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Abstra
t

We 
onsider two de
ision problems related to the Knuth-Bendix order (KBO). The �rst

problem is orientability : given a system of rewrite rules R, does there exist an instan
e of KBO

whi
h orients every ground instan
e of every rewrite rule in R. The se
ond problem is whether

a given instan
e of KBO orients every ground instan
e of a given rewrite rule. This problem


an also be reformulated as the problem of solving a single ordering 
onstraint for the KBO. We

prove that both problems 
an be solved in polynomial time. The polynomial-time algorithm for

orientability builds upon an algorithm for solving systems of homogeneous linear inequalities

over integers. The polynomial-time algorithm for solving a single ordering 
onstraint does not

need to solve systems of linear inequalities and 
an be run in time O(n

2

). We show that the

orientability problem is P-
omplete. Also we show that if a system is orientable using a real-

valued instan
e of KBO, then it is also orientable using an integer-valued instan
e of KBO.

Therefore, all our results hold both for the integer-valued and the real-valued KBO.

1 Introdu
tion

In this se
tion we give an informal overview of the results proved in this paper. The formal

de�nitions will be given in the next se
tion.

Let � be any order on ground terms and l ! r be a rewrite rule. We say that � orients

l ! r, if for every ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

. We write l � r if for every

ground instan
e l

0

! r

0

of l ! r we have l

0

� r

0

or l

0

= r

0

. There are situations where we want to


he
k if there exists a simpli�
ation order on ground terms that orients a given system of (possibly

non-ground) rewrite rules. We 
all this problem orientability. Orientability 
an be useful when

a theorem prover is run on a new problem for whi
h no suitable simpli�
ation order is known,

or when termination of a rewrite system is to be established automati
ally. For a re
ent survey,

see [Dershowitz and Plaisted 2001℄. We 
onsider the orientability problem for the Knuth-Bendix

order (in the sequel KBO) [Knuth and Bendix 1970℄ on ground terms. We give a polynomial-time

algorithm for 
he
king orientability by the KBO. A similar problem of orientability by the non-

ground version of the real-valued KBO was studied in [Di
k, Kalmus and Martin 1990℄ and an

algorithm for orientability was given. We prove that any rewrite rule system orientable by a real-

valued KBO is also orientable by an integer-valued KBO. This result also holds for the non-ground

version of the KBO 
onsidered in [Di
k et al. 1990℄. In our proofs we use some te
hniques of [Di
k

et al. 1990℄. We also show that some rewrite systems 
ould not be oriented by non-ground version

of the KBO, but 
an be oriented by our algorithm.

The se
ond problem we 
onsider is solving ordering 
onstraints 
onsisting of a single inequality,

over a given instan
e of the Knuth-Bendix order. If � is total on ground terms, then the problem

of 
he
king if � orients l ! r has relation to the problem of solving ordering 
onstraints over �.

Indeed, � does not orient l ! r if and only if there exists a ground instan
e l

0

! r

0

of l ! r
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su
h that r

0

� l

0

, i.e., if and only if the ordering 
onstraint r � l has a solution. This means

that any pro
edure for solving ordering 
onstraints 
onsisting of a single inequality 
an be used

for 
he
king whether a given system of rewrite rules is oriented by �, and vi
e versa. Using the

same te
hnique as for the orientability problem, we show that the problem of solving an ordering


onstraint 
onsisting of a single inequality for the KBO 
an be solved in polynomial time.

Algorithms for, and 
omplexity of, orientability problem for various versions of the re
ursive

path orders were 
onsidered in [Les
anne 1984, Detlefs and Forgaard 1985, Krishnamoorthy and

Narendran 1985℄. The problems of solving ordering 
onstraints for lexi
ographi
, re
ursive path

orders and for KBO are NP-
omplete [Comon 1990, Jouannaud and Okada 1991, Nieuwenhuis

1993, Narendran, Rusinowit
h and Verma 1999, Korovin and Voronkov 2001℄, see also [Korovin

and Voronkov 2000b℄. However, to 
he
k if � orients l ! r, it is suÆ
ient to 
he
k solvability of a

single ordering 
onstraint r � l. This problem is NP-
omplete for LPO [Comon and Treinen 1994℄,

and therefore the problem of 
he
king if an LPO orients a rewrite rule is 
oNP-
omplete.

2 Preliminaries

A signature is a �nite set of fun
tion symbols with asso
iated arities. In this paper � denotes an

arbitrary signature. Constants are fun
tion symbols of the arity 0. We assume that � 
ontains

at least one 
onstant. We denote variables by x; y; z, 
onstants by a; b; 
; d; e, fun
tion symbols by

f; g; h, and terms by l; r; s; t. Systems of rewrite rules and rewrite rules are de�ned as usual, see

e.g. [Baader and Nipkow 1998, Dershowitz and Plaisted 2001℄. An expression E (e.g. a term or a

rewrite rule) is 
alled ground if no variable o

urs in E. Denote the set of natural numbers by N.

The Knuth-Bendix order is a family of orders parametrized by two parameters: a weight fun
tion

and a pre
eden
e relation.

Definition 2.1 (weight fun
tion) We 
all a weight fun
tion on � any fun
tion w : � ! N su
h

that (i) w(a) > 0 for every 
onstant a 2 �, (ii) there exist at most one unary fun
tion symbol

f 2 � su
h that w(f) = 0. Given a weight fun
tion w, we 
all w(g) the weight of g. The weight of

any ground term t, denoted jtj, is de�ned as follows: for every 
onstant 
 we have j
j = w(
) and

for every fun
tion symbol g of a positive arity jg(t

1

; : : : ; t

n

)j = w(g) + jt

1

j+ : : : + jt

n

j.

Definition 2.2 A pre
eden
e relation on � is any total order � on �. A pre
eden
e relation �

is said to be 
ompatible with a weight fun
tion w if for every unary fun
tion symbol f , if w(f) = 0,

then f is the greatest element w.r.t. �.

Definition 2.3 (Knuth-Bendix order) Let w be a weight fun
tion on � and � a pre
eden
e

relation on � 
ompatible with w. The instan
e of the Knuth-Bendix order indu
ed by (w;�) is

the binary relation � on the set of ground terms of � de�ned as follows. For all ground terms

t = g(t

1

; : : : ; t

n

) and s = h(s

1

; : : : ; s

k

) we have t � s if one of the following 
onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and t

i

� s

i

.

The 
ompatibility 
ondition ensures that every instan
e of the Knuth-Bendix order is a simpli�
a-

tion order total on ground terms.



3

In the sequel we will often refer to the least and the greatest terms among the terms of the

minimal weight for a given instan
e of KBO. It is easy to see that every term of the minimal weight

is either a 
onstant of the minimal weight, or a term f

n

(
), where 
 is a 
onstant of the minimal

weight, and w(f) = 0. Therefore, the least term of the minimal weight is always the 
onstant of

the minimal weight whi
h is the least among all su
h 
onstants w.r.t. �. This 
onstant is also the

least term w.r.t. �.

The greatest term of the minimal weight exists if and only if there is no unary fun
tion symbol

of the weight 0. In this 
ase, this term is the 
onstant of the minimal weight whi
h is the greatest

among su
h 
onstants w.r.t. �.

Definition 2.4 (substitution) A substitution is a mapping from a set of variables to the set of

terms. A substitution � is grounding for an expression E (i.e., term, rewrite rule et
.) if for every

variable x o

urring in E the term �(x) is ground. We denote by E� the expression obtained from E

by repla
ing in it every variable x by �(x). A ground instan
e of an expression E is any expression

E� whi
h is ground.

The following de�nition is 
entral to this paper.

Definition 2.5 (orientability) An instan
e � of KBO orients a rewrite rule l ! r if for every

ground instan
e l

0

! r

0

of l! r we have l

0

� r

0

. An instan
e of KBO orients a system R of rewrite

rules if it orients every rewrite rule in R.

The de
idability of the orientability problem for the KBO does not follow immediately from the

de
idability of the KBO ordering 
onstraints [Korovin and Voronkov 2001℄, as it is in the 
ase of the

re
ursive path ordering. For a given �nite signature, there exists only a �nite number of instan
es

of the re
ursive path ordering. But there exists an in�nite number of instan
es of the KBO, sin
e

the weight fun
tion is not restri
ted.

We de�ne orientability in terms of ground instan
es of rewrite rules. One 
an also de�ne

orientability using the non-ground version of the KBO as originally de�ned in [Knuth and Bendix

1970℄. But then we obtain a weaker notion (fewer systems 
an be oriented) as the following example

from [Korovin and Voronkov 2000a℄ shows.

Example 2.6 Consider the following rewrite rule:

g(x; a; b) ! g(b; b; a): (1)

For any 
hoi
e of the weight fun
tion w and order �, g(x; a; b) � g(b; b; a) does not hold for the

original Knuth-Bendix order with variables. However, rewrite rule (1) 
an be oriented by any

instan
e of KBO su
h that w(a) � w(b) and a� b.

In fa
t the order based on all ground instan
es is the greatest simpli�
ation order extending the

instan
e of KBO from ground terms to non-ground terms.

3 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous linear inequalities.

The de�nitions related to systems of linear inequalities 
an be found in standard textbooks (e.g.,

[S
hrijver 1998℄). We will denote 
olumn ve
tors of variables by X, integer or real ve
tors by V;W ,

integer or real matri
es by A;B. Column ve
tors 
onsisting of 0's will be denoted by 0. The set of

real numbers is denoted by R, and the set of non-negative real numbers by R

+

.
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Definition 3.1 (homogeneous linear inequalities) A homogeneous linear inequality has the form

either V X � 0 or V X > 0. A system of homogeneous linear inequalities is a �nite set of homoge-

neous linear inequalities.

Solutions (real or integer) to systems of homogeneous linear inequalities are de�ned as usual.

We will use the following fundamental property of system of homogeneous linear inequalities:

Lemma 3.2 Let AX � 0 be a system of homogeneous linear inequalities, where A is an integer

matrix. Then there exists a �nite number of integer ve
tors V

1

; : : : ; V

n

su
h that the set of solutions

to AX � 0 is

fr

1

V

1

+ : : :+ r

n

V

n

j r

1

; : : : ; r

n

2 R

+

g: (2)

The proof 
an be found in e.g., [S
hrijver 1998℄.

The following lemma was proved in [Martin 1987℄ for the systems of linear homogeneous in-

equalities over the real numbers. We will give a simpler proof of it here.

Lemma 3.3 Let AX � 0 be a system of homogeneous linear inequalities where A is an integer

matrix and Sol be the set of all real solutions to the system. Then the system 
an be split into two

disjoint subsystems BX � 0 and CX � 0 su
h that

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol su
h that CV > 0.

Proof. By Lemma 3.2 we 
an �nd integer ve
tors V

1

; : : : ; V

n

su
h that the set Sol is (2). We

de�ne BX � 0 to be the system 
onsisting of all inequalities WX � 0 in the system su
h that

WV

i

= 0 for all i = 1; : : : ; n; then property 1 is obvious.

Note that the system CX � 0 
onsists of the inequalities WX � 0 su
h that for some V

i

we

have WV

i

> 0. Take V to be V

1

+ : : : + V

n

, then it is not hard to argue that CV > 0. 2

Let D be a system of homogeneous linear inequalities with a real matrix. We will 
all the subsystem

BX � 0 of D the degenerate subsystem if the following holds. Denote by C the matrix of the


omplement to BX � 0 in D and by Sol the set of all real solutions to D . Then

1. BV = 0 for every V 2 Sol.

2. If C is non-empty then there exists a solution V 2 Sol su
h that CV > 0.

For every system D of homogeneous linear inequalities the degenerate subsystem of D will be

denoted by D

=

. Note that the degenerate subsystem is de�ned for arbitrary systems, not only

those of the form AX � 0.

Let us now prove another key property of integer systems of homogeneous linear inequalities:

the existen
e of a real solution implies the existen
e of an integer solution.

Lemma 3.4 Let D be a system of homogeneous linear inequalities with an integer matrix. Let V

be a real solution to this system and for some subsystem of D with the matrix B we have BV > 0.

Then there exists an integer solution V

0

to D for whi
h we also have BV

0

> 0.
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Proof. Let D

0

be obtained from D by repla
ement of all stri
t equalities WX > 0 by their non-

stri
t versions WX � 0. Take ve
tors V

1

; : : : ; V

n

so that the set of solutions to D

0

is (2). Evidently,

for every inequality WX � 0 in BV > 0 there exists some V

i

su
h that WV

i

> 0. De�ne V

0

as V

1

+ : : : + V

n

, then it is not hard to argue that BV

0

> 0. We 
laim that V

0

is a solution to

D . Assume the 
onverse, then there exists an inequality WX > 0 in D su
h that WV

0

= 0. But

WV

0

= 0 implies that WV

i

= 0 for all i, so D has no real solution, 
ontradi
tion. 2

The following lemma follows from Lemmas 3.3 and 3.4.

Lemma 3.5 Let D be a system of homogeneous linear inequalities with an integer matrix and its

degenerate subsystem is di�erent from D . Let B be the matrix of the 
omplement of the degenerate

subsystem. Then there exists an integer solution V to D su
h that BV > 0. 2

The following result is well-known, see e.g., [S
hrijver 1998℄.

Lemma 3.6 The existen
e of a real solution to a system of linear inequalities 
an be de
ided in

polynomial time. 2

This lemma and Lemma 3.4 imply the following key result.

Lemma 3.7 (i) The existen
e of an integer solution to an integer system of homogeneous linear

inequalities 
an be de
ided in polynomial time. (ii) If an integer system D of homogeneous linear

inequalities has a solution, then its degenerate subsystem D

=


an be found in polynomial time. 2

4 States

In Se
tion 6 we will present an algorithm for orientability by the Knuth-Bendix order. This algo-

rithm will work on states whi
h generalize systems of rewrite rules in several ways. A state will use

a generalization of rewrite rules to tuples of terms and some information about possible solutions.

Let � be any order on ground terms. We extend it lexi
ographi
ally to an order on tuples of

ground terms as follows: we write hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i if for some i 2 f1; : : : ; ng we have l

1

=

r

1

; : : : ; l

i�1

= r

i�1

and l

i

� r

i

. We 
all a tuple inequality any expression hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

The length of this tuple inequality is n.

In the sequel we assume that � is a �xed signature and e is a 
onstant not belonging to �. The


onstant e will play the role of a temporary substitute for a 
onstant of the minimal weight. We

will present the algorithm for orienting a system of rewrite rules as a sequen
e of state 
hanges.

We 
all a state a tuple (R;M ; D ;U; G ;L ;o), where

1. R is a set of tuple inequalities hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i, su
h that every two di�erent tuple

inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms of the minimal

weight.

3. D is a system of homogeneous linear inequalities over the variables fw

g

j g 2 � [ fegg. This

system denotes 
onstraints on the weight fun
tion 
olle
ted so far, and w

e

denotes the minimal

weight of terms.
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4. U is one of the following values one or any. The value one signals that there exists exa
tly one

term of the minimal weight, while any means that no 
onstraints on the number of elements

of the minimal weight have been imposed.

5. G and L are sets of 
onstants, ea
h of them 
ontains at most one element. If d 2 G (respe
-

tively d 2 L), this signals that d is the greatest (respe
tively least) term among the terms of

the minimal weight.

6. o is a binary relation on �. This relation denotes the subset of the pre
eden
e relation


omputed so far.

Let w be a weight fun
tion on �, � a pre
eden
e relation on � 
ompatible with w, and � the

instan
e of the Knuth-Bendix order indu
ed by (w;�). A substitution � grounding for a set of

variables X is said to be minimal for X if for every variable x 2 X the term �(x) is of the minimal

weight. We extend w to e by de�ning w(e) to be the minimal weight of a 
onstant of �.

We say that the pair (w;�) is a solution to a state (R;M ; D ;U; G ; L ;o) if

1. For every tuple inequality hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i in R and every substitution � grounding

for this tuple inequality and minimal for M we have hl

1

�; : : : ; l

n

�i � hr

1

�; : : : ; r

n

�i.

2. The weight fun
tion w solves every inequality in D in the following sense: repla
ement of

ea
h w

g

by w(g) gives a tautology. In addition, w(e) 
oin
ides with the minimal weight w(
)

of 
onstants 
 2 �.

3. If U = one, then there exists exa
tly one term of the minimal weight.

4. If d 2 G (respe
tively d 2 L) for some 
onstant d, then d is the greatest (respe
tively least)

term among the terms of the minimal weight. Note that if d is the greatest term of the

minimal weight, then the signature 
ontains no unary fun
tion symbol of the weight 0.

5. � extendso.

We will now show how to redu
e the orientability problem for the systems of rewrite rules to the

solvability problem for states.

Let R be a system of rewrite rules su
h that every two di�erent rules in R have disjoint variables.

Denote by S

R

the state (R;M ; D ;U; G ; L ;o) de�ned as follows.

1. R 
onsists of all tuple inequalities hli > hri su
h that l ! r belongs to R.

2. M = ;.

3. D 
onsists of (a) all inequalities w

g

� 0, where g 2 � is a non-
onstant; (b) the inequality

w

e

> 0 and all inequalities w

d

� w

e

� 0, where d is a 
onstant of �.

4. U = any.

5. G = L = ;.

6. o is the empty binary relation on �.

Lemma 4.1 Let w be a weight fun
tion, � a pre
eden
e relation on � 
ompatible with w, and �

the instan
e of KBO indu
ed by (w;�). Then � orients R if and only if (w;�) is a solution to

S

R

. 2

The proof is straightforward.
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5 Trivial signatures

For te
hni
al reasons, we will distinguish two kinds of signatures. Essentially, our algorithm depends

on whether the weights of terms are restri
ted or not. For the so-
alled non-trivial signatures,

the weights are not restri
ted. When we present the orientability algorithm for the non-trivial

signatures, we will use the fa
t that terms of suÆ
iently large weights always exist. For the trivial

signatures we will present a simpler orientability algorithm in Se
tion 7.

A signature is 
alled trivial if it 
ontains no fun
tion symbols of arity � 2, and at most one

unary fun
tion symbol. Note that a signature is non-trivial if and only if it 
ontains either a

fun
tion symbol of arity � 2 or at least two fun
tion symbols of arity 1.

Lemma 5.1 Let � be a non-trivial signature and w be a weight fun
tion for �. Then for every

integer m there exists a ground term of the signature � su
h that jtj > m.

Proof. It is enough to show how for every term t build a term of the weight greater than jtj.

Note that the weight of any term is positive. If � 
ontains a fun
tion symbol g of arity n � 2, then

jg(t; : : : ; t)j = w(g) +n � jtj > jtj. If � 
ontains two unary fun
tion symbols, then for at least one of

them g we have w(g) > 0. Then jg(t)j = w(g) + jtj > jtj. 2

6 An algorithm for orientability in the 
ase of non-trivial signa-

tures

In this se
tion we only 
onsider non-trivial signatures. An algorithm for trivial signatures is given

in Se
tion 7. The algorithm given in this se
tion will be illustrated below in Se
tion 6.5 on the

rewrite rule of Example 2.6.

Our algorithm works as follows. Given a system R of rewrite rules, we build the initial state

S

R

= (R;M ; D ;U; G ; L ;o). Then we repeatedly transform (R;M ; D ;U; G ; L ;o) as des
ribed

below. We 
all the size of the state the total number of o

urren
es of fun
tion symbols and

variables in R. Every transformation step will terminate with either su

ess or failure, or else

de
rease the size of R.

At ea
h step we assume that R 
onsists of k tuple inequalities

hl

1

; L

1

i > hr

1

; R

1

i;

� � �

hl

k

; L

k

i > hr

k

; R

k

i;

(3)

su
h that all of the L

i

; R

i

are tuples of terms.

We will label parts of the algorithm, these labels will be used in the proof of its soundness.

The algorithm 
an make a non-deterministi
 
hoi
e, but at most on
e, and the number of non-

deterministi
 bran
hes is bounded by the number of 
onstants in �.

When the set D of linear inequalities 
hanges, we assume that we 
he
k the new set for satis�-

ability, and terminate with failure if it is unsatis�able. Likewise, when we 
hangeo, we 
he
k if

it 
an be extended to an order and terminate with failure if it 
annot.

6.1 The algorithm

The algorithm works as follows. Every step 
onsists of a number of state transformations, beginning

with PREPROCESS de�ned below. During the algorithm, we will perform two kinds of 
onsisten
y
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he
ks:

� The 
onsisten
y 
he
k on D is the 
he
k if D has a solution. If it does not, we terminate with

failure.

� The 
onsisten
y 
he
k ono is the 
he
k ifo 
an be extended to an order, i.e., the transitive


losure � ofo is irre
exive, i.e., for no g 2 � we have g � g. Ifo 
annot be extended to

an order, we terminate with failure.

It is not hard to argue that both kinds of 
onsisten
y 
he
ks 
an be performed in polynomial

time. The 
onsisten
y 
he
k on D is polynomial by Lemma 3.7. The 
onsisten
y 
he
k ono is

polynomial sin
e the transitive 
losure of a binary relation 
an be 
omputed in polynomial time,

see e.g. [Cormen, Leiserson and Rivest 1991℄.

PREPROCESS. Do the following transformations while possible. If any tuple inequality in R has

length 0, remove it from R. If R 
ontains a tuple inequality hl

1

; : : : ; l

n

i > hl

1

; : : : ; l

n

i, terminate

with failure. Otherwise, if R 
ontains a tuple inequality hl; l

1

; : : : ; l

n

i > hl; r

1

; : : : ; r

n

i, repla
e it by

hl

1

; : : : ; l

n

i > hr

1

; : : : ; r

n

i.

If R be
omes empty, pro
eed to TERMINATE, otherwise 
ontinue with MAIN.

MAIN. Now we 
an assume that in (3) ea
h l

i

is a term di�erent from the 
orresponding term r

i

.

For every variable x and term t denote by n(x; t) the number of o

urren
es of x in t. For example,

n(x; g(x; h(y; x))) = 2. Likewise, for every fun
tion symbol g 2 � and term t denote by n(g; t) the

number of o

urren
es of g in t. For example, n(h; g(x; h(y; x))) = 1.

(M1) For all x and i su
h that n(x; l

i

) > n(x; r

i

), add x to M .

(M2) If for some i there exists a variable x 62 M su
h that n(x; l

i

) < n(x; r

i

), then terminate with

failure.

For every pair of terms l; r, denote by W (l; r) the linear inequality obtained as follows. Let v

l

and v

r

be the numbers of o

urren
es of variables in l and r respe
tively. Then

W (l; r) =

X

g2�

(n(g; l) � n(g; r))w

g

+ (v

l

� v

r

)w

e

� 0: (4)

For example, if l = h(x; f(y)) and r = f(g(x; g(x; y))), then

W (l; r) = w

h

� 2 � w

g

� w

e

� 0:

(M3) Add to D all the linear inequalities W (l

i

; r

i

) for all i and perform the 
onsisten
y 
he
k on

D .

Now 
ompute D

=

. If D

=


ontains none of the inequalities W (l

i

; r

i

), pro
eed to TERMINATE.

Otherwise, for all i su
h that W (l

i

; r

i

) 2 D

=

apply the appli
able 
ase below, depending on the

form of l

i

and r

i

.

(M4) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)), where g is di�erent from h, then extend

o by adding go h and remove the tuple inequality hl

i

; L

i

i > hr

i

; R

i

i from R. Perform the


onsisten
y 
he
k ono.
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(M5) If (l

i

; r

i

) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then repla
e hl

i

; L

i

i > hr

i

; R

i

i by hs

1

; : : : ; s

n

; L

i

i >

ht

1

; : : : ; t

n

; R

i

i.

(M6) If (l

i

; r

i

) has the form (x; y), where x and y are di�erent variables, do the following. (Note

that at this point x; y 2 M .) If L

i

is empty, then terminate with failure. Otherwise, set U to

one and repla
e hl

i

; L

i

i > hr

i

; R

i

i by hL

i

i > hR

i

i.

(M7) If (l

i

; r

i

) has the form (x; t), where t is not a variable, do the following. If t is not a 
onstant,

or L

i

is empty, then terminate with failure. So assume that t is a 
onstant 
. If L = fdg for

some d di�erent from 
, then terminate with failure. Otherwise, set L to f
g. Repla
e in L

i

and R

i

the variable x by 
, obtaining L

0

i

and R

0

i

respe
tively, and then repla
e hl

i

; L

i

i > hr

i

; R

i

i

by hL

0

i

i > hR

0

i

i.

(M8) If (l

i

; r

i

) has the form (t; x), where t is not a variable, do the following. If t 
ontains x,

remove hl

i

; L

i

i > hr

i

; R

i

i from R. Otherwise, if t is a non-
onstant or L

i

is empty, terminate

with failure. (Note that at this point x 2 M and W (t; x) 2 D

=

.) Let now t be a 
onstant 
.

If G = fdg for some d di�erent from 
, then terminate with failure. Otherwise, set G to f
g.

Repla
e in L

i

and R

i

the variable x by 
, obtaining L

0

i

and R

0

i

respe
tively, and then repla
e

hl

i

; L

i

i > hr

i

; R

i

i by hL

0

i

i > hR

0

i

i.

After this step repeat PREPROCESS.

TERMINATE. Let (R; M ; D ;U; G ;L ;o) be the 
urrent state. Do the following.

(T1) If d 2 G , then for all 
onstants 
 di�erent from d su
h that w




�w

e

� 0 belongs to D

=

extend

o by adding do 
. Likewise, if 
 2 L, then for all 
onstants d di�erent from 
 su
h that

w

d

� w

e

� 0 2 D

=

extendo by adding do 
. Perform the 
onsisten
y 
he
k ono.

(T2) For all f in � do the following. If f is a unary fun
tion symbol and w

f

� 0 belongs to D

=

,

then extendo by adding fo h for all h 2 ��ffg. Perform the 
onsisten
y 
he
k ono.

If U = one or G 6= ;, then terminate with failure.

(T3) If there exists no 
onstant 
 su
h that w




�w

e

� 0 is in D

=

, then non-deterministi
ally 
hoose

a 
onstant 
 2 �, add w

e

� w




� 0 to D , perform the 
onsisten
y 
he
k on D and repeat

PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one 
onstant 
 su
h that

w




� w

e

� 0 belongs to D

=

.

(T5) Terminate with su

ess.

We will show how to build a solution at step (T5) below in Lemma 6.19.

6.2 Corre
tness

In this se
tion we prove 
orre
tness of the algorithm. In Se
tion 6.3 we show how to �nd a solution

when the algorithm terminates with su

ess. The 
orre
tness will follow from a series of lemmas

asserting that the transformation steps performed by the algorithm preserve the set of solutions. We

will use notation and terminology of the algorithm. We say that a step of the algorithm is 
orre
t

if the set of solutions to the state before this step 
oin
ides with the set of solutions after the step.
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tness

When we prove 
orre
tness of a parti
ular step, we will always denote by S= (R;M ; D ;U; G ;L ;o)

the state before this step, and by S

0

the state after this step. When we use substitutions in the

proof, we always assume that the substitutions are grounding for the relevant terms.

The following two lemmas 
an be proved by a straightforward appli
ation of the de�nition of

solution to a state.

Lemma 6.1 (
onsisten
y 
he
k) If 
onsisten
y 
he
k on D or ono terminates with failure, then

S has no solution. 2

Lemma 6.2 Step PREPROCESS is 
orre
t. 2

Let us now analyze MAIN. For every weight fun
tion w and pre
eden
e relation � 
ompatible

with w we 
all a 
ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�) any substitution � minimal for

M su
h that hr

i

�;R

i

�i � hl

i

�;L

i

�i for the order � indu
ed by (w;�).

Denote by S

�i

the state obtained from S by removal of the ith tuple inequality hl

i

; L

i

i > hr

i

; R

i

i

from R. The following lemma follows immediately from the de�nition of solution.

Lemma 6.3 (
ounterexample) If for every solution (w;�) to S

�i

there exists a 
ounterexample

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�), then S has no solution. If for every solution (w;�) to S

�i

there exists no 
ounterexample to the tuple inequality hl

i

; L

i

i > hr

i

; R

i

i, then removing this tuple

inequality from R does not 
hange the set of solutions to S. 2

This lemma means that we 
an 
hange hl

i

; L

i

i > hr

i

; R

i

i into a di�erent tuple inequality or


hange M , if we 
an prove that this 
hange does not in
uen
e the existen
e of a 
ounterexample.

Let � be a substitution, x a variable and t a term. Denote by �

t

x

the substitution de�ned by

�

t

x

(y) =

�

�(y); if y 6= x;

t; if y = x:

Lemma 6.4 Let w be a weight fun
tion on � and � a pre
eden
e relation on � 
ompatible with w.

Suppose also that for some x and i we have n(x; l

i

) > n(x; r

i

) and there exists a 
ounterexample �

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t. (w;�). Then there exists a 
ounterexample �

0

to hl

i

; L

i

i > hr

i

; R

i

i w.r.t.

(w;�) minimal for fxg.

Proof. Suppose that � is not minimal for fxg. Denote by 
 a minimal 
onstant w.r.t. w and by t

the term x�. Sin
e � is not minimal for fxg, we have jtj > j
j. Consider the substitution �




x

. Sin
e

� is a 
ounterexample, we have jr

i

�j � jl

i

�j. We have

jl

i

�




x

j = jl

i

�j � n(x; l

i

) � (jtj � j
j);

jr

i

�




x

j = jr

i

�j � n(x; r

i

) � (jtj � j
j):

Then

jr

i

�




x

j = jr

i

�j � n(x; r

i

) � (jtj � j
j) � jl

i

�j � n(x; r

i

) � (jtj � j
j)

> jl

i

�j � n(x; l

i

) � (jtj � j
j) = jl

i

�




x

j:

Therefore, jr

i

�




x

j > jl

i

�




x

j, and so �




x

is a 
ounterexample too. 2

One 
an immediately see that this lemma implies 
orre
tness of step (M1).

Lemma 6.5 Step (M1) is 
orre
t.
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Proof. Evidently, every solution to S is also a solution to S

0

. But by Lemma 6.4, every 
ounterex-

ample to S 
an be turned into a 
ounterexample to S

0

, so every solution to S

0

is also a solution to

S. 2

Let us now turn to step (M2).

Lemma 6.6 (M2) If for some i and x 62 M we have n(x; l

i

) < n(x; r

i

), then S has no solution.

Therefore, step (M2) is 
orre
t.

Proof. We show that for every (w;�) there exists a 
ounterexample to hl

i

; L

i

i > hr

i

; R

i

i w.r.t.

(w;�). Let � be any substitution grounding for this tuple inequality. Take any term t and 
onsider

the substitution �

t

x

. We have

jr

i

�

t

x

j � jl

i

�

t

x

j = jr

i

�j � jl

i

�j+ (n(x; r

i

)� n(x; l

i

)) � (jtj � jx�j):

By Lemma 5.1 there exist terms of an arbitrarily large weight, so for a term t of a large enough

weight we have jr

i

�

t

x

j > jl

i

�

t

x

j, and so �

t

x

is a 
ounterexample to hl

i

; L

i

i > hr

i

; R

i

i.

Corre
tness of (M2) is straightforward. 2

Note that after step (M2) for all i and x 62 M we have n(x; l

i

) = n(x; r

i

).

Denote by �




the substitution su
h that �




(x) = 
 for every variable x.

Lemma 6.7 (M3) Let for all i and x 62 M we have n(x; l

i

) = n(x; r

i

). Every solution (w;�) to S

is also a solution to W (l

i

; r

i

). Therefore, step (M3) is 
orre
t.

Proof. Let 
 be a 
onstant of the minimal weight. Consider the substitution �




. Note that this

substitution is minimal for M . It follows from the de�nition of W that (w;�) is a solution to

W (l

i

; r

i

) if and only if jl

i

�




j � jr

i

�




j. But jl

i

�




j � jr

i

�




j is a straightforward 
onsequen
e of the

de�nition of solutions to tuple inequalities.

Corre
tness of (M3) is straightforward. 2

Lemma 6.8 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2 D

=

. Then for every

solution to S

�i

and every substitution � minimal for M we have jl

i

�j = jr

i

�j.

Proof. Using the fa
t that n(x; l

i

) = n(x; r

i

) for all x 62 M , it is not hard to argue that jl

i

�j� jr

i

�j

does not depend on �, whenever � is minimal for M .

Let 
 be a 
onstant of the minimal weight. It follows from the de�nition of W that ifW (l

i

; r

i

) 2

D

=

, then for every solution to D (and so for every solution to S

�i

) we have jl

i

�




j = jr

i

�




j. Therefore,

jl

i

�j = jr

i

�j for all substitutions � minimal for M . 2

The proof of 
orre
tness of steps (M4){(M8) will use this lemma in the following way. A pair

(w;�) is a solution to S if and only if it is a solution to S

�i

and a solution to hl

i

; L

i

i > hr

i

; R

i

i.

Equivalently, (w;�) is a solution to S if and only if it is a solution to S

�i

and for every substitution

� minimal for M we have hl

i

�;L

i

�i � hr

i

�;R

i

�i. But by Lemma 6.8 we have jl

i

�j = jr

i

�j, so

hl

i

�;L

i

�i � hr

i

�;R

i

�i must be satis�ed by either 
ondition 2 or 
ondition 3 of the de�nition of the

KBO order.

This 
onsideration 
an be summarized as follows.
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tness

Lemma 6.9 Let for all x 62 M we have n(x; l

i

) = n(x; r

i

). Let also W (l

i

; r

i

) 2 D

=

. Then a pair

(w;�) is a solution to S if and only if it is a solution to S

�i

and for every substitution � minimal

for M the following holds. Let l

i

� = g(t

1

; : : : ; t

n

) and r

i

� = h(s

1

; : : : ; s

p

). Then at least one of the

following 
onditions holds

1. l

i

� = r

i

� and L

i

� � R

i

�; or

2. g � h; or

3. g = h and for some 1 � i � n we have t

1

� = s

1

�; : : : ; t

i�1

� = s

i�1

� and t

i

� � s

i

�. 2

Lemma 6.10 Step (M4) is 
orre
t.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= h(t

1

; : : : ; t

p

) for g 6= h. Take any substitution �

minimal for M . Obviously, l

i

� = r

i

� is impossible, so hl

i

; L

i

i� � hr

i

; R

i

i� if and only if l

i

� � r

i

�.

By Lemma 6.9 this holds if and only if g � h, so step (M4) is 
orre
t. 2

Lemma 6.11 Step (M5) is 
orre
t.

Proof. We know that l

i

= g(s

1

; : : : ; s

n

) and r

i

= g(t

1

; : : : ; t

n

). Note that due to PREPRO-

CESS, l

i

6= r

i

, so n � 1. It follows from Lemma 6.9 that hl

i

; L

i

i� � hr

i

; R

i

i� if and only if

hs

1

; : : : ; s

n

; L

i

i� � ht

1

; : : : ; t

n

; R

i

i�, so step (M5) is 
orre
t. 2

Lemma 6.12 Step (M6) is 
orre
t.

Proof. We know that l

i

= x and r

i

= y, where x; y are di�erent variables. Note that if L

i

is empty,

then the substitution �




, where 
 is of the minimal weight, is a 
ounterexample to hx;L

i

i > hy;R

i

i.

So assume that L

i

is non-empty and 
onsider two 
ases.

1. If there exist at least two terms s; t of the minimal weight, then there exists a 
ounterexample

to hx;L

i

i > hy;R

i

i. Indeed, if s � t, then y� � x� for every � su
h that �(x) = t and

�(y) = s.

2. If there exists exa
tly one term t of the minimal weight, then x� = y� for every � minimal

for M . Therefore, hx;L

i

i > hy;R

i

i is equivalent to hL

i

i > hR

i

i.

In either 
ase it is not hard to argue that step (M6) is 
orre
t. 2

Lemma 6.13 Step (M7) is 
orre
t.

Proof. We know that l

i

= x and r

i

= t. Let 
 be the least 
onstant in the signature. If

t 6= 
, then �




is obviously a 
ounterexample to hx;L

i

i > ht; R

i

i. Otherwise t = 
, then for every


ounterexample � we have �(x) = 
. In either 
ase it is not hard to argue that step (M7) is 
orre
t.

2

Lemma 6.14 Step (M8) is 
orre
t.
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Proof. We know that l

i

= t and r

i

= x. Note that t 6= x due to the PREPROCESS step, so if

x o

urs in t we have t� � x� for all �. Assume now that x does not o

ur in t. Then x 2 M .

Consider two 
ases.

1. t is a non-
onstant. For every substitution � minimal for M we have jt�j = jx�j, hen
e t� is

a non-
onstant term of the minimal weight. This implies that the signature 
ontains a unary

fun
tion symbol f of the weight 0. Take any substitution �. It is not hard to argue that

�

f(t)�

x

is a 
ounterexample to ht; L

i

i > hx;R

i

i.

2. t is a 
onstant 
. Let d be the greatest 
onstant in the signature among the 
onstants of

the minimal weight. If d 6= 
, then �

d

is obviously a 
ounterexample to h
; L

i

i > hx;R

i

i.

Otherwise d = 
, then for every 
ounterexample � we have �(x) = 
.

In either 
ase it is not hard to argue that step (M8) is 
orre
t. 2

Let us now analyze steps TERMINATE. Note that for every 
onstant 
 the inequality w




�w

e

� 0

belongs to D and for every fun
tion symbol g the inequality w

g

� 0 belongs to D too.

Lemma 6.15 Step (T1) is 
orre
t.

Proof. Suppose d 2 G , 
 6= d, and w




� w

e

� 0 belongs to D

=

. Then for every solution to S we

have w(
) = w(e), and therefore 
 is a 
onstant of the minimal weight. But sin
e for every solution

d is the greatest 
onstant among those having the minimal weight, we must have d� 
.

The 
ase 
 2 L is similar. 2

Lemma 6.16 Step (T2) is 
orre
t.

Proof. If f is a unary fun
tion symbol and w

f

� 0 belongs to D

=

, then for every solution

w(f) = 0. By the de�nition of the KBO we must have f � g for all g 2 � � ffg. But then (i)

there exists an in�nite number of terms of the minimal weight and (ii) a 
onstant d 2 G 
annot be

the greatest term of the minimal weight (sin
e for example f(d) � d and jf(d)j = jdj). 2

Step (T3) makes a non-deterministi
 
hoi
e, whi
h 
an result in several states S

1

; : : : ;S

n

. We

say that su
h a step is 
orre
t if the set of solutions to S is the union of the sets of solutions to

S

1

; : : : ;S

n

.

Lemma 6.17 Step (T3) is 
orre
t.

Proof. Note that w is a solution to w

e

� w




� 0 if and only if w(
) is the minimal weight, so

addition of w

e

� w




� 0 to D amounts to stating that 
 has the minimal weight. Evidently, for

every solution, there must be a 
onstant 
 of the minimal weight, so the step is 
orre
t. 2

Lemma 6.18 Step (T4) is 
orre
t.

Proof. Suppose U = one, then for every solution there exists a unique term of the minimal

weight. If, 
 is a 
onstant su
h that w




� w

e

� 0 belongs to D

=

, then 
 must be a term of the

minimal weight. Therefore, there 
annot be more than one su
h a 
onstant 
. 2
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6.3 Extra
ting a solution

In this se
tion we will show how to �nd a solution when the algorithm terminates with su

ess.

Lemma 6.19 Step (T5) is 
orre
t.

Proof. To prove 
orre
tness of (T5) we have to show the existen
e of solution. In fa
t, we will

show how to build a parti
ular solution.

Note that when we terminate at step (T5), the system D is solvable, sin
e it was solvable initially

and we performed 
onsisten
y 
he
ks on every 
hange of D .

By Lemma 3.5 there exists an integer solution w to D whi
h is also a solution to the stri
t

versions of every inequality in D � D

=

. Likewise, there exists a linear order � extendingo, sin
e

we performed 
onsisten
y 
he
ks on every 
hange of o. We 
laim that (w;�) is a solution to

(R;M ; D ;U; G ;L ;o). To this end we have to show that w is weight fun
tion, � is 
ompatible

with w and all items 1{5 of the de�nition of solution are satis�ed.

Let us �rst show that w is a weight fun
tion. Note that D 
ontains all inequalities w

g

� 0,

where g 2 � is a non-
onstant, the inequality w

e

> 0 and the inequalities w

d

� w

e

� 0 for every


onstant d 2 �. So to show that w is a weight fun
tion it remains to show that at most one unary

fun
tion symbol f has weight 0. Indeed, if there were two su
h fun
tion symbols f

1

and f

2

, then

at step (T2) we would add both f

1

o f

2

and f

2

o f

1

, but the following 
onsisten
y 
he
k ono

would fail.

The proof that � is 
ompatible with w is similar.

Denote by � the instan
e of KBO order indu
ed by (w;�).

1. For every tuple inequality hl

i

; L

i

i > hr

i

; R

i

i in R and every substitution � minimal for M we

have hl

i

�;L

i

�i � hr

i

�;R

i

�i. In the proof we will use the fa
t that w(e) is the minimal weight.

By step (M3), the inequality W (l

i

; r

i

) does not belong to D

=

(otherwise hl

i

; L

i

i > hr

i

; R

i

i

would be removed at one of steps (M4){(M8)). It follows from the de�nition of W that if

W (l

i

; r

i

) 2 D � D

=

, then jl

i

�




j > jr

i

�




j, where 
 is any 
onstant of the minimal weight. In

Lemma 6.8 we proved that jl

i

�j � jr

i

�j does not depend on �, whenever � is minimal for M .

Therefore, jl

i

�j > jr

i

�j for all substitutions � minimal for M .

2. The weight fun
tion w solves every inequality in D and w(e) 
oin
ides with the minimal

weight. This follows immediately from our 
onstru
tion, if we show that w(e) is the minimal

weight. Let us show that w

e

is the minimal weight. Indeed, sin
e D initially 
ontains the

inequalities w




� w

e

� 0 for all 
onstants 
, we have that w(e) is less than or equal to the

minimal weight. By step (T3), there exists a 
onstant 
 su
h that w




�w

e

� 0 is in D

=

, hen
e

w(
) = w(e), and so w(e) is greater than or equal to the minimal weight.

3. If U = one, then there exists exa
tly one term of the minimal weight. Assume U = one.

We have to show that (i) there exists no unary fun
tion symbol f of weight 0 and (ii) there

exists exa
tly one 
onstant of the minimal weight. Let f be a unary fun
tion symbol. By our


onstru
tion, w

f

� 0 belongs to D . By step (T2) w

f

� 0 does not belong to D

=

, so by the

de�nition of w we have w(f) > 0. By our 
onstru
tion, w




� w

e

� 0 belongs to D for every


onstant 
. By step (T4), at most one of su
h inequalities belongs to D

=

. But if w




�w

e

� 0

does not belong to D

=

, then w(
)�w(e) > 0 by the 
onstru
tion of w. Therefore, there exists

at most one 
onstant of the minimal weight.
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4. If d 2 G (respe
tively d 2 L) for some 
onstant d, then d is the greatest (respe
tively least)

term among the terms of the minimal weight. We 
onsider the 
ase d 2 G , the 
ase d 2 L is

similar. But by step (T2) there is no unary fun
tion symbol f su
h that w

f

� 0 belongs to

D

=

, therefore w(f) > 0 for all unary fun
tion symbols f . This implies that only 
onstants

may have the minimal weight. But by step (T1) and the de�nition of w, for all 
onstants 


of the minimal weight we have do 
, and hen
e also d� 
.

5. � extendso. This follows immediately from our 
onstru
tion.

2

6.4 Time 
omplexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear inequalities, and

a polynomial-time algorithm for transitive 
losure, we 
an prove the following lemma.

Lemma 6.20 The algorithm runs in time polynomial of the size of the system of rewrite rules.

Proof. Note that the algorithm makes polynomial number of steps. Indeed, initially the size of

R is O(n logn) of the size of the system of rewrite rules (and 
an even be made linear, if we avoid

renaming variables). Ea
h of the steps (M4){(M8) de
reases the size of R. The algorithm 
an

make a non-deterministi
 
hoi
e, but at most on
e, and the number of non-deterministi
 bran
hes

is bounded by the number of 
onstants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It remains to prove

that every step 
an be made in polynomial time of the size of a state and that the size of every

state is polynomial in the size of the input.

Solvability of D 
an be 
he
ked in polynomial time by Lemma 3.7. The system D

=


an be

built in polynomial time by the same lemma. The relationo 
an be extended to an order if and

only if the transitive 
losure o

0

of o is irre
exive, i.e., there is no g su
h that g o

0

g. The

transitive 
losure 
an be built in polynomial time. The 
he
k for irre
exivity 
an be obviously done

in polynomial time too. Therefore, every step 
an be performed in polynomial time of the size of

the state.

It remains to show that the size of S is bound by a polynomial. The only part of S that is

not immediately seen to be polynomial is D . However, it is not hard to argue that the number of

equations in S of the form W (l; r) is bound by the size of the input, and every equation obviously

has a polynomial size. It is also easy to see that the size of the remaining equations is polynomial

too. 2

6.5 A simple example

Let us 
onsider how the algorithm works on the rewrite rule g(x; a; b) ! g(b; b; a) of Example 2.6.

Initially, R 
onsists of one tuple inequality

hg(x; a; b)i > hg(b; b; a)i (5)

and D 
onsists of the following linear inequalities:

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0:
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At step (M1) we note that n(x; g(x; a; b)) = 1 > 0 = n(x; g(b; b; a)). Therefore, we add x to M .

At step (M3) we add the linear inequality w

e

�w

b

� 0 to D obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

�w

e

� 0; w

e

�w

b

� 0:

Now we 
ompute D

=

. It 
onsists of two equations w

b

� w

e

� 0 and w

e

� w

b

� 0, so we have to

apply one of the steps (M4){(M8), in this 
ase the appli
able step is (M5). We repla
e (5) by

hx; a; bi > hb; b; ai: (6)

At the next iteration of step (M3) we should add to D the linear inequality w

e

� w

b

� 0, but this

linear inequality is already a member of D , and moreover a member of D

=

. So we pro
eed to step

(M7). At this step we set L = fbg and repla
e (6) by

ha; bi > hb; ai: (7)

Then at step (M2) we add w

a

� w

b

� 0 to D obtaining

w

g

� 0; w

e

> 0; w

a

� w

e

� 0; w

b

� w

e

� 0; w

e

� w

b

� 0; w

a

� w

b

� 0:

Now w

a

�w

b

� 0 does not belong to the degenerate subsystem of D , so we pro
eed to TERMINATE.

Steps (T1){(T4) 
hange neither D noro, so we terminate with su

ess.

Solutions extra
ted a

ording to Lemma 6.19 will be any pairs (w;�) su
h that w(a) > w(b).

Note that these are not all solutions. There are also solutions su
h that w(a) = w(b) and a � b.

However, if we try to �nd a des
ription of all solutions we 
annot any more guarantee that the

algorithm runs in polynomial time.

7 Orientability for trivial signatures

Consider a trivial signature whi
h 
onsists of a unary fun
tion symbol g and some 
onstants. Let

R be a system of rewrite rules in this signature. If some rule in R has the form t ! g

n

(x) su
h

that x does not o

ur in t, then the system is evidently not orientable. If R 
ontains no su
h rule,

then R 
an be repla
ed by an equally orientable ground system, as the following lemma shows.

Lemma 7.1 Let R be a system of rewrite rules in a trivial signature � su
h that no rule in R


ontains a variable o

urring in its right-hand side but not the left-hand side. De�ne the ground

system R

0

obtained from R by the following transformations:

1. Repla
e every rule g

m

(x) ! g

n

(d) in R by all rules g

m

(
) ! g

n

(d) su
h that 
 is a 
onstant

in �.

2. For every rule g

m

(x)! g

n

(x) in R, if m > n then remove this rule, otherwise terminate with

failure.

Then an instan
e of KBO � orients R if and only if it orients R

0

. 2

We leave the proof of this lemma to the reader. Note that the size of R

0

in the lemma is polynomial

in the sum of the sizes of R and �. Therefore, we 
an restri
t ourselves to ground systems.

Moreover, we 
an assume that for every rule in R

0

the fun
tion symbol g never o

urs in both

left-hand side and right-hand side of R. Indeed, this 
an be a
hieved by repla
ing every rewrite



17

rule g(s) ! g(t) in R

0

by s ! t until g o

urs in at most one side of the rule. Evidently, we 
an

assume that R

0


ontains no trivial rules 
! 
. So we obtain a system 
onsisting of rules g

n

(
)! d,


 ! g

n

(d), where n > 0, or 
 ! d su
h that 
; d are di�erent 
onstants. In other words, for every

rule l! r in R

0

the outermost symbol of l is di�erent from the outermost symbol of r.

In order to 
he
k orientability of R

0

, 
onsider the system of homogeneous linear inequalities D

whi
h 
onsists of

1. the inequalities w




> 0 for all 
onstants 
 2 � and the inequality w

g

� 0;

2. for every rule l! r in R

0

the inequalities W (l; r) =

P

h2�

(n(h; l)� n(h; r))w

h

� 0.

Evidently, D 
an be built in time polynomial in the size of R

0

. Evidently, if D is unsatis�able, then

R

0

is not orientable. If D is satis�able, let D

=

be the degenerate subsystem of D . Let us build a

binary relationo on � as follows:

1. for every rule l! r in R

0

, if W (l; r) 2 D

=

, then we take the outermost symbols h

1

and h

2

of

l and r respe
tively and add h

1

o h

2

too;

2. if w

g

� 0 belongs to D

=

, then add go 
 too for all 
onstants 
 2 �.

We leave it to the reader to 
he
k that R

0

is orientable if and only ifo 
an be extended to a linear

order. We 
an prove in the same way as before, that the 
he
k for orientability of R

0


an be done

in polynomial time.

8 The problem of orientability by the KBO is P-
omplete

In Se
tion 6.4 we have shown that the orientability problem 
an be solved in polynomial time. In

this se
tion we show that this problem is P-
omplete, and moreover it is P-hard even for ground

rewrite systems. To this end, we redu
e the 
ir
uit value problem whi
h is known to be P-
omplete

(see e.g., [Papadimitriou 1994℄), to the orientability problem. Our redu
tion 
onsists of two steps:

1. we redu
e the problem of solving systems of linear inequalities AX � 0, X > 0, where A is

an integer matrix, to the orientability problem;

2. we redu
e the 
ir
uit value problem to solvability of su
h systems.

In the systems of linear inequalities, we assume all 
oeÆ
ients to be written in the unary notation.

Both redu
tions will be LOGSPACE.

Let AX � 0 be a system of linear inequalities and we are looking for stri
tly positive solutions

to it. For every variable x

i

in the system we introdu
e a unary fun
tion symbol f

i

. We 
onsider the

signature � 
onsisting of all su
h symbols f

i

, two unary symbols g; h, and a 
onstant 
. We will


onstru
t a ground rewrite rule system R whose orientability will be equivalent to the existen
e of

a solution to AX � 0;X > 0 as follows. First of all, R 
ontains the rewrite rule

gh
! hgg
:

An instan
e of KBO with parameters (w;�) orients this rule if and only if w(g) = 0 (and hen
e

also g � h). For ea
h linear inequality I in the system, we add to R a rewrite rule r(I), whi
h will

be demonstrated by an example (in order to avoid double indi
es). Suppose, for example, that the

inequality 
an be rewritten in the form
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a

1

x

1

+ : : :+ a

k

x

k

� a

k+1

x

k+1

+ : : :+ a

n

x

n

: (8)

where x

1

; : : : ; x

n

are di�erent variables and a

1

; : : : ; a

n

; b

1

; : : : ; b

n

are non-negative 
oeÆ
ients. Then

r(I) has the form

ghf

a

1

1

� � � f

a

k

k


! hgf

a

k+1

k+1

� � � f

a

n

n


 (9)

Note that for every solution we must have w(f

i

) > 0 sin
e there may be at most one fun
tion

symbol of the weight 0. For every weight fun
tion w 
onsider the substitution s of integers to

variables su
h that w(f

i

) = s(x

i

) and let � be an arbitrary pre
eden
e relation su
h that g is

maximal w.r.t. �. We leave it to the reader to 
he
k that (w;�) is a solution to R if and only if

s is a solution to AX � 0;X > 0.

It is not hard to argue that the redu
tion of A to R is LOGSPACE, provided that the 
oeÆ
ients

of the linear inequations are written in the unary notation.

Let us now des
ribe a redu
tion of the 
ir
uit value problem to the problem of whether a given

system of linear integer inequalities has a positive solution. Consider a 
ir
uit with gates g

1

; : : : ; g

n

.

For ea
h gate g

i

we introdu
e a new numeri
al variable x

i

. We will also use an auxiliary numeri
al

variable y. We 
onstru
t a system of linear integer inequalities D in su
h a way that the 
ir
uit

has the value TRUE if and only if D has a positive solution. For ea
h gate g

i

we introdu
e a

system of numeri
al 
onstraints D

i

in the following way. If g

i

is a FALSE gate then D

i

is fx

i

= yg,

likewise if g

i

is a TRUE gate then D

i

is fx

i

= 2yg. If g

i

is a NOT gate with an input g

j

then D

i

is fx

i

= 3y � x

j

g. If g

i

is an AND gate with inputs g

j

and g

k

then D

i

is fy � x

i

� 2y, x

i

� x

j

,

x

i

� x

k

, x

j

+ x

k

� 2y � x

i

g. Let D

0

be the union of all D

i

for 1 � i � n. It is straightforward to


he
k that for every positive solution to the system D

0

ea
h variable x

i

has the value of the variable

y or twi
e that value, moreover it has the value of y if and only if the gate g

i

has the value FALSE .

To 
omplete the 
onstru
tion we obtain D by adding to D

0

an equation x

n

= 2y. Note that the


oeÆ
ients of D are small, so they 
an be 
onsidered as written in the unary notation.

We have shown how to redu
e the 
ir
uit value problem to the orientability problem. It is 
lear

that all redu
tions 
an be done by a logarithmi
-spa
e algorithm.

9 Solving 
onstraints 
onsisting of a single inequality

In [Korovin and Voronkov 2000b℄ it is shown that the problem of solving the Knuth-Bendix ordering


onstraints is NP-
omplete. Let us show that the problem of solving the Knuth-Bendix ordering


onstraints 
onsisting of a single inequality 
an be solved in polynomial time. Let us �x an instan
e

of KBO on ground terms, i.e., a pre
eden
e relation on the signature � and a weight fun
tion w. Our

problem is to de
ide for a given pair of terms s and t whether there exists a grounding substitution

� su
h that s� � t�. Sin
e every instan
e of the Knuth-Bendix order is total on ground terms our

problem is equivalent to the following problem: for a given pair of terms t and s de
ide whether

for every grounding substitutions �, t� � s� holds. The algorithm we present is similar to the

algorithm for the orientability. The main di�eren
e is that there is no need to solve systems of

linear inequalities for this problem. Sin
e the order is given, we 
an use a simpler version of the

notion of state S= (R;M ), where R is a single tuple inequality and M is a set of variables. Instead

of tuple inequalities hLi > hRi we will 
onsider a new kind of tuple inequalities hLi � hRi with

a natural interpretation. Initially R 
onsists of the tuple inequality hti � hsi and M = ;. Let e

denote the 
onstant that is the minimal term w.r.t. �. Instead of using the inequality W (l; r), we
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will use the inequality W

0

(l; r) =

P

g2�

(n(g; l) � n(g; r))w(g) + (v

l

� v

r

)w(e) � 0, where v

l

and v

r

are the numbers of o

urren
es of variables in l and r respe
tively. Let us present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the form hi � hi, then

terminate with su

ess. If R 
onsists of a tuple inequality hl; l

1

; : : : ; l

n

i � hl; r

1

; : : : ; r

n

i, repla
e it

by hl

1

; : : : ; l

n

i � hr

1

; : : : ; r

n

i.

MAIN. Now we 
an assume that R 
onsists of a tuple hl; Li � hr;Ri and the term l is di�erent

from the term r.

(M1) For all x su
h that n(x; l) > n(x; r), add x to M .

(M2) If there exists a variable x 62 M su
h that n(x; l) < n(x; r), then terminate with failure.

(M3) If W

0

(l; r) > 0 then terminate with su

ess. If W

0

(l; r) < 0 then terminate with failure.

Note that at this point we have W

0

(l; r) = 0.

(M4) If (l; r) has the form (g(s

1

; : : : ; s

n

); h(t

1

; : : : ; t

p

)) where g and h are distin
t, then do the

following. If g � h terminate with su

ess, otherwise terminate with failure.

(M5) If (l; r) has the form (g(s

1

; : : : ; s

n

); g(t

1

; : : : ; t

n

)), then repla
e hl; Li � hr;Ri by hs

1

; : : : ; s

n

; Li �

ht

1

; : : : ; t

n

; Ri.

(M6) If (l; r) has the form (x; y), where x and y are di�erent variables, do the following. (Note

that at this point x; y 2 M .) If there exists only one term of the minimal weight, then repla
e

hl; Li � hr;Ri by hLi � hRi. Otherwise terminate with failure.

(M7) If (l; r) has the form (x; t), where t is not a variable, do the following. If t is di�erent from e,

then terminate with failure. Otherwise, repla
e all o

urren
es of x in L and R by e obtaining

L

0

and R

0

. Repla
e hl; Li � hr;Ri by hL

0

i � hR

0

i.

(M8) If (l; r) has the form (t; x), where t is not a variable, do the following. If t 
ontains x then

terminate with su

ess. Otherwise, if t is not the greatest term among the terms of the

minimal weight, then terminate with failure. Otherwise, repla
e all o

urren
es of x in L

and R by t obtaining L

0

and R

0

, and repla
e hl; Li � hr;Ri by hL

0

i � hR

0

i. Note that this

step does not in
rease the size of the tuple inequality sin
e t must be a 
onstant, when we

substitute it for x.

After this step repeat PREPROCESS.

The proof of 
orre
tness of ea
h step is almost the same as the proof of 
orre
tness for the


orresponding steps in the orientability algorithm, so we leave it to the reader. It is obvious that

the algorithm terminates in polynomial time, sin
e every step of the algorithm 
an be done in

polynomial time and after every step the size of R de
reases.

10 Main results

Lemmas 6.1{6.19 guarantee that the orientability algorithm is 
orre
t. Lemma 6.20 implies that it

runs in polynomial time. Hen
e we obtain the following theorem.
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Theorem 10.1 The problem of the existen
e of an instan
e of KBO whi
h orients a given rewrite

rule systems 
an be solved in polynomial time. 2

From the redu
tions of Se
tion 8 we also obtain the following.

Theorem 10.2 The orientability problem for the KBO is P-
omplete. Moreover, it is P-hard even

for ground rewrite systems. 2

Similarly, in Se
tion 9 we proved the following theorem.

Theorem 10.3 The problem of solving a given Knuth-Bendix ordering 
onstraint 
onsisting of a

single inequality 
an be solved in polynomial time. 2

The real-valued Knuth-Bendix order is in the same way as above, ex
ept that the range of the

weight fun
tion is the set of non-negative real numbers. The real-valued KBO was introdu
ed in

[Martin 1987℄. Note that in view of the results of Se
tion 3 on systems of homogeneous linear

inequalities (Lemmas 3.4 and 3.5) the algorithm is also sound and 
omplete for the real-valued

orders. Therefore, we have

Theorem 10.4 If a rewrite rule system is orientable using the real-valued KBO, then it is also

orientable using the integer-valued KBO. 2

It follows from this theorem that all our results formulated for the integer-valued KBO also

hold for the real-valued KBO.
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