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Abstrat

We onsider two deision problems related to the Knuth-Bendix order (KBO). The �rst

problem is orientability : given a system of rewrite rules R, does there exist an instane of KBO

whih orients every ground instane of every rewrite rule in R. The seond problem is whether

a given instane of KBO orients every ground instane of a given rewrite rule. This problem

an also be reformulated as the problem of solving a single ordering onstraint for the KBO. We

prove that both problems an be solved in polynomial time. The polynomial-time algorithm for

orientability builds upon an algorithm for solving systems of homogeneous linear inequalities

over integers. The polynomial-time algorithm for solving a single ordering onstraint does not

need to solve systems of linear inequalities and an be run in time O(n

2

). We show that the

orientability problem is P-omplete. Also we show that if a system is orientable using a real-

valued instane of KBO, then it is also orientable using an integer-valued instane of KBO.

Therefore, all our results hold both for the integer-valued and the real-valued KBO.

1 Introdution

In this setion we give an informal overview of the results proved in this paper. The formal

de�nitions will be given in the next setion.

Let � be any order on ground terms and l ! r be a rewrite rule. We say that � orients

l ! r, if for every ground instane l

0

! r

0

of l ! r we have l

0

� r

0

. We write l � r if for every

ground instane l

0

! r

0

of l ! r we have l

0

� r

0

or l

0

= r

0

. There are situations where we want to

hek if there exists a simpli�ation order on ground terms that orients a given system of (possibly

non-ground) rewrite rules. We all this problem orientability. Orientability an be useful when

a theorem prover is run on a new problem for whih no suitable simpli�ation order is known,

or when termination of a rewrite system is to be established automatially. For a reent survey,

see [Dershowitz and Plaisted 2001℄. We onsider the orientability problem for the Knuth-Bendix

order (in the sequel KBO) [Knuth and Bendix 1970℄ on ground terms. We give a polynomial-time

algorithm for heking orientability by the KBO. A similar problem of orientability by the non-

ground version of the real-valued KBO was studied in [Dik, Kalmus and Martin 1990℄ and an

algorithm for orientability was given. We prove that any rewrite rule system orientable by a real-

valued KBO is also orientable by an integer-valued KBO. This result also holds for the non-ground

version of the KBO onsidered in [Dik et al. 1990℄. In our proofs we use some tehniques of [Dik

et al. 1990℄. We also show that some rewrite systems ould not be oriented by non-ground version

of the KBO, but an be oriented by our algorithm.

The seond problem we onsider is solving ordering onstraints onsisting of a single inequality,

over a given instane of the Knuth-Bendix order. If � is total on ground terms, then the problem

of heking if � orients l ! r has relation to the problem of solving ordering onstraints over �.

Indeed, � does not orient l ! r if and only if there exists a ground instane l

0

! r

0

of l ! r
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suh that r

0

� l

0

, i.e., if and only if the ordering onstraint r � l has a solution. This means

that any proedure for solving ordering onstraints onsisting of a single inequality an be used

for heking whether a given system of rewrite rules is oriented by �, and vie versa. Using the

same tehnique as for the orientability problem, we show that the problem of solving an ordering

onstraint onsisting of a single inequality for the KBO an be solved in polynomial time.

Algorithms for, and omplexity of, orientability problem for various versions of the reursive

path orders were onsidered in [Lesanne 1984, Detlefs and Forgaard 1985, Krishnamoorthy and

Narendran 1985℄. The problems of solving ordering onstraints for lexiographi, reursive path

orders and for KBO are NP-omplete [Comon 1990, Jouannaud and Okada 1991, Nieuwenhuis

1993, Narendran, Rusinowith and Verma 1999, Korovin and Voronkov 2001℄, see also [Korovin

and Voronkov 2000b℄. However, to hek if � orients l ! r, it is suÆient to hek solvability of a

single ordering onstraint r � l. This problem is NP-omplete for LPO [Comon and Treinen 1994℄,

and therefore the problem of heking if an LPO orients a rewrite rule is oNP-omplete.

2 Preliminaries

A signature is a �nite set of funtion symbols with assoiated arities. In this paper � denotes an

arbitrary signature. Constants are funtion symbols of the arity 0. We assume that � ontains

at least one onstant. We denote variables by x; y; z, onstants by a; b; ; d; e, funtion symbols by

f; g; h, and terms by l; r; s; t. Systems of rewrite rules and rewrite rules are de�ned as usual, see

e.g. [Baader and Nipkow 1998, Dershowitz and Plaisted 2001℄. An expression E (e.g. a term or a

rewrite rule) is alled ground if no variable ours in E. Denote the set of natural numbers by N.

The Knuth-Bendix order is a family of orders parametrized by two parameters: a weight funtion

and a preedene relation.

Definition 2.1 (weight funtion) We all a weight funtion on � any funtion w : � ! N suh

that (i) w(a) > 0 for every onstant a 2 �, (ii) there exist at most one unary funtion symbol

f 2 � suh that w(f) = 0. Given a weight funtion w, we all w(g) the weight of g. The weight of

any ground term t, denoted jtj, is de�ned as follows: for every onstant  we have jj = w() and

for every funtion symbol g of a positive arity jg(t

1

; : : : ; t

n

)j = w(g) + jt

1

j+ : : : + jt

n

j.

Definition 2.2 A preedene relation on � is any total order � on �. A preedene relation �

is said to be ompatible with a weight funtion w if for every unary funtion symbol f , if w(f) = 0,

then f is the greatest element w.r.t. �.

Definition 2.3 (Knuth-Bendix order) Let w be a weight funtion on � and � a preedene

relation on � ompatible with w. The instane of the Knuth-Bendix order indued by (w;�) is

the binary relation � on the set of ground terms of � de�ned as follows. For all ground terms

t = g(t

1

; : : : ; t

n

) and s = h(s

1

; : : : ; s

k

) we have t � s if one of the following onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and t

i

� s

i

.

The ompatibility ondition ensures that every instane of the Knuth-Bendix order is a simpli�a-

tion order total on ground terms.
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In the sequel we will often refer to the least and the greatest terms among the terms of the

minimal weight for a given instane of KBO. It is easy to see that every term of the minimal weight

is either a onstant of the minimal weight, or a term f

n

(), where  is a onstant of the minimal

weight, and w(f) = 0. Therefore, the least term of the minimal weight is always the onstant of

the minimal weight whih is the least among all suh onstants w.r.t. �. This onstant is also the

least term w.r.t. �.

The greatest term of the minimal weight exists if and only if there is no unary funtion symbol

of the weight 0. In this ase, this term is the onstant of the minimal weight whih is the greatest

among suh onstants w.r.t. �.

Definition 2.4 (substitution) A substitution is a mapping from a set of variables to the set of

terms. A substitution � is grounding for an expression E (i.e., term, rewrite rule et.) if for every

variable x ourring in E the term �(x) is ground. We denote by E� the expression obtained from E

by replaing in it every variable x by �(x). A ground instane of an expression E is any expression

E� whih is ground.

The following de�nition is entral to this paper.

Definition 2.5 (orientability) An instane � of KBO orients a rewrite rule l ! r if for every

ground instane l

0

! r

0

of l! r we have l

0

� r

0

. An instane of KBO orients a system R of rewrite

rules if it orients every rewrite rule in R.

The deidability of the orientability problem for the KBO does not follow immediately from the

deidability of the KBO ordering onstraints [Korovin and Voronkov 2001℄, as it is in the ase of the

reursive path ordering. For a given �nite signature, there exists only a �nite number of instanes

of the reursive path ordering. But there exists an in�nite number of instanes of the KBO, sine

the weight funtion is not restrited.

We de�ne orientability in terms of ground instanes of rewrite rules. One an also de�ne

orientability using the non-ground version of the KBO as originally de�ned in [Knuth and Bendix

1970℄. But then we obtain a weaker notion (fewer systems an be oriented) as the following example

from [Korovin and Voronkov 2000a℄ shows.

Example 2.6 Consider the following rewrite rule:

g(x; a; b) ! g(b; b; a): (1)

For any hoie of the weight funtion w and order �, g(x; a; b) � g(b; b; a) does not hold for the

original Knuth-Bendix order with variables. However, rewrite rule (1) an be oriented by any

instane of KBO suh that w(a) � w(b) and a� b.

In fat the order based on all ground instanes is the greatest simpli�ation order extending the

instane of KBO from ground terms to non-ground terms.

3 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous linear inequalities.

The de�nitions related to systems of linear inequalities an be found in standard textbooks (e.g.,

[Shrijver 1998℄). We will denote olumn vetors of variables by X, integer or real vetors by V;W ,

integer or real matries by A;B. Column vetors onsisting of 0's will be denoted by 0. The set of

real numbers is denoted by R, and the set of non-negative real numbers by R

+

.
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Definition 3.1 (homogeneous linear inequalities) A homogeneous linear inequality has the form

either V X � 0 or V X > 0. A system of homogeneous linear inequalities is a �nite set of homoge-

neous linear inequalities.

Solutions (real or integer) to systems of homogeneous linear inequalities are de�ned as usual.

We will use the following fundamental property of system of homogeneous linear inequalities:

Lemma 3.2 Let AX � 0 be a system of homogeneous linear inequalities, where A is an integer

matrix. Then there exists a �nite number of integer vetors V

1

; : : : ; V

n

suh that the set of solutions

to AX � 0 is

fr

1

V

1

+ : : :+ r

n

V

n

j r

1

; : : : ; r

n

2 R

+

g: (2)

The proof an be found in e.g., [Shrijver 1998℄.

The following lemma was proved in [Martin 1987℄ for the systems of linear homogeneous in-

equalities over the real numbers. We will give a simpler proof of it here.

Lemma 3.3 Let AX � 0 be a system of homogeneous linear inequalities where A is an integer

matrix and Sol be the set of all real solutions to the system. Then the system an be split into two

disjoint subsystems BX � 0 and CX � 0 suh that

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol suh that CV > 0.

Proof. By Lemma 3.2 we an �nd integer vetors V

1

; : : : ; V

n

suh that the set Sol is (2). We

de�ne BX � 0 to be the system onsisting of all inequalities WX � 0 in the system suh that

WV

i

= 0 for all i = 1; : : : ; n; then property 1 is obvious.

Note that the system CX � 0 onsists of the inequalities WX � 0 suh that for some V

i

we

have WV

i

> 0. Take V to be V

1

+ : : : + V

n

, then it is not hard to argue that CV > 0. 2

Let D be a system of homogeneous linear inequalities with a real matrix. We will all the subsystem

BX � 0 of D the degenerate subsystem if the following holds. Denote by C the matrix of the

omplement to BX � 0 in D and by Sol the set of all real solutions to D . Then

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol suh that CV > 0.

For every system D of homogeneous linear inequalities the degenerate subsystem of D will be

denoted by D

=

. Note that the degenerate subsystem is de�ned for arbitrary systems, not only

those of the form AX � 0.

Let us now prove another key property of integer systems of homogeneous linear inequalities:

the existene of a real solution implies the existene of an integer solution.

Lemma 3.4 Let D be a system of homogeneous linear inequalities with an integer matrix. Let V

be a real solution to this system and for some subsystem of D with the matrix B we have BV > 0.

Then there exists an integer solution V

0

to D for whih we also have BV

0

> 0.
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Proof. Let D

0

be obtained from D by replaement of all strit equalities WX > 0 by their non-

strit versions WX � 0. Take vetors V

1

; : : : ; V

n

so that the set of solutions to D

0

is (2). Evidently,

for every inequality WX � 0 in BV > 0 there exists some V

i

suh that WV

i

> 0. De�ne V

0

as V

1

+ : : : + V

n

, then it is not hard to argue that BV

0

> 0. We laim that V

0

is a solution to

D . Assume the onverse, then there exists an inequality WX > 0 in D suh that WV

0

= 0. But

WV

0

= 0 implies that WV

i

= 0 for all i, so D has no real solution, ontradition. 2

The following lemma follows from Lemmas 3.3 and 3.4.

Lemma 3.5 Let D be a system of homogeneous linear inequalities with an integer matrix and its

degenerate subsystem is di�erent from D . Let B be the matrix of the omplement of the degenerate

subsystem. Then there exists an integer solution V to D suh that BV > 0. 2

The following result is well-known, see e.g., [Shrijver 1998℄.

Lemma 3.6 The existene of a real solution to a system of linear inequalities an be deided in

polynomial time. 2

This lemma and Lemma 3.4 imply the following key result.

Lemma 3.7 (i) The existene of an integer solution to an integer system of homogeneous linear

inequalities an be deided in polynomial time. (ii) If an integer system D of homogeneous linear

inequalities has a solution, then its degenerate subsystem D

=

an be found in polynomial time. 2

4 States

In Setion 6 we will present an algorithm for orientability by the Knuth-Bendix order. This algo-

rithm will work on states whih generalize systems of rewrite rules in several ways. A state will use

a generalization of rewrite rules to tuples of terms and some information about possible solutions.

Let � be any order on ground terms. We extend it lexiographially to an order on tuples of

ground terms as follows: we write hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i if for some i 2 f1; : : : ; ng we have l

1

=

r

1

; : : : ; l

i�1

= r

i�1

and l

i

� r

i

. We all a tuple inequality any expression hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

The length of this tuple inequality is n.

In the sequel we assume that � is a �xed signature and e is a onstant not belonging to �. The

onstant e will play the role of a temporary substitute for a onstant of the minimal weight. We

will present the algorithm for orienting a system of rewrite rules as a sequene of state hanges.

We all a state a tuple (R;M ; D ;U; G ;L ;o), where

1. R is a set of tuple inequalities hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i, suh that every two di�erent tuple

inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms of the minimal

weight.

3. D is a system of homogeneous linear inequalities over the variables fw

g

j g 2 � [ fegg. This

system denotes onstraints on the weight funtion olleted so far, and w

e

denotes the minimal

weight of terms.
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4. U is one of the following values one or any. The value one signals that there exists exatly one

term of the minimal weight, while any means that no onstraints on the number of elements

of the minimal weight have been imposed.

5. G and L are sets of onstants, eah of them ontains at most one element. If d 2 G (respe-

tively d 2 L), this signals that d is the greatest (respetively least) term among the terms of

the minimal weight.

6. o is a binary relation on �. This relation denotes the subset of the preedene relation

omputed so far.

Let w be a weight funtion on �, � a preedene relation on � ompatible with w, and � the

instane of the Knuth-Bendix order indued by (w;�). A substitution � grounding for a set of

variables X is said to be minimal for X if for every variable x 2 X the term �(x) is of the minimal

weight. We extend w to e by de�ning w(e) to be the minimal weight of a onstant of �.

We say that the pair (w;�) is a solution to a state (R;M ; D ;U; G ; L ;o) if

1. For every tuple inequality hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i in R and every substitution � grounding

for this tuple inequality and minimal for M we have hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. The weight funtion w solves every inequality in D in the following sense: replaement of

eah w

g

by w(g) gives a tautology. In addition, w(e) oinides with the minimal weight w()

of onstants  2 �.

3. If U = one, then there exists exatly one term of the minimal weight.

4. If d 2 G (respetively d 2 L) for some onstant d, then d is the greatest (respetively least)

term among the terms of the minimal weight. Note that if d is the greatest term of the

minimal weight, then the signature ontains no unary funtion symbol of the weight 0.

5. � extendso.

We will now show how to redue the orientability problem for the systems of rewrite rules to the

solvability problem for states.

Let R be a system of rewrite rules suh that every two di�erent rules in R have disjoint variables.

Denote by S

R

the state (R;M ; D ;U; G ; L ;o) de�ned as follows.

1. R onsists of all tuple inequalities hli > hri suh that l ! r belongs to R.

2. M = ;.

3. D onsists of (a) all inequalities w

g

� 0, where g 2 � is a non-onstant; (b) the inequality

w

e

> 0 and all inequalities w

d

� w

e

� 0, where d is a onstant of �.

4. U = any.

5. G = L = ;.

6. o is the empty binary relation on �.

Lemma 4.1 Let w be a weight funtion, � a preedene relation on � ompatible with w, and �

the instane of KBO indued by (w;�). Then � orients R if and only if (w;�) is a solution to

S

R

. 2

The proof is straightforward.
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5 Trivial signatures

For tehnial reasons, we will distinguish two kinds of signatures. Essentially, our algorithm depends

on whether the weights of terms are restrited or not. For the so-alled non-trivial signatures,

the weights are not restrited. When we present the orientability algorithm for the non-trivial

signatures, we will use the fat that terms of suÆiently large weights always exist. For the trivial

signatures we will present a simpler orientability algorithm in Setion 7.

A signature is alled trivial if it ontains no funtion symbols of arity � 2, and at most one

unary funtion symbol. Note that a signature is non-trivial if and only if it ontains either a

funtion symbol of arity � 2 or at least two funtion symbols of arity 1.

Lemma 5.1 Let � be a non-trivial signature and w be a weight funtion for �. Then for every

integer m there exists a ground term of the signature � suh that jtj > m.

Proof. It is enough to show how for every term t build a term of the weight greater than jtj.

Note that the weight of any term is positive. If � ontains a funtion symbol g of arity n � 2, then

jg(t; : : : ; t)j = w(g) +n � jtj > jtj. If � ontains two unary funtion symbols, then for at least one of

them g we have w(g) > 0. Then jg(t)j = w(g) + jtj > jtj. 2

6 An algorithm for orientability in the ase of non-trivial signa-

tures

In this setion we only onsider non-trivial signatures. An algorithm for trivial signatures is given

in Setion 7. The algorithm given in this setion will be illustrated below in Setion 6.5 on the

rewrite rule of Example 2.6.

Our algorithm works as follows. Given a system R of rewrite rules, we build the initial state

S

R

= (R;M ; D ;U; G ; L ;o). Then we repeatedly transform (R;M ; D ;U; G ; L ;o) as desribed

below. We all the size of the state the total number of ourrenes of funtion symbols and

variables in R. Every transformation step will terminate with either suess or failure, or else

derease the size of R.

At eah step we assume that R onsists of k tuple inequalities

hl

1

; L

1

i > hr

1

; R

1

i;

� � �

hl

k

; L

k

i > hr

k

; R

k

i;

(3)

suh that all of the L

i

; R

i

are tuples of terms.

We will label parts of the algorithm, these labels will be used in the proof of its soundness.

The algorithm an make a non-deterministi hoie, but at most one, and the number of non-

deterministi branhes is bounded by the number of onstants in �.

When the set D of linear inequalities hanges, we assume that we hek the new set for satis�-

ability, and terminate with failure if it is unsatis�able. Likewise, when we hangeo, we hek if

it an be extended to an order and terminate with failure if it annot.

6.1 The algorithm

The algorithm works as follows. Every step onsists of a number of state transformations, beginning

with PREPROCESS de�ned below. During the algorithm, we will perform two kinds of onsisteny
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heks:

� The onsisteny hek on D is the hek if D has a solution. If it does not, we terminate with

failure.

� The onsisteny hek ono is the hek ifo an be extended to an order, i.e., the transitive

losure � ofo is irreexive, i.e., for no g 2 � we have g � g. Ifo annot be extended to

an order, we terminate with failure.

It is not hard to argue that both kinds of onsisteny heks an be performed in polynomial

time. The onsisteny hek on D is polynomial by Lemma 3.7. The onsisteny hek ono is

polynomial sine the transitive losure of a binary relation an be omputed in polynomial time,

see e.g. [Cormen, Leiserson and Rivest 1991℄.

PREPROCESS. Do the following transformations while possible. If any tuple inequality in R has

length 0, remove it from R. If R ontains a tuple inequality hl

1

; : : : ; l

n

i > hl

1

; : : : ; l

n

i, terminate

with failure. Otherwise, if R ontains a tuple inequality hl; l

1

; : : : ; l

n

i > hl; r

1

; : : : ; r

n

i, replae it by

hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

If R beomes empty, proeed to TERMINATE, otherwise ontinue with MAIN.

MAIN. Now we an assume that in (3) eah l

i

is a term di�erent from the orresponding term r

i

.

For every variable x and term t denote by n(x; t) the number of ourrenes of x in t. For example,

n(x; g(x; h(y; x))) = 2. Likewise, for every funtion symbol g 2 � and term t denote by n(g; t) the

number of ourrenes of g in t. For example, n(h; g(x; h(y; x))) = 1.

(M1) For all x and i suh that n(x; l

i

) > n(x; r

i

), add x to M .

(M2) If for some i there exists a variable x 62 M suh that n(x; l

i

) < n(x; r

i

), then terminate with

failure.

For every pair of terms l; r, denote by W (l; r) the linear inequality obtained as follows. Let v

l

and v

r

be the numbers of ourrenes of variables in l and r respetively. Then

W (l; r) =

X

g2�

(n(g; l) � n(g; r))w

g

+ (v

l

� v

r

)w

e

� 0: (4)

For example, if l = h(x; f(y)) and r = f(g(x; g(x; y))), then

W (l; r) = w

h

� 2 � w

g

� w

e

� 0:

(M3) Add to D all the linear inequalities W (l

i

; r

i

) for all i and perform the onsisteny hek on

D .

Now ompute D

=

. If D

=

ontains none of the inequalities W (l

i

; r

i

), proeed to TERMINATE.

Otherwise, for all i suh that W (l

i

; r

i

) 2 D

=

apply the appliable ase below, depending on the

form of l

i

and r

i

.

(M4) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)), where g is di�erent from h, then extend

o by adding go h and remove the tuple inequality hl

i

; L

i

i > hr

i

; R

i

i from R. Perform the

onsisteny hek ono.
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(M5) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then replae hl

i

; L

i

i > hr

i

; R

i

i by hs

1

; : : : ; s

n

; L

i

i >

ht

1

; : : : ; t

n

; R

i

i.

(M6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do the following. (Note

that at this point x; y 2 M .) If L

i

is empty, then terminate with failure. Otherwise, set U to

one and replae hl

i

; L

i

i > hr

i

; R

i

i by hL

i

i > hR

i

i.

(M7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If t is not a onstant,

or L

i

is empty, then terminate with failure. So assume that t is a onstant . If L = fdg for

some d di�erent from , then terminate with failure. Otherwise, set L to fg. Replae in L

i

and R

i

the variable x by , obtaining L

0

i

and R

0

i

respetively, and then replae hl

i

; L

i

i > hr

i

; R

i

i

by hL

0

i

i > hR

0

i

i.

(M8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following. If t ontains x,

remove hl

i

; L

i

i > hr

i

; R

i

i from R. Otherwise, if t is a non-onstant or L

i

is empty, terminate

with failure. (Note that at this point x 2 M and W (t; x) 2 D

=

.) Let now t be a onstant .

If G = fdg for some d di�erent from , then terminate with failure. Otherwise, set G to fg.

Replae in L

i

and R

i

the variable x by , obtaining L

0

i

and R

0

i

respetively, and then replae

hl

i

; L

i

i > hr

i

; R

i

i by hL

0

i

i > hR

0

i

i.

After this step repeat PREPROCESS.

TERMINATE. Let (R; M ; D ;U; G ;L ;o) be the urrent state. Do the following.

(T1) If d 2 G , then for all onstants  di�erent from d suh that w



�w

e

� 0 belongs to D

=

extend

o by adding do . Likewise, if  2 L, then for all onstants d di�erent from  suh that

w

d

� w

e

� 0 2 D

=

extendo by adding do . Perform the onsisteny hek ono.

(T2) For all f in � do the following. If f is a unary funtion symbol and w

f

� 0 belongs to D

=

,

then extendo by adding fo h for all h 2 ��ffg. Perform the onsisteny hek ono.

If U = one or G 6= ;, then terminate with failure.

(T3) If there exists no onstant  suh that w



�w

e

� 0 is in D

=

, then non-deterministially hoose

a onstant  2 �, add w

e

� w



� 0 to D , perform the onsisteny hek on D and repeat

PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one onstant  suh that

w



� w

e

� 0 belongs to D

=

.

(T5) Terminate with suess.

We will show how to build a solution at step (T5) below in Lemma 6.19.

6.2 Corretness

In this setion we prove orretness of the algorithm. In Setion 6.3 we show how to �nd a solution

when the algorithm terminates with suess. The orretness will follow from a series of lemmas

asserting that the transformation steps performed by the algorithm preserve the set of solutions. We

will use notation and terminology of the algorithm. We say that a step of the algorithm is orret

if the set of solutions to the state before this step oinides with the set of solutions after the step.
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When we prove orretness of a partiular step, we will always denote by S= (R;M ; D ;U; G ;L ;o)

the state before this step, and by S

0

the state after this step. When we use substitutions in the

proof, we always assume that the substitutions are grounding for the relevant terms.

The following two lemmas an be proved by a straightforward appliation of the de�nition of

solution to a state.

Lemma 6.1 (onsisteny hek) If onsisteny hek on D or ono terminates with failure, then

S has no solution. 2

Lemma 6.2 Step PREPROCESS is orret. 2

Let us now analyze MAIN. For every weight funtion w and preedene relation � ompatible

with w we all a ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�) any substitution � minimal for

M suh that hr

i

�;R

i

�i � hl

i

�;L

i

�i for the order � indued by (w;�).

Denote by S

�i

the state obtained from S by removal of the ith tuple inequality hl

i

; L

i

i > hr

i

; R

i

i

from R. The following lemma follows immediately from the de�nition of solution.

Lemma 6.3 (ounterexample) If for every solution (w;�) to S

�i

there exists a ounterexample

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�), then S has no solution. If for every solution (w;�) to S

�i

there exists no ounterexample to the tuple inequality hl

i

; L

i

i > hr

i

; R

i

i, then removing this tuple

inequality from R does not hange the set of solutions to S. 2

This lemma means that we an hange hl

i

; L

i

i > hr

i

; R

i

i into a di�erent tuple inequality or

hange M , if we an prove that this hange does not inuene the existene of a ounterexample.

Let � be a substitution, x a variable and t a term. Denote by �

t

x

the substitution de�ned by

�

t

x

(y) =

�

�(y); if y 6= x;

t; if y = x:

Lemma 6.4 Let w be a weight funtion on � and � a preedene relation on � ompatible with w.

Suppose also that for some x and i we have n(x; l

i

) > n(x; r

i

) and there exists a ounterexample �

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�). Then there exists a ounterexample �

0

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t.

(w;�) minimal for fxg.

Proof. Suppose that � is not minimal for fxg. Denote by  a minimal onstant w.r.t. w and by t

the term x�. Sine � is not minimal for fxg, we have jtj > jj. Consider the substitution �



x

. Sine

� is a ounterexample, we have jr

i

�j � jl

i

�j. We have

jl

i

�



x

j = jl

i

�j � n(x; l

i

) � (jtj � jj);

jr

i

�



x

j = jr

i

�j � n(x; r

i

) � (jtj � jj):

Then

jr

i

�



x

j = jr

i

�j � n(x; r

i

) � (jtj � jj) � jl

i

�j � n(x; r

i

) � (jtj � jj)

> jl

i

�j � n(x; l

i

) � (jtj � jj) = jl

i

�



x

j:

Therefore, jr

i

�



x

j > jl

i

�



x

j, and so �



x

is a ounterexample too. 2

One an immediately see that this lemma implies orretness of step (M1).

Lemma 6.5 Step (M1) is orret.
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Proof. Evidently, every solution to S is also a solution to S

0

. But by Lemma 6.4, every ounterex-

ample to S an be turned into a ounterexample to S

0

, so every solution to S

0

is also a solution to

S. 2

Let us now turn to step (M2).

Lemma 6.6 (M2) If for some i and x 62 M we have n(x; l

i

) < n(x; r

i

), then S has no solution.

Therefore, step (M2) is orret.

Proof. We show that for every (w;�) there exists a ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t.

(w;�). Let � be any substitution grounding for this tuple inequality. Take any term t and onsider

the substitution �

t

x

. We have

jr

i

�

t

x

j � jl

i

�

t

x

j = jr

i

�j � jl

i

�j+ (n(x; r

i

)� n(x; l

i

)) � (jtj � jx�j):

By Lemma 5.1 there exist terms of an arbitrarily large weight, so for a term t of a large enough

weight we have jr

i

�

t

x

j > jl

i

�

t

x

j, and so �

t

x

is a ounterexample to hl

i

; L

i

i > hr

i

; R

i

i.

Corretness of (M2) is straightforward. 2

Note that after step (M2) for all i and x 62 M we have n(x; l

i

) = n(x; r

i

).

Denote by �



the substitution suh that �



(x) =  for every variable x.

Lemma 6.7 (M3) Let for all i and x 62 M we have n(x; l

i

) = n(x; r

i

). Every solution (w;�) to S

is also a solution to W (l

i

; r

i

). Therefore, step (M3) is orret.

Proof. Let  be a onstant of the minimal weight. Consider the substitution �



. Note that this

substitution is minimal for M . It follows from the de�nition of W that (w;�) is a solution to

W (l

i

; r

i

) if and only if jl

i

�



j � jr

i

�



j. But jl

i

�



j � jr

i

�



j is a straightforward onsequene of the

de�nition of solutions to tuple inequalities.

Corretness of (M3) is straightforward. 2

Lemma 6.8 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2 D

=

. Then for every

solution to S

�i

and every substitution � minimal for M we have jl

i

�j = jr

i

�j.

Proof. Using the fat that n(x; l

i

) = n(x; r

i

) for all x 62 M , it is not hard to argue that jl

i

�j� jr

i

�j

does not depend on �, whenever � is minimal for M .

Let  be a onstant of the minimal weight. It follows from the de�nition of W that ifW (l

i

; r

i

) 2

D

=

, then for every solution to D (and so for every solution to S

�i

) we have jl

i

�



j = jr

i

�



j. Therefore,

jl

i

�j = jr

i

�j for all substitutions � minimal for M . 2

The proof of orretness of steps (M4){(M8) will use this lemma in the following way. A pair

(w;�) is a solution to S if and only if it is a solution to S

�i

and a solution to hl

i

; L

i

i > hr

i

; R

i

i.

Equivalently, (w;�) is a solution to S if and only if it is a solution to S

�i

and for every substitution

� minimal for M we have hl

i

�;L

i

�i � hr

i

�;R

i

�i. But by Lemma 6.8 we have jl

i

�j = jr

i

�j, so

hl

i

�;L

i

�i � hr

i

�;R

i

�i must be satis�ed by either ondition 2 or ondition 3 of the de�nition of the

KBO order.

This onsideration an be summarized as follows.
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Lemma 6.9 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2 D

=

. Then a pair

(w;�) is a solution to S if and only if it is a solution to S

�i

and for every substitution � minimal

for M the following holds. Let l

i

� = g(t

1

; : : : ; t

n

) and r

i

� = h(s

1

; : : : ; s

p

). Then at least one of the

following onditions holds

1. l

i

� = r

i

� and L

i

� � R

i

�; or

2. g � h; or

3. g = h and for some 1 � i � n we have t

1

� = s

1

�; : : : ; t

i�1

� = s

i�1

� and t

i

� � s

i

�. 2

Lemma 6.10 Step (M4) is orret.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

) for g 6= h. Take any substitution �

minimal for M . Obviously, l

i

� = r

i

� is impossible, so hl

i

; L

i

i� � hr

i

; R

i

i� if and only if l

i

� � r

i

�.

By Lemma 6.9 this holds if and only if g � h, so step (M4) is orret. 2

Lemma 6.11 Step (M5) is orret.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

). Note that due to PREPRO-

CESS, l

i

6= r

i

, so n � 1. It follows from Lemma 6.9 that hl

i

; L

i

i� � hr

i

; R

i

i� if and only if

hs

1

; : : : ; s

n

; L

i

i� � ht

1

; : : : ; t

n

; R

i

i�, so step (M5) is orret. 2

Lemma 6.12 Step (M6) is orret.

Proof. We know that l

i

= x and r

i

= y, where x; y are di�erent variables. Note that if L

i

is empty,

then the substitution �



, where  is of the minimal weight, is a ounterexample to hx;L

i

i > hy;R

i

i.

So assume that L

i

is non-empty and onsider two ases.

1. If there exist at least two terms s; t of the minimal weight, then there exists a ounterexample

to hx;L

i

i > hy;R

i

i. Indeed, if s � t, then y� � x� for every � suh that �(x) = t and

�(y) = s.

2. If there exists exatly one term t of the minimal weight, then x� = y� for every � minimal

for M . Therefore, hx;L

i

i > hy;R

i

i is equivalent to hL

i

i > hR

i

i.

In either ase it is not hard to argue that step (M6) is orret. 2

Lemma 6.13 Step (M7) is orret.

Proof. We know that l

i

= x and r

i

= t. Let  be the least onstant in the signature. If

t 6= , then �



is obviously a ounterexample to hx;L

i

i > ht; R

i

i. Otherwise t = , then for every

ounterexample � we have �(x) = . In either ase it is not hard to argue that step (M7) is orret.

2

Lemma 6.14 Step (M8) is orret.
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Proof. We know that l

i

= t and r

i

= x. Note that t 6= x due to the PREPROCESS step, so if

x ours in t we have t� � x� for all �. Assume now that x does not our in t. Then x 2 M .

Consider two ases.

1. t is a non-onstant. For every substitution � minimal for M we have jt�j = jx�j, hene t� is

a non-onstant term of the minimal weight. This implies that the signature ontains a unary

funtion symbol f of the weight 0. Take any substitution �. It is not hard to argue that

�

f(t)�

x

is a ounterexample to ht; L

i

i > hx;R

i

i.

2. t is a onstant . Let d be the greatest onstant in the signature among the onstants of

the minimal weight. If d 6= , then �

d

is obviously a ounterexample to h; L

i

i > hx;R

i

i.

Otherwise d = , then for every ounterexample � we have �(x) = .

In either ase it is not hard to argue that step (M8) is orret. 2

Let us now analyze steps TERMINATE. Note that for every onstant  the inequality w



�w

e

� 0

belongs to D and for every funtion symbol g the inequality w

g

� 0 belongs to D too.

Lemma 6.15 Step (T1) is orret.

Proof. Suppose d 2 G ,  6= d, and w



� w

e

� 0 belongs to D

=

. Then for every solution to S we

have w() = w(e), and therefore  is a onstant of the minimal weight. But sine for every solution

d is the greatest onstant among those having the minimal weight, we must have d� .

The ase  2 L is similar. 2

Lemma 6.16 Step (T2) is orret.

Proof. If f is a unary funtion symbol and w

f

� 0 belongs to D

=

, then for every solution

w(f) = 0. By the de�nition of the KBO we must have f � g for all g 2 � � ffg. But then (i)

there exists an in�nite number of terms of the minimal weight and (ii) a onstant d 2 G annot be

the greatest term of the minimal weight (sine for example f(d) � d and jf(d)j = jdj). 2

Step (T3) makes a non-deterministi hoie, whih an result in several states S

1

; : : : ;S

n

. We

say that suh a step is orret if the set of solutions to S is the union of the sets of solutions to

S

1

; : : : ;S

n

.

Lemma 6.17 Step (T3) is orret.

Proof. Note that w is a solution to w

e

� w



� 0 if and only if w() is the minimal weight, so

addition of w

e

� w



� 0 to D amounts to stating that  has the minimal weight. Evidently, for

every solution, there must be a onstant  of the minimal weight, so the step is orret. 2

Lemma 6.18 Step (T4) is orret.

Proof. Suppose U = one, then for every solution there exists a unique term of the minimal

weight. If,  is a onstant suh that w



� w

e

� 0 belongs to D

=

, then  must be a term of the

minimal weight. Therefore, there annot be more than one suh a onstant . 2
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6.3 Extrating a solution

In this setion we will show how to �nd a solution when the algorithm terminates with suess.

Lemma 6.19 Step (T5) is orret.

Proof. To prove orretness of (T5) we have to show the existene of solution. In fat, we will

show how to build a partiular solution.

Note that when we terminate at step (T5), the system D is solvable, sine it was solvable initially

and we performed onsisteny heks on every hange of D .

By Lemma 3.5 there exists an integer solution w to D whih is also a solution to the strit

versions of every inequality in D � D

=

. Likewise, there exists a linear order � extendingo, sine

we performed onsisteny heks on every hange of o. We laim that (w;�) is a solution to

(R;M ; D ;U; G ;L ;o). To this end we have to show that w is weight funtion, � is ompatible

with w and all items 1{5 of the de�nition of solution are satis�ed.

Let us �rst show that w is a weight funtion. Note that D ontains all inequalities w

g

� 0,

where g 2 � is a non-onstant, the inequality w

e

> 0 and the inequalities w

d

� w

e

� 0 for every

onstant d 2 �. So to show that w is a weight funtion it remains to show that at most one unary

funtion symbol f has weight 0. Indeed, if there were two suh funtion symbols f

1

and f

2

, then

at step (T2) we would add both f

1

o f

2

and f

2

o f

1

, but the following onsisteny hek ono

would fail.

The proof that � is ompatible with w is similar.

Denote by � the instane of KBO order indued by (w;�).

1. For every tuple inequality hl

i

; L

i

i > hr

i

; R

i

i in R and every substitution � minimal for M we

have hl

i

�;L

i

�i � hr

i

�;R

i

�i. In the proof we will use the fat that w(e) is the minimal weight.

By step (M3), the inequality W (l

i

; r

i

) does not belong to D

=

(otherwise hl

i

; L

i

i > hr

i

; R

i

i

would be removed at one of steps (M4){(M8)). It follows from the de�nition of W that if

W (l

i

; r

i

) 2 D � D

=

, then jl

i

�



j > jr

i

�



j, where  is any onstant of the minimal weight. In

Lemma 6.8 we proved that jl

i

�j � jr

i

�j does not depend on �, whenever � is minimal for M .

Therefore, jl

i

�j > jr

i

�j for all substitutions � minimal for M .

2. The weight funtion w solves every inequality in D and w(e) oinides with the minimal

weight. This follows immediately from our onstrution, if we show that w(e) is the minimal

weight. Let us show that w

e

is the minimal weight. Indeed, sine D initially ontains the

inequalities w



� w

e

� 0 for all onstants , we have that w(e) is less than or equal to the

minimal weight. By step (T3), there exists a onstant  suh that w



�w

e

� 0 is in D

=

, hene

w() = w(e), and so w(e) is greater than or equal to the minimal weight.

3. If U = one, then there exists exatly one term of the minimal weight. Assume U = one.

We have to show that (i) there exists no unary funtion symbol f of weight 0 and (ii) there

exists exatly one onstant of the minimal weight. Let f be a unary funtion symbol. By our

onstrution, w

f

� 0 belongs to D . By step (T2) w

f

� 0 does not belong to D

=

, so by the

de�nition of w we have w(f) > 0. By our onstrution, w



� w

e

� 0 belongs to D for every

onstant . By step (T4), at most one of suh inequalities belongs to D

=

. But if w



�w

e

� 0

does not belong to D

=

, then w()�w(e) > 0 by the onstrution of w. Therefore, there exists

at most one onstant of the minimal weight.



15

4. If d 2 G (respetively d 2 L) for some onstant d, then d is the greatest (respetively least)

term among the terms of the minimal weight. We onsider the ase d 2 G , the ase d 2 L is

similar. But by step (T2) there is no unary funtion symbol f suh that w

f

� 0 belongs to

D

=

, therefore w(f) > 0 for all unary funtion symbols f . This implies that only onstants

may have the minimal weight. But by step (T1) and the de�nition of w, for all onstants 

of the minimal weight we have do , and hene also d� .

5. � extendso. This follows immediately from our onstrution.

2

6.4 Time omplexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear inequalities, and

a polynomial-time algorithm for transitive losure, we an prove the following lemma.

Lemma 6.20 The algorithm runs in time polynomial of the size of the system of rewrite rules.

Proof. Note that the algorithm makes polynomial number of steps. Indeed, initially the size of

R is O(n logn) of the size of the system of rewrite rules (and an even be made linear, if we avoid

renaming variables). Eah of the steps (M4){(M8) dereases the size of R. The algorithm an

make a non-deterministi hoie, but at most one, and the number of non-deterministi branhes

is bounded by the number of onstants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It remains to prove

that every step an be made in polynomial time of the size of a state and that the size of every

state is polynomial in the size of the input.

Solvability of D an be heked in polynomial time by Lemma 3.7. The system D

=

an be

built in polynomial time by the same lemma. The relationo an be extended to an order if and

only if the transitive losure o

0

of o is irreexive, i.e., there is no g suh that g o

0

g. The

transitive losure an be built in polynomial time. The hek for irreexivity an be obviously done

in polynomial time too. Therefore, every step an be performed in polynomial time of the size of

the state.

It remains to show that the size of S is bound by a polynomial. The only part of S that is

not immediately seen to be polynomial is D . However, it is not hard to argue that the number of

equations in S of the form W (l; r) is bound by the size of the input, and every equation obviously

has a polynomial size. It is also easy to see that the size of the remaining equations is polynomial

too. 2

6.5 A simple example

Let us onsider how the algorithm works on the rewrite rule g(x; a; b) ! g(b; b; a) of Example 2.6.

Initially, R onsists of one tuple inequality

hg(x; a; b)i > hg(b; b; a)i (5)

and D onsists of the following linear inequalities:

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0:
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At step (M1) we note that n(x; g(x; a; b)) = 1 > 0 = n(x; g(b; b; a)). Therefore, we add x to M .

At step (M3) we add the linear inequality w

e

�w

b

� 0 to D obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

�w

e

� 0; w

e

�w

b

� 0:

Now we ompute D

=

. It onsists of two equations w

b

� w

e

� 0 and w

e

� w

b

� 0, so we have to

apply one of the steps (M4){(M8), in this ase the appliable step is (M5). We replae (5) by

hx; a; bi > hb; b; ai: (6)

At the next iteration of step (M3) we should add to D the linear inequality w

e

� w

b

� 0, but this

linear inequality is already a member of D , and moreover a member of D

=

. So we proeed to step

(M7). At this step we set L = fbg and replae (6) by

ha; bi > hb; ai: (7)

Then at step (M2) we add w

a

� w

b

� 0 to D obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0; w

a

� w

b

� 0:

Now w

a

�w

b

� 0 does not belong to the degenerate subsystem of D , so we proeed to TERMINATE.

Steps (T1){(T4) hange neither D noro, so we terminate with suess.

Solutions extrated aording to Lemma 6.19 will be any pairs (w;�) suh that w(a) > w(b).

Note that these are not all solutions. There are also solutions suh that w(a) = w(b) and a � b.

However, if we try to �nd a desription of all solutions we annot any more guarantee that the

algorithm runs in polynomial time.

7 Orientability for trivial signatures

Consider a trivial signature whih onsists of a unary funtion symbol g and some onstants. Let

R be a system of rewrite rules in this signature. If some rule in R has the form t ! g

n

(x) suh

that x does not our in t, then the system is evidently not orientable. If R ontains no suh rule,

then R an be replaed by an equally orientable ground system, as the following lemma shows.

Lemma 7.1 Let R be a system of rewrite rules in a trivial signature � suh that no rule in R

ontains a variable ourring in its right-hand side but not the left-hand side. De�ne the ground

system R

0

obtained from R by the following transformations:

1. Replae every rule g

m

(x) ! g

n

(d) in R by all rules g

m

() ! g

n

(d) suh that  is a onstant

in �.

2. For every rule g

m

(x)! g

n

(x) in R, if m > n then remove this rule, otherwise terminate with

failure.

Then an instane of KBO � orients R if and only if it orients R

0

. 2

We leave the proof of this lemma to the reader. Note that the size of R

0

in the lemma is polynomial

in the sum of the sizes of R and �. Therefore, we an restrit ourselves to ground systems.

Moreover, we an assume that for every rule in R

0

the funtion symbol g never ours in both

left-hand side and right-hand side of R. Indeed, this an be ahieved by replaing every rewrite
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rule g(s) ! g(t) in R

0

by s ! t until g ours in at most one side of the rule. Evidently, we an

assume that R

0

ontains no trivial rules ! . So we obtain a system onsisting of rules g

n

()! d,

 ! g

n

(d), where n > 0, or  ! d suh that ; d are di�erent onstants. In other words, for every

rule l! r in R

0

the outermost symbol of l is di�erent from the outermost symbol of r.

In order to hek orientability of R

0

, onsider the system of homogeneous linear inequalities D

whih onsists of

1. the inequalities w



> 0 for all onstants  2 � and the inequality w

g

� 0;

2. for every rule l! r in R

0

the inequalities W (l; r) =

P

h2�

(n(h; l)� n(h; r))w

h

� 0.

Evidently, D an be built in time polynomial in the size of R

0

. Evidently, if D is unsatis�able, then

R

0

is not orientable. If D is satis�able, let D

=

be the degenerate subsystem of D . Let us build a

binary relationo on � as follows:

1. for every rule l! r in R

0

, if W (l; r) 2 D

=

, then we take the outermost symbols h

1

and h

2

of

l and r respetively and add h

1

o h

2

too;

2. if w

g

� 0 belongs to D

=

, then add go  too for all onstants  2 �.

We leave it to the reader to hek that R

0

is orientable if and only ifo an be extended to a linear

order. We an prove in the same way as before, that the hek for orientability of R

0

an be done

in polynomial time.

8 The problem of orientability by the KBO is P-omplete

In Setion 6.4 we have shown that the orientability problem an be solved in polynomial time. In

this setion we show that this problem is P-omplete, and moreover it is P-hard even for ground

rewrite systems. To this end, we redue the iruit value problem whih is known to be P-omplete

(see e.g., [Papadimitriou 1994℄), to the orientability problem. Our redution onsists of two steps:

1. we redue the problem of solving systems of linear inequalities AX � 0, X > 0, where A is

an integer matrix, to the orientability problem;

2. we redue the iruit value problem to solvability of suh systems.

In the systems of linear inequalities, we assume all oeÆients to be written in the unary notation.

Both redutions will be LOGSPACE.

Let AX � 0 be a system of linear inequalities and we are looking for stritly positive solutions

to it. For every variable x

i

in the system we introdue a unary funtion symbol f

i

. We onsider the

signature � onsisting of all suh symbols f

i

, two unary symbols g; h, and a onstant . We will

onstrut a ground rewrite rule system R whose orientability will be equivalent to the existene of

a solution to AX � 0;X > 0 as follows. First of all, R ontains the rewrite rule

gh! hgg:

An instane of KBO with parameters (w;�) orients this rule if and only if w(g) = 0 (and hene

also g � h). For eah linear inequality I in the system, we add to R a rewrite rule r(I), whih will

be demonstrated by an example (in order to avoid double indies). Suppose, for example, that the

inequality an be rewritten in the form
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a

1

x

1

+ : : :+ a

k

x

k

� a

k+1

x

k+1

+ : : :+ a

n

x

n

: (8)

where x

1

; : : : ; x

n

are di�erent variables and a

1

; : : : ; a

n

; b

1

; : : : ; b

n

are non-negative oeÆients. Then

r(I) has the form

ghf

a

1

1

� � � f

a

k

k

! hgf

a

k+1

k+1

� � � f

a

n

n

 (9)

Note that for every solution we must have w(f

i

) > 0 sine there may be at most one funtion

symbol of the weight 0. For every weight funtion w onsider the substitution s of integers to

variables suh that w(f

i

) = s(x

i

) and let � be an arbitrary preedene relation suh that g is

maximal w.r.t. �. We leave it to the reader to hek that (w;�) is a solution to R if and only if

s is a solution to AX � 0;X > 0.

It is not hard to argue that the redution of A to R is LOGSPACE, provided that the oeÆients

of the linear inequations are written in the unary notation.

Let us now desribe a redution of the iruit value problem to the problem of whether a given

system of linear integer inequalities has a positive solution. Consider a iruit with gates g

1

; : : : ; g

n

.

For eah gate g

i

we introdue a new numerial variable x

i

. We will also use an auxiliary numerial

variable y. We onstrut a system of linear integer inequalities D in suh a way that the iruit

has the value TRUE if and only if D has a positive solution. For eah gate g

i

we introdue a

system of numerial onstraints D

i

in the following way. If g

i

is a FALSE gate then D

i

is fx

i

= yg,

likewise if g

i

is a TRUE gate then D

i

is fx

i

= 2yg. If g

i

is a NOT gate with an input g

j

then D

i

is fx

i

= 3y � x

j

g. If g

i

is an AND gate with inputs g

j

and g

k

then D

i

is fy � x

i

� 2y, x

i

� x

j

,

x

i

� x

k

, x

j

+ x

k

� 2y � x

i

g. Let D

0

be the union of all D

i

for 1 � i � n. It is straightforward to

hek that for every positive solution to the system D

0

eah variable x

i

has the value of the variable

y or twie that value, moreover it has the value of y if and only if the gate g

i

has the value FALSE .

To omplete the onstrution we obtain D by adding to D

0

an equation x

n

= 2y. Note that the

oeÆients of D are small, so they an be onsidered as written in the unary notation.

We have shown how to redue the iruit value problem to the orientability problem. It is lear

that all redutions an be done by a logarithmi-spae algorithm.

9 Solving onstraints onsisting of a single inequality

In [Korovin and Voronkov 2000b℄ it is shown that the problem of solving the Knuth-Bendix ordering

onstraints is NP-omplete. Let us show that the problem of solving the Knuth-Bendix ordering

onstraints onsisting of a single inequality an be solved in polynomial time. Let us �x an instane

of KBO on ground terms, i.e., a preedene relation on the signature � and a weight funtion w. Our

problem is to deide for a given pair of terms s and t whether there exists a grounding substitution

� suh that s� � t�. Sine every instane of the Knuth-Bendix order is total on ground terms our

problem is equivalent to the following problem: for a given pair of terms t and s deide whether

for every grounding substitutions �, t� � s� holds. The algorithm we present is similar to the

algorithm for the orientability. The main di�erene is that there is no need to solve systems of

linear inequalities for this problem. Sine the order is given, we an use a simpler version of the

notion of state S= (R;M ), where R is a single tuple inequality and M is a set of variables. Instead

of tuple inequalities hLi > hRi we will onsider a new kind of tuple inequalities hLi � hRi with

a natural interpretation. Initially R onsists of the tuple inequality hti � hsi and M = ;. Let e

denote the onstant that is the minimal term w.r.t. �. Instead of using the inequality W (l; r), we
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will use the inequality W

0

(l; r) =

P

g2�

(n(g; l) � n(g; r))w(g) + (v

l

� v

r

)w(e) � 0, where v

l

and v

r

are the numbers of ourrenes of variables in l and r respetively. Let us present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the form hi � hi, then

terminate with suess. If R onsists of a tuple inequality hl; l

1

; : : : ; l

n

i � hl; r

1

; : : : ; r

n

i, replae it

by hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i.

MAIN. Now we an assume that R onsists of a tuple hl; Li � hr;Ri and the term l is di�erent

from the term r.

(M1) For all x suh that n(x; l) > n(x; r), add x to M .

(M2) If there exists a variable x 62 M suh that n(x; l) < n(x; r), then terminate with failure.

(M3) If W

0

(l; r) > 0 then terminate with suess. If W

0

(l; r) < 0 then terminate with failure.

Note that at this point we have W

0

(l; r) = 0.

(M4) If (l; r) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)) where g and h are distint, then do the

following. If g � h terminate with suess, otherwise terminate with failure.

(M5) If (l; r) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then replae hl; Li � hr;Ri by hs

1

; : : : ; s

n

; Li �

ht

1

; : : : ; t

n

; Ri.

(M6) If (l; r) has the form (x; y), where x and y are di�erent variables, do the following. (Note

that at this point x; y 2 M .) If there exists only one term of the minimal weight, then replae

hl; Li � hr;Ri by hLi � hRi. Otherwise terminate with failure.

(M7) If (l; r) has the form (x; t), where t is not a variable, do the following. If t is di�erent from e,

then terminate with failure. Otherwise, replae all ourrenes of x in L and R by e obtaining

L

0

and R

0

. Replae hl; Li � hr;Ri by hL

0

i � hR

0

i.

(M8) If (l; r) has the form (t; x), where t is not a variable, do the following. If t ontains x then

terminate with suess. Otherwise, if t is not the greatest term among the terms of the

minimal weight, then terminate with failure. Otherwise, replae all ourrenes of x in L

and R by t obtaining L

0

and R

0

, and replae hl; Li � hr;Ri by hL

0

i � hR

0

i. Note that this

step does not inrease the size of the tuple inequality sine t must be a onstant, when we

substitute it for x.

After this step repeat PREPROCESS.

The proof of orretness of eah step is almost the same as the proof of orretness for the

orresponding steps in the orientability algorithm, so we leave it to the reader. It is obvious that

the algorithm terminates in polynomial time, sine every step of the algorithm an be done in

polynomial time and after every step the size of R dereases.

10 Main results

Lemmas 6.1{6.19 guarantee that the orientability algorithm is orret. Lemma 6.20 implies that it

runs in polynomial time. Hene we obtain the following theorem.
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Theorem 10.1 The problem of the existene of an instane of KBO whih orients a given rewrite

rule systems an be solved in polynomial time. 2

From the redutions of Setion 8 we also obtain the following.

Theorem 10.2 The orientability problem for the KBO is P-omplete. Moreover, it is P-hard even

for ground rewrite systems. 2

Similarly, in Setion 9 we proved the following theorem.

Theorem 10.3 The problem of solving a given Knuth-Bendix ordering onstraint onsisting of a

single inequality an be solved in polynomial time. 2

The real-valued Knuth-Bendix order is in the same way as above, exept that the range of the

weight funtion is the set of non-negative real numbers. The real-valued KBO was introdued in

[Martin 1987℄. Note that in view of the results of Setion 3 on systems of homogeneous linear

inequalities (Lemmas 3.4 and 3.5) the algorithm is also sound and omplete for the real-valued

orders. Therefore, we have

Theorem 10.4 If a rewrite rule system is orientable using the real-valued KBO, then it is also

orientable using the integer-valued KBO. 2

It follows from this theorem that all our results formulated for the integer-valued KBO also

hold for the real-valued KBO.
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