Predicate elimination for preprocessing in first-order
theorem proving

Zurab Khasidashvili' and Konstantin Korovin?

! Intel Israel Design Center, Haifa 31015, Israel
zurabk@iil.intel.com
2 The University of Manchester, UK
korovin@cs.man.ac.uk

Abstract. Preprocessing plays a major role in efficient propositional reasoning
but has been less studied in first-order theorem proving. In this paper we pro-
pose a predicate elimination procedure which can be used as a preprocessing step
in first-order theorem proving and is also applicable for simplifying quantified
formulas in a general framework of satisfiability modulo theories (SMT). We de-
scribe how this procedure is implemented in a first-order theorem prover iProver
and show that many problems in the TPTP library can be simplified using this
procedure. We also evaluated our preprocessing on the HWMCC’15 hardware
verification benchmarks and show that more than 50% of predicates can be elim-
inated without increasing the problem sizes.

1 Introduction

Preprocessing techniques for Boolean satisfiability apply rewriting and other simplifica-
tion rules to a propositional formula in conjunctive normal form (CNF) with the aim of
making SAT solving easier [3, 6, 10, 14,27, 37]. Since the development of the SatElite
pre-processing technique [14], the usefulness of pre-processing has become evident and
itis now an integrated part of SAT solving. We refer to [20] for an overview of recent ad-
vances in CNF pre-processing and in-processing techniques where simplification steps
are also applied in interleaving the SAT solving.

Variable elimination [6, 12, 14, 37] is an important simplification technique for CNF
and QBF formulas. In this paper we aim at generalizing this approach to first-order logic
such that it becomes a predicate elimination technique. Predicate elimination is a special
case of second-order quantifier elimination which has been investigated starting from
the work of Ackermann [1] and more recently in, e.g., [15, 16]. Second-order quantifier
elimination in first-order logic has a number of applications ranging from invariant
generation and interpolation in program analysis [19,25] to correspondence theory in
modal logics [33] and uniform interpolation in description logics [22].

In this paper we propose to use predicate elimination as a preprocessing technique
for first-order reasoning and show that it is also applicable for simplifying quantified
formulas in a general framework of satisfiability modulo theories (SMT). The main goal
of our algorithm is to eliminate as many predicates as possible without increasing the
complexity of the clause set. The second goal is to simplify the original set of clauses as
much as possible using newly generated clauses. Let us note that in contrast to variable

2 Zurab Khasidashvili and Konstantin Korovin

elimination in propositional logic, effective predicate elimination is not always possible
for first-order formulas with quantifiers. In order obtain a terminating procedure we pro-
pose to restrict predicate elimination to a specific case of non-self-referential predicates
as defined in the paper. We show that using non-self-referential predicate elimination
one can eliminate predicates from 77% of problems in the TPTP library [38] and con-
siderably reduce the number of predicates and clauses in many cases. In the case of
HWMCC’ 15 benchmarks [9] we show that in total more than 50% of predicates can be
eliminated without increasing the problem size.

This paper is organized as follows: In the next section we set the terminology and
the framework. In Section 3 we introduce predicate elimination and prove its soundness
and correctness as a simplification technique for first-order formulas in clausal normal
form. In Section 4 we introduce an algorithm for predicate elimination, called NSR-
Pred-Elim. In Section 5 we present experimental results which show that a number of
previously unsolved problems in the TPTP library for first-order logic problems can be
solved after applying predicate elimination.

2 Preliminaries

In this paper we are mainly focused on theorem proving in first-order logic but our
considerations are also applicable in a more general setting of satisfiability of quan-
tified first-order formulas modulo theories (SMT) [5, 28,29, 31], as briefly introduced
below. Let X' be a first-order signature consisting of predicate and function symbols.
Let X be split into a theory part X'y, containing interpreted theory symbols and X' r
containing uninterpreted symbols. We assume that the equality symbol ~ is in X' and
is interpreted as equality. A theory 7T is defined by a non-empty class of first-order in-
terpretations in the signature Y1, closed under isomorphisms. We say that a first-order
formula F is satisfiable modulo 7 if there exists an interpretation I satisfying F' such
that the reduction of I to the signature X';- (forgetting symbols in Xr) is in 7. In the
rest of the paper when we say satisfiability we assume satisfiability modulo some arbi-
trary but fixed theory 7. If X'+ is empty then we have usual first-order logic without
equality.

Satisfiability of quantified first-order formulas (modulo theories) can be reduced
to satisfiability of sets of universally quantified first-order clauses using Skolemization
and CNF transformation [18, 30]. In the rest of the paper we will consider the satisfia-
bility of sets of first-order clauses and assume that all variables in clauses are implicitly
universally quantified. Given an interpretation I, a variable assignment o is a mapping
from variables X into /. We denote by o a restriction of o onto variables . A substi-
tution is a mapping from variables X into the set of terms over X . We will use o, p, v to
denote variable assignments and also substitutions when this does not cause confusion.

3 Predicate elimination

Let S be a set of first-order clauses over the signature Y. Consider a predicate P of arity
n in X'z which we aim to eliminate from S. A literal which contains P will be called
a P-literal. Our predicate elimination procedure will be based on two rules: flattening,

Predicate elimination for preprocessing in first-order theorem proving 3

where we abstract all terms from P-literals, and flat resolution, where we resolve the
flattened predicates.

A P-literal is flat if it is of the form P(zy,...,x,) or =P(z1,...,2,), where
Z1,...,T, are pairwise distinct variables. A predicate P is flat in a set of clauses S
if all occurrences of P-literals in S are flat. We define the flattening rule on clauses
containing P as follows:

CV (2)P(t, ... ,t)

Flattenin
CVxydti V... Va, £ty V(0)P(x1,...,2,) (&)
where x4, . .., 2, are fresh variables that do not occur in C'V P(t4,...,t,) and literal
(=)P(t1,...,t,) is not flat. It is clear that flattening is equivalence preserving and

therefore we can remove the premise after adding the conclusion of the rule.
We eliminate predicates after flattening using flat resolution defined as follows:

CV P(x1,...,2,) DV -P(xy,...,2,)

FR
CVD (FRes)

We assume that before applying flat resolution, variables in clauses are renamed
such that resolved literals are of the form P(x1,...,x,) and =P(z1,...,z,) respec-
tively and all common variables in C' and D are in x1, ..., Zy,.

We call a predicate P self-referential in a clause C' if the number of occurrences of
P in C is greater than 1. A predicate P is self-referential in a set of clauses S if P is
self-referential in at least one clause in S. A predicate which is not self-referential in a
set of clauses S will be called non-self-referential in S.

In order to obtain a terminating elimination procedure we restrict ourselves to elimi-
nating non-self-referential predicates. Let S be a set of clauses and let P € X r be a flat
and non-self-referential predicate in \S. Partition S into three disjoint sets Sp, S—p, Sp
— the set of clauses containing P positively, negatively and not containing P, respec-
tively. Denote by Sp 1 .S_p the set of all resolvents obtained by pairwise flat resolu-
tions between clauses in Sp and S_p upon P.

Then, the non-self-referential predicate elimination transformation is defined as the
following rule on sets of clauses:

SPUSPUSWD
SpU(SppaS.p)

(NSR-Pred-Elim)

Let us note that since P is non-self-referential in S5 U Sp U S-p, P does not occur
in the conclusion set of the NSR-Pred-Elim.

The following theorem essentially follows from results in [5, 16]. Here we give a
simple proof and would like to emphasise that predicate elimination is a satisfiability
preserving transformation in a general setting of satisfiability modulo theories.

Theorem 1. The non-self-referential predicate elimination transformation is satisfia-
bility preserving.

Proof. Since flat resolution is a sound rule, satisfiability of the set of clauses in the
premise implies satisfiability of the set of clauses in the conclusion. Let us show that

4 Zurab Khasidashvili and Konstantin Korovin

the reverse direction also holds. Let us note that P does not occurin S U (Sp > S-p).
Assume that S U (Sp > S-p) is satisfiable and let I be a model of S5 U (Sp > .S-p)
in the signature X'\ { P}. We construct an interpretation I p over the signature X which
will be an expansion of I (i.e., coincide with I on all predicates other than P) and
satisfy all clauses in S5 U Sp U S p.

We define the predicate P in Ip by defining the truth value of P(Z)o for each
variable assignment o in I. Consider a variable assignment o in I. We define P(Z)o to
be true in Ip whenever there is a clause D V P(Z) € Sp such that Do is false in 1.
Likewise, define P(Z)o to be false in Ip if there is a clause C'V—P(Z) € S-p such that
Co is false in I. In all other cases we define the truth value of P(Z)o arbitrarily. Let us
show that this definition is well-defined, i.e., we never assign true to P(Z)o and false
to P(Z)p under assignments o and p such that oz = pz. Assume otherwise. Let o and
p be such that oz = p; and for some clauses D V P(Z) € Sp and C'V —P(Z) € S_p,
both Do and Cp are false in 1. Then D V C'is in Sp <1 S_p and since all common
variables in D and C are in & we have (Do) V(Cp) = (DVC)~ for an assignment -y that
coincides with o on variables of D and with p on variables of C. We have I £ (DV ('),
hence I E (Do) V (Cp) which contradicts to the assumption that Do and C'p are false
in . By construction, I, satisfies all clauses in Sp U S-p and since Ip is an expansion
of I we also have Ip satisfies all clauses in Sz.

Predicate elimination allows us to eliminate a non-self-referential predicate from a set of
clauses by first applying flattening and then NSR-Pred-Elim. After application of NSR-
Pred-Elim we can apply the equality substitution rule to eliminate negative equalities
which were introduced during flattening. Equality substitution is defined as follows:

CVzx#t

where x does not occur in ¢. Equality substitution is an equivalence preserving rule so
we can remove the premise when we add the conclusion to a set of clauses.

Let us note that in the case of first-order logic without theories (including equality)
we do not need to apply flattening and instead we can use most general unifiers when
applying resolution in the elimination. The proof of Theorem 1 carries over by con-
sidering Herbrand interpretations rather than arbitrary interpretations. Already in the
presence of equality flattening is essential.

Example 1. Consider the following set of unit clauses:
P(a),~P(b),a ~b.

This set is unsatisfiable, but we can not eliminate P based on unification. When flat-
tening is applied to P-literals we obtain:

P(J,‘l)\/.%‘l ;éa,ﬂP(xl)\/xl % b,a>~b.

After applying flat resolution and equality substitution we obtain an unsatisfiable set
a ~b,a % bwhere P is eliminated.

Predicate elimination for preprocessing in first-order theorem proving 5

4 Predicate elimination for preprocessing

Let us note that if we start with a finite set of clauses then after eliminating a non-self-
referential predicate we obtain a clause set that is at most quadratic in the number of
clauses compared to the original set. As we will see in Section 5, in practice this set
is usually much smaller after eliminating redundant clauses. Let us also note that after
eliminating a non-self-referential predicate some previously non-self-referential pred-
icates can become self-referential and conversely some self-referential predicates can
become non-self-referential due to removal of clauses during elimination and simplifi-
cation steps. Thus, the order of elimination can affect which predicates can be elimi-
nated in the process.

Example 2. Consider the following set of clauses S, where predicates P,), R are un-
interpreted and function symbols f, g can be either interpreted or uninterpreted.

L P(f(u),u)V f(f(u)) =~ ()

2. =P(v,g(u)) Q(f(9(w)) vV -Q(v)
3. Q(v) V R(v)

4. =Q(f(v)) vV =R(f(v)) V R(f(f(v)))

In this set of clauses predicate P is non-self-referential while () and R are self-referential.
In order to eliminate P we first flatten P-literals in clauses 1 and 2 and rename vari-
ables, obtaining:

laar. P(xi,22) Va2 f(ur) Vae 2ur V F(f(ur)) ~ g(ur)
2fiat- ~P(x1,22) V11 2 02 VX2 2 g(u2) V Q(f(9(uz2))) vV -Q(vz2)

After applying flat resolution and repeatedly applying equality substitution we obtain:

5. f(f(9(u2))) = g(g(u2)) vV Q(f(9(u2))) V ~Q(f(9(u2)))

Clause 5 is a tautology and therefore we can eliminate P by simply removing clauses
1 and 2. After eliminating P, () becomes non-self-referential and therefore can also be
eliminated. After eliminating () we obtain the empty set of clauses, hence the original
set of clauses is satisfiable.

Our main goal is to use predicate elimination for preprocessing to simplify sets of
first-order clauses. For this we consider the non-self-referential predicate elimination
(NSR-Pred-Elim), presented below. Clause simplifications play a central role in the
NSR-Pred-Elim algorithm. Let us first briefly describe simplifications that were used in
our implementation.

Tautology elimination. Clauses of the form P(t) V ~P(t) V C are tautologies and can
be eliminated. In the presence of equality we also eliminate equational tautologies of
the form ¢ ~ ¢ vV C'. We refer to [26] for a more general notion of equational tautologies.

Subsumption. A clause C' subsumes a clause D if Co C D for some substitution o,
considering clauses as literal multi-sets. Subsumed clause D can be removed in the
presence of clause C'.

6 Zurab Khasidashvili and Konstantin Korovin

Subsumption resolution. Subsumption resolution of two clauses can be seen as an ap-
plication of resolution to these clauses followed by subsumption of one of its premises
by the conclusion [4]. In this case, the subsumed premise is replaced by the conclusion.

Global subsumption. A set of clauses S globally subsumes a clause D if there is a
clause C' such that S F,,. C and Co C D for a substitution o, where . is a propo-
sitional approximation of F. In this case C' is called a witness for global subsumption
and we can replace subsumed clause D by C'. A global subsumption witness C' can be
obtained from S and D by adjoining negations of subclauses of D to S and applying
propositional reasoning. We refer to [24] for details.

Let us note that we are not restricted to using only these simplifications, the method
allows one to use any other collection of sound simplifications.

The NSR-Pred-Elim algorithm. The input of the NSR-Pred-Elim (Algorithm 1) is a
set of first-order clauses and a predicate elimination queue. The main goal is to elimi-
nate as many predicates as possible from the elimination queue without increasing the
complexity of the clause set. The second goal is to simplify the original set of clauses as
much as possible using newly generated clauses. There are different possible complex-
ity measures, we use one of the most restrictive and require that after each predicate
elimination the number of literals should not increase and in addition that the nor-
malised variable complexity of the set of clauses should also not increase. We define
normalised variable complexity of a set of clauses as a sum of squares of the number of
variables in each clause. The idea behind the last restriction is to give a greater weight to
clauses with higher number of variables since reasoning with such clauses is generally
more expensive.

During a run of the algorithm we maintain a set global-clauses which is equi-
satisfiable to the input set and a set local-clauses which is generated during elimination
of a predicate. Clause simplifications play a central role in the NSR-Pred-Elim algo-
rithm. Each newly generated clause is first self-simplified by simplifications such as
equality substitution and tautology elimination (line 14). Then the forward-simplify
procedure (line 15) is applied, where the clause is simplified by local clauses and global
clauses using simplifications such as subsumption, subsumption resolution and global
subsumption. If the clause is eliminated by, e.g., tautology elimination or subsumption
then we proceed to the next generated clause, otherwise we apply the backward-simplify
procedure which uses (a simplification of) this clause to simplify both local and global
clauses using simplifications such as subsumption and subsumption resolution (lines 17,
18). After processing all clauses in the resolvent set Sp > S—p we check whether to
keep the result of the elimination or to discard it based on the complexity of the gener-
ated clause set (line 22). Even when we discard the result of the predicate elimination
we still benefit from the simplifications of the global set by the clauses generated in
the process. For this, in the case when we simplify a clause in the global set we keep
simp-witnesses of this simplification (line 26): the set of clauses which are used to
simplify the clause and imply the simplified clause. A simplification witness usually
consists of a clause derived by flat resolution and equality substitution during the elim-
ination or by simplifications such as subsumption resolution or global subsumption.

Predicate elimination for preprocessing in first-order theorem proving 7

The algorithm maintains a map (pred-map) which maps predicates to sets of clauses
where the predicate occurs positively and negatively and a set of suspended predi-
cates (suspended-pred-set) for which the elimination was suspended either due to self-
referential occurrences in clauses (line 32) or to complexity of the clause set after elim-
ination (line 27). After updating the set of global clauses we also update pred-map and
suspended-pred-set. During this update some predicates from suspended-pred-set can
be moved back to the elimination queue due to clauses eliminated from the global set,
which contain predicates from suspended-pred-set.

Algorithm 1 NSR-Pred-Elim

: input: S — input clause set

: input: elim-queue — predicate elimination priority queue
: output: a simplified set of clauses equi-satisfiable with .S
: global-clauses < S

. eliminated-pred-set < ()

: suspended-pred-set < ()

: pred-map.create(global-clauses)

: while elim-queue #) do

9: P + pop(elim-queue)

10: if non-self-referential(P) then

(o e R e e

11: (Sp, S-p) + pred-map.find(P)

12: local-clauses < ()

13: for C € Sp > S-p do

14: self-simplify(C)

15: C + forward-simplify(C, local-clauses U global-clauses)
16: if —is-eliminated(C) then

17: local-clauses + backward-simplify(C, local-clauses)
18: global-clauses < backward-simplify(C, global-clauses)
19: local-clauses < local-clauses U {C'}

20: end if

21: end for

22: if keep-elim(local-clauses) then

23: global-clauses < (global-clauses \ (Sp U S-p)) U local-clauses
24: eliminated-pred-set < eliminated-pred-set U { P}

25: else

26: global-clauses < global-clauses U simp-witnesses(global-clauses)
27: suspended-pred-set < suspended-pred-set U {P}

28: end if

29: pred-map.update(global-clauses)

30: suspended-pred-set.update(global-clauses)

31: else

32: suspended-pred-set < suspended-pred-set U { P}

33: end if

34: end while
35: return global-clauses

8 Zurab Khasidashvili and Konstantin Korovin

S Implementation and evaluation

We implemented the NSR-Pred-Elim algorithm in iProver® — a theorem prover for first-
order logic [23,24]. iProver is a general purpose theorem prover for first-order logic
which incorporates SAT solvers at its core, currently MiniSAT [13] and optionally Pi-
coSAT [7]. One of the main challenges in efficient implementation of NSR-Pred-Elim
are efficient local and global simplifications. In contrast to propositional subsumption,
clause-to-clause first-order subsumption is an NP-complete problem. In order to deal
with subsumption and subsumption resolution efficiently we employed the compressed
feature vector index (CFVI) which is an extension of the feature vector index proposed
in [34]. This allowed us to successfully apply NSR-Pred-Elim to problems containing
hundreds of thousands of clauses. One of the important parameters of the algorithm is
a criterion deciding when to keep the result of a predicate elimination.

For our experiments we used machines with Intel Xeon L5410 2.33 GHz CPU, 4
cores, 12Gb. Each problem was run on a single core with time limit 300s and memory
limit 3.5Gb. We evaluated predicate elimination over first-order problems in FOF and
CNF formats over the TPTP-v6.1.0 library. iProver accepts first-order problems in CNF
form, for problems in general first-order form we used Vampire’s [26] clausifier to trans-
form them into CNF. TPTP-v6.1.0 contains 15897 problems in FOF and CNF formats,
13708 (86%) of problems contain predicates other than equality. The left-hand table

eliminated predicates|problems Lo
=10 4759 reduction in clauses|problems
0.01% — 20% 8042
11 — 100 3682
20% — 40% 930
101 — 1000 1473
40% — 60% 515
1001 — 10000 607
60% — 80% 399
10001 — 100000 82 80% — 100% 188
100001 — 1000000 14 f o ° 0074
total 10617 o

Fig. 1: The number of TPTP problems with the number of eliminated predicates in the
specified range (left) and the specified reduction in the number of clauses (right).

in Figure 1 shows that our predicate elimination procedure is able to eliminate pred-
icates in 10617 problems in TPTP, which is 77% of all first-order problems in TPTP
containing non-equality predicates. In particular, from this it follows that at least 77%
of problems contain non-self-referential predicates which can be eliminated without
increasing the size of the problem.

The right-hand table in Figure 1 shows the percentage of reduction in the number of
clauses due to the predicate elimination. Let us note that even when there is no reduction
in the number of clauses the set of clauses may change after the predicate elimination
process. This is the case when the number of removed clauses due to simplifications
is the same as the number of generated clauses due to predicate elimination and the
addition of simplification witnesses. Table 1 compares the performance of iProver with

3 iProver is available at http: //www.cs.man.ac.uk/~korovink/iprover

Predicate elimination for preprocessing in first-order theorem proving 9

pred elim |w/o pred elim
Ratings | Total | Solved | % | Solved | %
0.0-0.1 | 3495 3123 89| 3110] 89
0.1-0.2 | 1744| 1512| 87| 1498 86
0.2-03 | 1302 931| 71 916| 70
03-04 | 1092 602| 55 587| 54
04-05| 999 512| 51 506 51
05-06| 830 321} 39 294 35
0.6-0.7 913 268| 29 241 26
0.7-0.8 | 607 141| 23 129 21
0.8-09 | 1115 109| 10 110{ 10
09-1.0 993 55| 6 44 4
1.0-1.0 | 1892 20 1 18 1

total |14982| 7594| 51| 7453 50
Table 1: iProver performance on TPTP problems with and without predicate elimination

predicate elimination and without. Ratings of problems range from 0 — easy problems to
1 — problems that cannot be solved by any solver so far (including previous versions of
iProver). We can see from this table that iProver with predicate elimination considerably
outperforms iProver without predicate elimination on problems of all ratings except for
one case where it loses one problem. iProver can also be used as a preprocessing tool
and combined with other theorem provers. We evaluated the effect of the NSR-Pred-
Elim preprocessing on top-of-the-range first-order theorem provers Vampire [26] and
E [35], which also have their own advanced preprocessors. In both cases the NSR-Pred-
Elim preprocessing considerably increased the number of solved problems over TPTP:
130 in the case of E and 32 in the case of Vampire.

Our second set of experiments focuses on the model checking problems in the Hard-
ware Model Checking Competition, HWMCC15 [9]. In [21], the authors proposed two
new model checking algorithms based on an encoding of the model-checking problem
into the effectively propositional fragment of first-order logic (EPR). The first one is
a bounded model checking [8] algorithm called UCM-BMCI, and the second one is a
k-induction algorithm [36] called UCM-k-ind. These algorithms employ an unsat core
and model-based (UCM) abstraction refinement scheme inspired by [2, 11, 17], based
on approximations of the transition relation by first-order predicates. These algorithms
are implemented in iProver and the implementation uses the iProver theorem prover to
solve the BMC and induction formulas of UCM-BMCI1 and UCM-k-ind.

In these experiments, we apply predicate elimination to the BMC and induction for-
mulas of UCM-BMCI1 and UCM-k-ind as part of preprocessing and compare them with
UCM-BMCI1 and UCM-k-ind where predicate elimination is not performed in iProver.
With predicate elimination iProver solves more problems and reaches deeper bounds:
on the 547 available problems, the total number of bounds reached with predicate elimi-
nation is 24244, without predicate elimination it is 21820. Furthermore, predicate elim-
ination eliminated 27 million predicates from the total of 54 million, and eliminated 57
million clauses from the total of 160 million.

10

Zurab Khasidashvili and Konstantin Korovin

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Ackermann, W.: Untersuchungen iiber das Eliminationsproblem der matheraatischen Logik.

Mathematische Annalen 110, 390413 (1935)

. Amla, N., McMillan, K.L.: Combining abstraction refinement and sat-based model checking.

In: Tools and Algorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS. pp. 405419 (2007)

. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction.

In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications of Satisfiability Testing, 6th
International Conference, SAT 2003. LNCS, vol. 2919, pp. 341-355. Springer (2003)

. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and Voronkov [32],

pp- 19-99

. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic

first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193-212 (1994)

. Biere, A.: Resolve and expand. In: SAT 2004 - The Seventh International Conference on

Theory and Applications of Satisfiability Testing (2004)

. Biere, A.: Picosat essentials. JSAT 4(2-4), 75-97 (2008)
. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In:

Tools and Algorithms for Construction and Analysis of Systems, Sth International Confer-
ence, TACAS’99. pp. 193-207 (1999)

. Biere, A., Heljanko, K.: Hardware model checking competition report. http://fmv.

Jjku.at/hwmccl5/Biere-HWMCC15-talk.pdf (2015)

Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Trans.
Systems, Man, and Cybernetics, Part B 34(1), 52-59 (2004)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201-
215 (1960)

Eén, N., Sorensson, N.: An extensible SAT-solver. In: Proc. of the 6th International Confer-
ence SAT’03. LNCS, vol. 2919, pp. 502-518. Springer (2004)

Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing, 8th Inter-
national Conference, SAT. LNCS, vol. 3569, pp. 61-75. Springer (2005)

Gabbay, D.M., Schmidt, R.A., Szatas, A.: Second-Order Quantifier Elimination: Founda-
tions, Computational Aspects and Applications, Studies in Logic: Mathematical Logic and
Foundations, vol. 12. College Publications (2008)

Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In:
Proceedings of the 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR’92). pp. 425-435 (1992)

Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based BMC with
proof analysis. In: International Conference on Computer-Aided Design, ICCAD. pp. 416—
423 (2003)

Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques for first-
order clausification. In: Cabodi, G., Singh, S. (eds.) Formal Methods in Computer-Aided
Design, FMCAD. pp. 44-51. IEEE (2012)

Hoder, K., Kovdcs, L., Voronkov, A.: Interpolation and symbol elimination in Vampire. In:
Automated Reasoning, 5th International Joint Conference, IJCAR 2010. pp. 188-195 (2010)
Jarvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) Automated Reasoning - 6th International Joint Conference, IJCAR. LNCS, vol.
7364, pp. 355-370. Springer (2012)

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

Predicate elimination for preprocessing in first-order theorem proving 11

Khasidashvili, Z., Korovin, K., Tsarkov, D.: EPR-based k-induction with counterexample
guided abstraction refinement. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015.
Global Conference on Artificial Intelligence. EPiC Series in Computing, vol. 36, pp. 137-
150. EasyChair (2015)

Koopmann, P, Schmidt, R.A.: Uniform interpolation and forgetting for ALC ontologies with
aboxes. In: Bonet, B., Koenig, S. (eds.) Proc. AAAI-2015. pp. 175-181. AAAI Press (2015)
Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic (system
description). In: the 4th International Joint Conference on Automated Reasoning. LNCS,
vol. 5195, pp. 292-298. Springer (2008)

Korovin, K.: Inst-Gen - a modular approach to instantiation-based automated reasoning. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239-270.
Springer (2013)

Kovics, L., Voronkov, A.: Interpolation and symbol elimination. In: Automated Deduction -
CADE-22, 22nd International Conference on Automated Deduction. pp. 199-213 (2009)
Kovics, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith,
H. (eds.) Computer Aided Verification - 25th International Conference, CAV. LNCS, vol.
8044, pp. 1-35. Springer (2013)

Lynce, L., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfiabil-
ity. In: 15th IEEE International Conference on Tools with Artificial Intelligence ICTAL p.
105. IEEE Computer Society (2003)

de Moura, L.M., Bjgrner, N.: Efficient e-matching for SMT solvers. In: Pfenning, F. (ed.)
Automated Deduction - CADE-21, 21st International Conference on Automated Deduction.
LNCS, vol. 4603, pp. 183-198. Springer (2007)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an
abstract Davis—Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937-
977 (2006)

Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson and
Voronkov [32], pp. 335-367

Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quantified formu-
las in SMT. In: Formal Methods in Computer-Aided Design, FMCAD. pp. 195-202. IEEE
(2014)

Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press (2001)

Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory and
second-order reduction. Journal of Applied Logic 10(1), 52-74 (2012)

Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Auto-
mated Reasoning and Mathematics - Essays in Memory of William W. McCune. pp. 45-67
(2013)

Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A., Voronkov, A.
(eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8312, pp. 735-743. Springer (2013)

Sheeran, M., Singh, S., Stilmarck, G.: Checking safety properties using induction and a
sat-solver. In: Formal Methods in Computer-Aided Design, Third International Conference,
FMCAD 2000. pp. 108-125 (2000)

Subbarayan, S., Pradhan, D.K.: NiVER: non increasing variable elimination resolution for
preprocessing SAT instances. In: SAT 2004 - The Seventh International Conference on The-
ory and Applications of Satisfiability Testing (2004)

Sutcliffe, G.: The TPTP world - infrastructure for automated reasoning. In: Logic for Pro-
gramming, Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16,
Revised Selected Papers. pp. 1-12 (2010)

