (Order �

ACKBO

) Let us de�ne the relation�

ACKBO

for non-ground

terms as follows. If x is a variable, then for every term s it is not true that

x �

ACKBO

s. If y is a variable then t �

ACKBO

y if and only if y o

urs in t and is

distin
t from t. Let t = h(t

1

; : : : ; t

n

) and s = g(s

1

; : : : ; s

k

) be 
attened terms.

Then t �

ACKBO

s if and only if one of the following 
onditions holds:

1. t >

W

s; or

2. t �

W

s and h� g; or

3. t �

W

s, h = g, and either

(a) h 62 �

AC

and (t

1

; : : : ; t

n

) �

lex

ACKBO

(s

1

; : : : ; s

n

); or

(b) h 2 �

AC

and

i.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g; or

ii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g and n > k; or

iii.

_

ft

1

; : : : ; t

n

_

g �

h

_

fs

1

; : : : ; s

k

_

g, n = k and

_

ft

1

; : : : ; t

n

_

g �

mul

ACKBO

_

fs

1

; : : : ; s

k

_

g. �
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The proof that �

ACKBO

is an AC-
ompatible simpli�
ation order is similar to

the ground 
ase, so we have the following theorem.

Theorem 8.6.8 The relation �

ACKBO

is an AC-
ompatible monotoni
 order sat-

isfying the subterm property. Moreover, on ground terms it 
oin
ides with the

order of De�nition 8.5.5. �

Theorem 8.6.9 �

ACKBO

is 
losed under substitutions, that is, if t �

ACKBO

s, then

for every substitution �, t� �

ACKBO

s�. �

8.7 Related Work

In general, Knuth-Bendix orders and re
ursive path orders are in
omparable in

the sense that there are rewrite (equational) systems that 
an be oriented by

Knuth-Bendix orders but 
annot be oriented by re
ursive path orders, and vi
e

versa. To 
ompare Knuth-Bendix orders with orders based on polynomial in-

terpretations (or 
ombinations of polynomial interpretations with re
ursive path

orders) let us note that usually it is diÆ
ult to �nd a suitable polynomial inter-

pretation whi
h orients a given rewrite (equational) system. For Knuth-Bendix

orders, we 
an employ eÆ
ient algorithms (see Chapters 6,7).

An attempt to de�ne an AC-
ompatible Knuth-Bendix order was undertaken

in [Steinba
h 1990℄ for a spe
ial 
ase when ea
h AC-symbol + is of the weight

0 and is also a maximal symbol w.r.t. �. It is proposed to 
ompare terms with

the top symbol + �rst by weight and then by 
omparing the multisets of their

arguments. Let us give an example demonstrating that the order de�ned in this

way la
ks the monotoni
ity property.

Consider the weight fun
tion w su
h that w(+) = 0 and w(
) = w(d) =

w(g) = 1 and a pre
eden
e relation � su
h that + � g. Let t = 
 + d and

s = g(
). Then jtj = jsj, and therefore t �

ACKBO

s. Take any term r. Then

by monotoni
ity we must have r + 
 + d �

ACKBO

r + g(
). But in fa
t we have

r + g(
) �

ACKBO

r + 
+ d, sin
e jg(
)j > j
j and jg(
)j > jdj.

For future resear
h let us mention the problems of 
onstraint solving and

orientability for AC-
ompatible Knuth-Bendix orders. It is worth to note that

algorithms and 
omplexity results for 
onstraint solving for AC-RPO are pre-

sented in [Comon, Nieuwenhuis and Rubio 1995, Godoy and Nieuwenhuis 2001℄.
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Unde
idability of �rst-order 
onstraint solving in the presen
e of AC-symbols fol-

lows from the results in [Treinen 1990℄, where it is shown that already the �

3

fragment of the �rst-order theory of any trem algebra modulo asso
iativity and


ommutativity is unde
idable for signatures that 
ontain at least one 
onstant,

one non-
onstant fun
tion symbol and one AC fun
tion symbol.



Chapter 9

Con
lusions

In this thesis we have presented results of our study of de
ision problems for

Knuth{Bendix orders that have appli
ations in automated dedu
tion. Let us

summarise our main results and point out some related open problems.

Constraint solving. Ordering 
onstraints are 
ru
ial for pruning sear
h spa
e

in theorem provers. As a 
onsequen
e algorithms for solving various ordering


onstraints are of great importan
e. In this thesis we have shown that the problem

of solving Knuth-Bendix ordering 
onstraints is de
idable and NP{
omplete. We

have presented an algorithm for solving Knuth{Bendix ordering 
onstraints with

an optimal 
omplexity bound. Our algorithm extensively uses nondeterministi



hoi
es. It would be interesting to investigate how this nondeterminism 
an be

redu
ed. Another problem to study is solving Knuth-Bendix ordering 
onstraints

under the extended signature semanti
s.

Constraints 
onsisting of single inequalities are 
ommonly used in automated

theorem proving. We have presented a polynomial-time algorithm for solving

Knuth-Bendix ordering 
onstraints 
onsisting of single inequalities. We believe

that this algorithm 
an be eÆ
iently implemented. It 
an also be used to approx-

imate solving general Knuth-Bendix ordering 
onstraints.

We have also been studying the 
onstraint solving problem for �rst-order 
on-

straints. We have shown the de
idability of the �rst-order Knuth-Bendix ordering


onstraints over unary signatures. Our de
ision pro
edure uses interpretation of

unary terms as trees and uses de
idability of the weak monadi
 se
ond-order the-

ory of binary trees. Although de
ision pro
edures for weak monadi
 se
ond-order

theory of binary trees behave reasonably well in pra
ti
e, theoreti
al lower bound
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for 
omplexity of this problem is nonelementary. An exa
t 
omplexity for the

problem of solving �rst-order Knuth-Bendix ordering 
onstraints over unary sig-

natures remains unknown. A more general open problem is the de
idability and


omplexity of full �rst-order theory of Knuth-Bendix orders.

Orientability. Orientability by simpli�
ation orders is useful in term rewriting

for showing termination of term rewriting systems, and in theorem proving for

�nding e�e
tive strategies for parti
ular problems and theories. In automated

systems whi
h are dealing with equality it is desirable to have an eÆ
ient algo-

rithm for orientability of systems 
onsisting of term rewrite rules and equalities.

We have shown that su
h an algorithm exists for Knuth-Bendix orders. In par-

ti
ular, we present a polynomial-time algorithm whi
h 
he
ks for a given system

of term rewriting rules and equalities whether there exists a Knuth-Bendix order

whi
h orients this system, and if su
h an order exists, the algorithm �nds param-

eters of this order. To 
omplete the 
omplexity analysis of this problem we have

shown that the orientability problem for Knuth-Bendix orders is P-
omplete even

for systems 
onsisting only of rewrite rules or only of equalities. A dire
tion for

future resear
h is to integrate our orientability algorithm into existing theorem

provers and assess its usefulness experimentally.

AC-
ompatible Knuth-Bendix orders. Axioms of asso
iativity and 
ommu-

tativity o

ur in many important theories. Unfortunately these axioms are very

diÆ
ult to deal with sin
e they are extremely proli�
 due to non-orientability of

the 
ommutativity axiom. The main approa
h to over
ome this problem is to in-

tegrate AC-reasoning into inferen
e systems, whi
h requires total AC-
ompatible

simpli�
ation orders. The importan
e of AC-
ompatible orders triggered a huge

amount of resear
h devoted for designing su
h orders, mostly by modifying re-


ursive path orders. We have shown that it is possible to modify Knuth-Bendix

orders to AC-
ompatible orders. Moreover, these orders preserve attra
tive prop-

erties of original Knuth-Bendix orders su
h as a polynomial-time algorithm for

term 
omparison and 
omputationally eÆ
ient approximations based on weight


omparisons. We believe that the algorithm for 
omparing terms in these orders


an be eÆ
iently implemented. For future resear
h let us mention the problems

of 
onstraint solving and orientability for AC-
ompatible Knuth-Bendix orders.
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