Orienting rewrite rules with the Knuth-Bendix order

Konstantin Korovin and Andrei Voronkov

October 12, 2001

Abstract

We consider two decision problems related to the Knuth-Bendix order (KBO). The first
problem is orientability: given a system of rewrite rules R, does there exist an instance of KBO
which orients every ground instance of every rewrite rule in R. The second problem is whether
a given instance of KBO orients every ground instance of a given rewrite rule. This problem
can also be reformulated as the problem of solving a single ordering constraint for the KBO. We
prove that both problems can be solved in polynomial time. The polynomial-time algorithm for
orientability builds upon an algorithm for solving systems of homogeneous linear inequalities
over integers. The polynomial-time algorithm for solving a single ordering constraint does not
need to solve systems of linear inequalities and can be run in time O(n?). We show that the
orientability problem is P-complete. Also we show that if a system is orientable using a real-
valued instance of KBO, then it is also orientable using an integer-valued instance of KBO.
Therefore, all our results hold both for the integer-valued and the real-valued KBO.

1 Introduction

In this section we give an informal overview of the results proved in this paper. The formal
definitions will be given in the next section.

Let > be any order on ground terms and [— r be a rewrite rule. We say that > orients
[— r, if for every ground instance I' — ' of [— r we have " = r/. We write [= r if for every
ground instance I' — 1’ of [— r we have I’ = r/ or I’ = r/. There are situations where we want to
check if there exists a simplification order on ground terms that orients a given system of (possibly
non-ground) rewrite rules. We call this problem orientability. Orientability can be useful when
a theorem prover is run on a new problem for which no suitable simplification order is known,
or when termination of a rewrite system is to be established automatically. For a recent survey,
see [Dershowitz and Plaisted 2001]. We consider the orientability problem for the Knuth-Bendix
order (in the sequel KBO) [Knuth and Bendix 1970] on ground terms. We give a polynomial-time
algorithm for checking orientability by the KBO. A similar problem of orientability by the non-
ground version of the real-valued KBO was studied in [Dick, Kalmus and Martin 1990] and an
algorithm for orientability was given. We prove that any rewrite rule system orientable by a real-
valued KBO is also orientable by an integer-valued KBO. This result also holds for the non-ground
version of the KBO considered in [Dick et al. 1990]. In our proofs we use some techniques of [Dick
et al. 1990]. We also show that some rewrite systems could not be oriented by non-ground version
of the KBO, but can be oriented by our algorithm.

The second problem we consider is solving ordering constraints consisting of a single inequality,
over a given instance of the Knuth-Bendix order. If > is total on ground terms, then the problem
of checking if > orients [— r has relation to the problem of solving ordering constraints over >.
Indeed, = does not orient [— r if and only if there exists a ground instance I’ — r’ of [— r

such that ' > I’ i.e., if and only if the ordering constraint r = [has a solution. This means
that any procedure for solving ordering constraints consisting of a single inequality can be used
for checking whether a given system of rewrite rules is oriented by >, and vice versa. Using the
same technique as for the orientability problem, we show that the problem of solving an ordering
constraint consisting of a single inequality for the KBO can be solved in polynomial time.

Algorithms for, and complexity of, orientability problem for various versions of the recursive
path orders were considered in [Lescanne 1984, Detlefs and Forgaard 1985, Krishnamoorthy and
Narendran 1985]. The problems of solving ordering constraints for lexicographic, recursive path
orders and for KBO are NP-complete [Comon 1990, Jouannaud and Okada 1991, Nieuwenhuis
1993, Narendran, Rusinowitch and Verma 1999, Korovin and Voronkov 2001], see also [Korovin
and Voronkov 20000]. However, to check if > orients [— r, it is sufficient to check solvability of a
single ordering constraint r = [. This problem is NP-complete for LPO [Comon and Treinen 1994],
and therefore the problem of checking if an LPO orients a rewrite rule is coNP-complete.

2 Preliminaries

A signature is a finite set of function symbols with associated arities. In this paper X denotes an
arbitrary signature. Constants are function symbols of the arity 0. We assume that ¥ contains
at least one constant. We denote variables by x, v, z, constants by a, b, ¢, d, e, function symbols by
f,9,h, and terms by [,r,s,t. Systems of rewrite rules and rewrite rules are defined as usual, see
e.g. [Baader and Nipkow 1998, Dershowitz and Plaisted 2001]. An expression E (e.g. a term or a
rewrite rule) is called ground if no variable occurs in E. Denote the set of natural numbers by N.

The Knuth-Bendix order is a family of orders parametrized by two parameters: a weight function
and a precedence relation.

DEFINITION 2.1 (weight function) We call a weight function on 3 any function w : ¥ — N such
that (i) w(a) > 0 for every constant a € X, (ii) there exist at most one unary function symbol
f € ¥ such that w(f) = 0. Given a weight function w, we call w(g) the weight of g. The weight of
any ground term ¢, denoted |¢|, is defined as follows: for every constant ¢ we have |¢| = w(c) and
for every function symbol g of a positive arity |g(t1,...,tn)| = w(g) + |t1] + ... + [ta]-

DEFINITION 2.2 A precedence relation on ¥ is any total order > on X. A precedence relation >
is said to be compatible with a weight function w if for every unary function symbol f, if w(f) =0,
then f is the greatest element w.r.t. >.

DEFINITION 2.3 (Knuth-Bendix order) Let w be a weight function on ¥ and > a precedence
relation on ¥ compatible with w. The instance of the Knuth-Bendiz order induced by (w,>>) is
the binary relation > on the set of ground terms of ¥ defined as follows. For all ground terms
t=g(t1,...,ty) and s = h(s1,...,s;) we have ¢t = s if one of the following conditions holds:

L. |t| > |s];
2. |t| =|s| and g > h;
3. |t| = |s|, g = h and for some 1 <i < n we have t; = s1,...,t;_1 = s;_1 and t; > s;.

The compatibility condition ensures that every instance of the Knuth-Bendix order is a simplifica-
tion order total on ground terms.

In the sequel we will often refer to the least and the greatest terms among the terms of the
minimal weight for a given instance of KBO. It is easy to see that every term of the minimal weight
is either a constant of the minimal weight, or a term f™(c), where ¢ is a constant of the minimal
weight, and w(f) = 0. Therefore, the least term of the minimal weight is always the constant of
the minimal weight which is the least among all such constants w.r.t. >. This constant is also the
least term w.r.t. >.

The greatest term of the minimal weight exists if and only if there is no unary function symbol
of the weight 0. In this case, this term is the constant of the minimal weight which is the greatest
among such constants w.r.t. >.

DEFINITION 2.4 (substitution) A substitution is a mapping from a set of variables to the set of
terms. A substitution € is grounding for an expression E (i.e., term, rewrite rule etc.) if for every
variable z occurring in E the term 6(x) is ground. We denote by £6 the expression obtained from £
by replacing in it every variable x by 0(z). A ground instance of an expression F is any expression
E6 which is ground.

The following definition is central to this paper.

DEFINITION 2.5 (orientability) An instance > of KBO orients a rewrite rule [— r if for every
ground instance I' — 7' of [— r we have I’ = r’. An instance of KBO orients a system R of rewrite
rules if it orients every rewrite rule in R.

The decidability of the orientability problem for the KBO does not follow immediately from the
decidability of the KBO ordering constraints [Korovin and Voronkov 2001], as it is in the case of the
recursive path ordering. For a given finite signature, there exists only a finite number of instances
of the recursive path ordering. But there exists an infinite number of instances of the KBO, since
the weight function is not restricted.

We define orientability in terms of ground instances of rewrite rules. One can also define
orientability using the non-ground version of the KBO as originally defined in [Knuth and Bendix
1970]. But then we obtain a weaker notion (fewer systems can be oriented) as the following example
from [Korovin and Voronkov 2000a] shows.

ExaMpPLE 2.6 Consider the following rewrite rule:

g(z,a,b) = g(b,b,a). (1)

For any choice of the weight function w and order >, g(x,a,b) > g(b,b,a) does not hold for the
original Knuth-Bendix order with variables. However, rewrite rule (1) can be oriented by any
instance of KBO such that w(a) > w(b) and a > b.

In fact the order based on all ground instances is the greatest simplification order extending the
instance of KBO from ground terms to non-ground terms.

3 Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several properties of homogeneous linear inequalities.
The definitions related to systems of linear inequalities can be found in standard textbooks (e.g.,
[Schrijver 1998]). We will denote column vectors of variables by X, integer or real vectors by V, W,
integer or real matrices by A, B. Column vectors consisting of 0’s will be denoted by 0. The set of
real numbers is denoted by R, and the set of non-negative real numbers by R*.

DEFINITION 3.1 (homogeneous linear inequalities) A homogeneous linear inequality has the form
either VX > 0or VX > 0. A system of homogeneous linear inequalities is a finite set of homoge-
neous linear inequalities.

Solutions (real or integer) to systems of homogeneous linear inequalities are defined as usual.
We will use the following fundamental property of system of homogeneous linear inequalities:

LEMMA 3.2 Let AX > 0 be a system of homogeneous linear inequalities, where A is an integer
matriz. Then there exists a finite number of integer vectors Vi, ..., Vy such that the set of solutions
to AX >0 is

{rVi+...+rVa|ry,...,rn € R} (2)

The proof can be found in e.g., [Schrijver 1998].
The following lemma was proved in [Martin 1987] for the systems of linear homogeneous in-
equalities over the real numbers. We will give a simpler proof of it here.

LEMMA 3.3 Let AX > 0 be a system of homogeneous linear inequalities where A is an integer
matriz and Sol be the set of all real solutions to the system. Then the system can be split into two
disjoint subsystems BX > 0 and CX > 0 such that

1. BV =0 for every V € Sol.

2. If C is non-empty then there exists a solution V € Sol such that C'V > 0.

ProOOF. By Lemma 3.2 we can find integer vectors Vi,...,V,, such that the set Sol is (2). We
define BX > 0 to be the system consisting of all inequalities WX > 0 in the system such that
WV; =0 forall s =1,...,n; then property 1 is obvious.

Note that the system C'X > 0 consists of the inequalities WX > 0 such that for some V; we
have WV; > 0. Take V to be Vi + ...+ V},, then it is not hard to argue that CV > 0. O

Let D be a system of homogeneous linear inequalities with a real matrix. We will call the subsystem
BX > 0 of D the degenerate subsystem if the following holds. Denote by C the matrix of the
complement to BX > 0 in D and by Sol the set of all real solutions to . Then

1. BV =0 for every V € Sol.

2. If C is non-empty then there exists a solution V' € Sol such that C'V > 0.

For every system D of homogeneous linear inequalities the degenerate subsystem of DD will be
denoted by D=. Note that the degenerate subsystem is defined for arbitrary systems, not only
those of the form AX > 0.

Let us now prove another key property of integer systems of homogeneous linear inequalities:
the existence of a real solution implies the existence of an integer solution.

LEMMA 3.4 Let D be a system of homogeneous linear inequalities with an integer matriz. Let V
be a real solution to this system and for some subsystem of D with the matriz B we have BV > 0.
Then there exists an integer solution V' to D for which we also have BV' > 0.

PROOF. Let IV be obtained from D by replacement of all strict equalities WX > 0 by their non-
strict versions WX > 0. Take vectors V1,..., V), so that the set of solutions to I/ is (2). Evidently,
for every inequality WX > 0 in BV > 0 there exists some V; such that WV; > 0. Define V'
as Vi + ...+ Vj, then it is not hard to argue that BV’ > 0. We claim that V' is a solution to
D. Assume the converse, then there exists an inequality WX > 0 in D such that WV’ = 0. But
WV'" =0 implies that WV, = 0 for all 7, so D has no real solution, contradiction. O

The following lemma follows from Lemmas 3.3 and 3.4.

LEMMA 3.5 Let D be a system of homogeneous linear inequalities with an integer matriz and its
degenerate subsystem is different from . Let B be the matriz of the complement of the degenerate
subsystem. Then there exists an integer solution V to D such that BV > 0. O

The following result is well-known, see e.g., [Schrijver 1998].

LEMMA 3.6 The existence of a real solution to a system of linear inequalities can be decided in
polynomial time. O

This lemma and Lemma 3.4 imply the following key result.

LEMMA 3.7 (i) The existence of an integer solution to an integer system of homogeneous linear
inequalities can be decided in polynomial time. (ii) If an integer system D of homogeneous linear
inequalities has a solution, then its degenerate subsystem D= can be found in polynomial time. O

4 States

In Section 6 we will present an algorithm for orientability by the Knuth-Bendix order. This algo-
rithm will work on states which generalize systems of rewrite rules in several ways. A state will use
a generalization of rewrite rules to tuples of terms and some information about possible solutions.

Let > be any order on ground terms. We extend it lexicographically to an order on tuples of
ground terms as follows: we write (I1,...,l,) > (r1,...,r,) if for some 7 € {1,...,n} we have [=
Tly..yli—1 = ri—1 and l; > r;. We call a tuple inequality any expression (l1,...,0,) > (ri,...,m).
The length of this tuple inequality is n.

In the sequel we assume that ¥ is a fixed signature and e is a constant not belonging to ¥. The
constant e will play the role of a temporary substitute for a constant of the minimal weight. We
will present the algorithm for orienting a system of rewrite rules as a sequence of state changes.
We call a state a tuple (R,M, D, U, G,L,>>), where

1. R is a set of tuple inequalities (I1,...,l,) > (r1,...,r,), such that every two different tuple
inequalities in this set have disjoint variables.

2. M is a set of variables. This set denotes the variables ranging over the terms of the minimal
weight.

3. D is a system of homogeneous linear inequalities over the variables {wy | g € ¥ U {e}}. This
system denotes constraints on the weight function collected so far, and w, denotes the minimal
weight of terms.

4.

U is one of the following values one or any. The value one signals that there exists exactly one
term of the minimal weight, while any means that no constraints on the number of elements
of the minimal weight have been imposed.

. G and L are sets of constants, each of them contains at most one element. If d € G (respec-

tively d € L), this signals that d is the greatest (respectively least) term among the terms of
the minimal weight.

. >> is a binary relation on . This relation denotes the subset of the precedence relation

computed so far.

Let w be a weight function on ¥, > a precedence relation on ¥ compatible with w, and > the
instance of the Knuth-Bendix order induced by (w,>>). A substitution o grounding for a set of
variables X is said to be minimal for X if for every variable z € X the term o(x) is of the minimal
weight. We extend w to e by defining w(e) to be the minimal weight of a constant of X.

We say that the pair (w,>>) is a solution to a state (R, M, D, U, G,L,>>) if

1.

5.

For every tuple inequality (I1,...,l,) > (ri,...,r,) in R and every substitution o grounding
for this tuple inequality and minimal for M we have (l10,...,l,0) = (rio,...,r0).

. The weight function w solves every inequality in D in the following sense: replacement of

each wy by w(g) gives a tautology. In addition, w(e) coincides with the minimal weight w(c)
of constants c € X.

. If U = one, then there exists exactly one term of the minimal weight.

. If d € G (respectively d € L) for some constant d, then d is the greatest (respectively least)

term among the terms of the minimal weight. Note that if d is the greatest term of the
minimal weight, then the signature contains no unary function symbol of the weight 0.

> extends >>.

We will now show how to reduce the orientability problem for the systems of rewrite rules to the
solvability problem for states.

Let R be a system of rewrite rules such that every two different rules in R have disjoint variables.
Denote by Sg the state (R, M, D, U, G, L, >>) defined as follows.

1.
2.

R consists of all tuple inequalities (I) > (r) such that [— r belongs to R.
M = 0.

. D consists of (a) all inequalities wy > 0, where g € ¥ is a non-constant; (b) the inequality

we > 0 and all inequalities wy — we > 0, where d is a constant of X.

. U=any.
D.
6.

G=L=0.

>> is the empty binary relation on X.

LEMMA 4.1 Let w be a weight function, > a precedence relation on % compatible with w, and >
the instance of KBO induced by (w,>>). Then > orients R if and only if (w,>) is a solution to

Sk.

a

The proof is straightforward.

5 Trivial signatures

For technical reasons, we will distinguish two kinds of signatures. Essentially, our algorithm depends
on whether the weights of terms are restricted or not. For the so-called non-trivial signatures,
the weights are not restricted. When we present the orientability algorithm for the non-trivial
signatures, we will use the fact that terms of sufficiently large weights always exist. For the trivial
signatures we will present a simpler orientability algorithm in Section 7.

A signature is called trivial if it contains no function symbols of arity > 2, and at most one
unary function symbol. Note that a signature is non-trivial if and only if it contains either a
function symbol of arity > 2 or at least two function symbols of arity 1.

LEMMA 5.1 Let ¥ be a non-trivial signature and w be a weight function for . Then for every
integer m there exists a ground term of the signature ¥ such that |t| > m.

PROOF. It is enough to show how for every term ¢ build a term of the weight greater than [¢|.
Note that the weight of any term is positive. If 3 contains a function symbol g of arity n > 2, then
lg(t, ..., t)] =w(g) +n-|t| > |t|. If & contains two unary function symbols, then for at least one of
them ¢ we have w(g) > 0. Then |g(t)| = w(g) + |t| > |t]. 0

6 An algorithm for orientability in the case of non-trivial signa-
tures

In this section we only consider non-trivial signatures. An algorithm for trivial signatures is given
in Section 7. The algorithm given in this section will be illustrated below in Section 6.5 on the
rewrite rule of Example 2.6.

Our algorithm works as follows. Given a system R of rewrite rules, we build the initial state
Sk = (RRM,D,U,G,L,>>). Then we repeatedly transform (R,M,D,U,G,L,>>) as described
below. We call the size of the state the total number of occurrences of function symbols and
variables in R. Every transformation step will terminate with either success or failure, or else
decrease the size of R.

At each step we assume that R consists of k£ tuple inequalities

(ll,L1> > (7‘1,R1>,
(lk,Lk> > (rk,Rk),

such that all of the L;, R; are tuples of terms.

We will label parts of the algorithm, these labels will be used in the proof of its soundness.
The algorithm can make a non-deterministic choice, but at most once, and the number of non-
deterministic branches is bounded by the number of constants in .

When the set I of linear inequalities changes, we assume that we check the new set for satisfi-
ability, and terminate with failure if it is unsatisfiable. Likewise, when we change >, we check if
it can be extended to an order and terminate with failure if it cannot.

6.1 The algorithm

The algorithm works as follows. Every step consists of a number of state transformations, beginning
with PREPROCESS defined below. During the algorithm, we will perform two kinds of consistency

checks:

e The consistency check on D is the check if D has a solution. If it does not, we terminate with
failure.

e The consistency check on > is the check if >> can be extended to an order, i.e., the transitive
closure > of >> is irreflexive, i.e., for no g € 3 we have g > ¢. If > cannot be extended to
an order, we terminate with failure.

It is not hard to argue that both kinds of consistency checks can be performed in polynomial
time. The consistency check on D is polynomial by Lemma 3.7. The consistency check on >> is
polynomial since the transitive closure of a binary relation can be computed in polynomial time,
see e.g. [Cormen, Leiserson and Rivest 1991].

PREPROCESS. Do the following transformations while possible. If any tuple inequality in R has
length 0, remove it from R. If R contains a tuple inequality (ly,...,l,) > (l1,...,l,), terminate
with failure. Otherwise, if R contains a tuple inequality (I,l1,...,l,) > (l,r1,...,m,), replace it by
(I, oyl > (r1y .oy

If R becomes empty, proceed to TERMINATE, otherwise continue with MAIN.

MAIN. Now we can assume that in (3) each [; is a term different from the corresponding term r;.
For every variable z and term ¢ denote by n(x,t) the number of occurrences of z in ¢. For example,
n(z,g(z,h(y,x))) = 2. Likewise, for every function symbol g € ¥ and term ¢ denote by n(g,t) the
number of occurrences of ¢ in t. For example, n(h, g(z, h(y,z))) = 1.

(M1) For all z and i such that n(z,l;) > n(x,r;), add z to M.

(M2) If for some i there exists a variable z ¢ M such that n(z,[;) < n(x,r;), then terminate with
failure.

For every pair of terms [, 7, denote by W (l,r) the linear inequality obtained as follows. Let v;
and v, be the numbers of occurrences of variables in [and r respectively. Then

W(l,r) = Z(n(g,l) —n(g,r))wg + (v, — v,)we > 0. (4)
geX

For example, if [= h(z, f(y)) and r = f(g(z,g(z,y))), then
W(l,r)=wp —2-wy —we > 0.

(M3) Add to D all the linear inequalities W ([;,r;) for all ¢ and perform the consistency check on
D.

Now compute D=. If DT contains none of the inequalities W (l;,r;), proceed to TERMINATE.
Otherwise, for all 7 such that W (l;,r;) € D~ apply the applicable case below, depending on the
form of [; and r;.

(M4) If (1;,7;) has the form (g(s1,...,spn), h(t1,...,tp)), where g is different from h, then extend
>> by adding g 3> h and remove the tuple inequality (l;, L;) > (r;, R;) from R. Perform the
consistency check on >>.

(M5) If (;,7;) has the form (g(s1,...,8n),9(t1,...,t,)), thenreplace (I;, L;) > (ri, R;) by (s1,...,Sn, L;) >
(tiy... tn, Ri).

(M6) If (I;,7;) has the form (z,y), where z and y are different variables, do the following. (Note
that at this point z,y € ML) If L; is empty, then terminate with failure. Otherwise, set U to
one and replace (l;, L;) > (ri, R;) by (L;) > (R;).

(MT) If (I;,7;) has the form (x,t), where ¢ is not a variable, do the following. If ¢ is not a constant,
or L; is empty, then terminate with failure. So assume that ¢ is a constant c¢. If L = {d} for
some d different from ¢, then terminate with failure. Otherwise, set L to {c}. Replace in L;
and R; the variable z by ¢, obtaining L} and R, respectively, and then replace (I;, L;) > (r;, R;)
by (LI) > ().

(M8) If (l;,7;) has the form (¢,z), where ¢ is not a variable, do the following. If ¢ contains z,
remove ([;, L;) > (r;, R;) from R. Otherwise, if ¢ is a non-constant or L; is empty, terminate
with failure. (Note that at this point © € M and W (t,z) € D=.) Let now ¢ be a constant c.
If G = {d} for some d different from ¢, then terminate with failure. Otherwise, set G to {c}.
Replace in L; and R; the variable z by ¢, obtaining L} and R} respectively, and then replace
<li,Li> > <’I“i,RZ'> by <L;> > <R;>

After this step repeat PREPROCESS.

TERMINATE. Let (R,M,D,U,G,L,>>) be the current state. Do the following.

(T1) If d € G, then for all constants ¢ different from d such that w. —we > 0 belongs to D™ extend
>> by adding d >> c¢. Likewise, if ¢ € L, then for all constants d different from ¢ such that
wqg — we > 0 € DT extend >> by adding d 3> ¢. Perform the consistency check on >>.

(T2) For all f in ¥ do the following. If f is a unary function symbol and w; > 0 belongs to D=,
then extend >> by adding f >> h for all h € ¥ — {f}. Perform the consistency check on >>.
If U= one or G # 0, then terminate with failure.

(T3) If there exists no constant ¢ such that w, —w, > 0 is in D=, then non-deterministically choose
a constant ¢ € %, add we — we, > 0 to D, perform the consistency check on D and repeat
PREPROCESS.

(T4) If U = one, then terminate with failure if there exists more than one constant ¢ such that
we — we > 0 belongs to D~

(T5) Terminate with success.

We will show how to build a solution at step (T5) below in Lemma 6.19.

6.2 Correctness

In this section we prove correctness of the algorithm. In Section 6.3 we show how to find a solution
when the algorithm terminates with success. The correctness will follow from a series of lemmas
asserting that the transformation steps performed by the algorithm preserve the set of solutions. We
will use notation and terminology of the algorithm. We say that a step of the algorithm is correct
if the set of solutions to the state before this step coincides with the set of solutions after the step.

When we prove correctness of a particular step, we will always denote by S = (R, M, D, U, G, L, >>)
the state before this step, and by S’ the state after this step. When we use substitutions in the
proof, we always assume that the substitutions are grounding for the relevant terms.

The following two lemmas can be proved by a straightforward application of the definition of
solution to a state.

LEMMA 6.1 (consistency check) If consistency check on D or on > terminates with failure, then
S has no solution. O

LEMMA 6.2 Step PREPROCESS is correct. O

Let us now analyze MAIN. For every weight function w and precedence relation > compatible
with w we call a counterezample to (l;, L;) > (r;, R;) w.r.t. (w,>>) any substitution ¢ minimal for
M such that (r;o, R;o) = (l;0, Lio) for the order > induced by (w,>>).

Denote by S~ the state obtained from S by removal of the ith tuple inequality (I;, L;) > (r;, R;)
from R. The following lemma follows immediately from the definition of solution.

LEMMA 6.3 (counterexample) If for every solution (w,>>) to S~! there exists a counterezample
to (I;, L;) > (ry, R;) w.r.t. (w,>>), then S has no solution. If for every solution (w,>) to S~*
there ezists no counterexample to the tuple inequality (l;, L;) > (ri, R;), then removing this tuple
inequality from R does not change the set of solutions to S. O

This lemma means that we can change (I;, L;) > (r;, R;) into a different tuple inequality or
change M, if we can prove that this change does not influence the existence of a counterexample.
Let o be a substitution, x a variable and ¢ a term. Denote by o the substitution defined by

by § o), ity #a,
ow(y)—{ t, ify =x.

LEMMA 6.4 Let w be a weight function on 3 and > a precedence relation on X compatible with w.
Suppose also that for some x and i we have n(x,l;) > n(x,r;) and there exists a counterexample o
to (l;, L;) > (ri, R;) w.r.t. (w,>). Then there exists a counterezample o' to (l;, L;) > (r;, R;) w.r.t.
(w,>>) minimal for {z}.

PROOF. Suppose that o is not minimal for {z}. Denote by ¢ a minimal constant w.r.t. w and by ¢
the term zo. Since o is not minimal for {z}, we have |¢| > |¢|. Consider the substitution ¢§. Since
o is a counterexample, we have |rjo| > |l;o|. We have

lioz| = lio] = n(z,) - (|t] = |ef);
riog| = |rio| = n(z, i) - (|t = |c])-
Then
riozl = |riol —n(z,ri) - ([t = |e]) = |lio| —n(e,r:) - (¢ - |c])
> |lio| =n(z,li) - (|t] = le) = lliog].
Therefore, |r;o5| > |liog|, and so of is a counterexample too. O

One can immediately see that this lemma implies correctness of step (M1).

LEMMA 6.5 Step (M1) is correct.

PrOOF. Evidently, every solution to S is also a solution to S’. But by Lemma 6.4, every counterex-
ample to S can be turned into a counterexample to S’, so every solution to S’ is also a solution to
S. O

Let us now turn to step (M2).

LEMMA 6.6 (M2) If for some i and x ¢ M we have n(z,l;) < n(x,r;), then S has no solution.
Therefore, step (M2) is correct.

PrOOF. We show that for every (w,>>) there exists a counterexample to (l;, L;) > (r;, R;) w.r.t.
(w,>>). Let o be any substitution grounding for this tuple inequality. Take any term ¢ and consider
the substitution of. We have

riok| = [liok] = |rio| — |lio| + (n(z,rs) — n(z, 1)) - (|t - |zo]).

By Lemma 5.1 there exist terms of an arbitrarily large weight, so for a term ¢ of a large enough
weight we have |r;ol] > |l;0L|, and so ol is a counterexample to (I;, L;) > (r;, R;).

Correctness of (M2) is straightforward. O

Note that after step (M2) for all ¢ and z ¢ M we have n(z,l;) = n(z,r;).
Denote by ©, the substitution such that O.(z) = ¢ for every variable .

LEMMA 6.7 (M3) Let for all i and x & M we have n(z,l;) = n(x,r;). Every solution (w,>>) to S
is also a solution to W (l;,r;). Therefore, step (M3) is correct.

PROOF. Let ¢ be a constant of the minimal weight. Consider the substitution ©.. Note that this
substitution is minimal for M. It follows from the definition of W that (w,>>) is a solution to
W (l;,r;) if and only if |[;0.] > |riO.|. But |[;0.] > |riO.| is a straightforward consequence of the
definition of solutions to tuple inequalities.

Correctness of (M3) is straightforward. O

LEMMA 6.8 Let for all x ¢ M we have n(z,l;) = n(x,r;). Let also W(l;,r;) € D=. Then for every
solution to S™% and every substitution o minimal for M we have |l;o| = |r;o].

Proor. Using the fact that n(z,l;) = n(z,r;) for all z ¢ M| it is not hard to argue that |/;o| —|r;0]
does not depend on o, whenever o is minimal for ML

Let ¢ be a constant of the minimal weight. It follows from the definition of W that if W (l;,r;) €
D=, then for every solution to ID (and so for every solution to S~ we have |[;0.| = |r;O.|. Therefore,
|lio| = |rjo| for all substitutions ¢ minimal for M. O

The proof of correctness of steps (M4)—(M8) will use this lemma in the following way. A pair
(w,>>) is a solution to S if and only if it is a solution to S~ and a solution to (I;, L;) > (r;, R;).
Equivalently, (w, >>) is a solution to S if and only if it is a solution to S~ and for every substitution
o minimal for M we have (l;0, Lijo) > (ro, Rjo). But by Lemma 6.8 we have |l;o| = |rjol, so
(lio, Lio) » (rio, R;o) must be satisfied by either condition 2 or condition 3 of the definition of the
KBO order.

This consideration can be summarized as follows.

LEMMA 6.9 Let for all x ¢ M we have n(x,l;) = n(z,r;). Let also W(l;,r;) € D=. Then a pair
(w,>) is a solution to S if and only if it is a solution to S™ and for every substitution o minimal
for M the following holds. Let ljo = g(t1,...,t,) and rioc = h(s1,...,sp). Then at least one of the
following conditions holds

1. ljo =rijo and L;o >~ R;o; or
2. g> h; or

3. g = h and for some 1 <i <n we have t10 = s10,...,t;_ 10 = s;_10 and tjo > s;o. O

LEMMA 6.10 Step (M4) is correct.

Proor. We know that l; = g(s1,...,s,) and r; = h(ti,...,t,) for g # h. Take any substitution o
minimal for M. Obviously, l;0 = r;o is impossible, so (l;, L;}o > (r;, R;)o if and only if l;o > r;o.
By Lemma 6.9 this holds if and only if g > h, so step (M4) is correct. O

LEMMA 6.11 Step (M5) is correct.

Proor. We know that I; = g(s1,...,s,) and r; = ¢(t1,...,t,). Note that due to PREPRO-
CESS, I; # ry, so n > 1. It follows from Lemma 6.9 that (l;, L;)o = (r;, R;)o if and only if
(15 vy Sny Li)o = (t1,...,ty, R;)o, so step (M5) is correct. O

LEMMA 6.12 Step (MG6) is correct.

Proor. We know that [; = x and r; = y, where z, y are different variables. Note that if L; is empty,
then the substitution 0., where c is of the minimal weight, is a counterexample to (z, L;) > (y, R;).
So assume that L; is non-empty and consider two cases.

1. If there exist at least two terms s, ¢ of the minimal weight, then there exists a counterexample
to (z,L;) > (y,R;). Indeed, if s = ¢, then yo = zo for every o such that o(z) = ¢ and

oly) = s.

2. If there exists exactly one term ¢ of the minimal weight, then zo = yo for every ¢ minimal
for M. Therefore, (z, L;) > (y, R;) is equivalent to (L;) > (R;).

In either case it is not hard to argue that step (M6) is correct. O

LEMMA 6.13 Step (M7) is correct.

PrROOF. We know that I; = x and r; = t. Let ¢ be the least constant in the signature. If
t # ¢, then O, is obviously a counterexample to (x, L;) > (¢, R;). Otherwise ¢ = ¢, then for every
counterexample o we have o(z) = c¢. In either case it is not hard to argue that step (M7) is correct.
O

LEMMA 6.14 Step (M8) is correct.

PrROOF. We know that [; = ¢ and r; = x. Note that ¢ # x due to the PREPROCESS step, so if
z occurs in t we have to = xo for all . Assume now that x does not occur in ¢. Then z € M.
Consider two cases.

1. t is a non-constant. For every substitution ¢ minimal for Ml we have |to| = |zo|, hence to is
a non-constant term of the minimal weight. This implies that the signature contains a unary
function symbol f of the weight 0. Take any substitution o. It is not hard to argue that
L7 is a counterexample to (¢, L;) > (z, R;).

2. t is a constant c. Let d be the greatest constant in the signature among the constants of
the minimal weight. If d # ¢, then ©4 is obviously a counterexample to (¢, L;) > (z, R;).
Otherwise d = ¢, then for every counterexample o we have o(z) = c.

In either case it is not hard to argue that step (M8) is correct. O

Let us now analyze steps TERMINATE. Note that for every constant c the inequality w,.—w, > 0
belongs to D and for every function symbol g the inequality w, > 0 belongs to ID too.

LEMMA 6.15 Step (T1) is correct.

PROOF. Suppose d € G, ¢ # d, and w, — w, > 0 belongs to D=. Then for every solution to S we
have w(c) = w(e), and therefore ¢ is a constant of the minimal weight. But since for every solution
d is the greatest constant among those having the minimal weight, we must have d > c.

The case ¢ € LL is similar. O

LEMMA 6.16 Step (T2) is correct.

Proor. If f is a unary function symbol and w; > 0 belongs to D=, then for every solution
w(f) = 0. By the definition of the KBO we must have f > g for all ¢ € ¥ — {f}. But then (i)
there exists an infinite number of terms of the minimal weight and (ii) a constant d € G cannot be
the greatest term of the minimal weight (since for example f(d) > d and |f(d)| = |d|). O

Step (T3) makes a non-deterministic choice, which can result in several states Si,...,S,. We
say that such a step is correct if the set of solutions to S is the union of the sets of solutions to
S1,--.,Sy.

LEMMA 6.17 Step (T3) is correct.

PROOF. Note that w is a solution to we — w, > 0 if and only if w(c) is the minimal weight, so
addition of we — w, > 0 to D amounts to stating that ¢ has the minimal weight. Evidently, for
every solution, there must be a constant ¢ of the minimal weight, so the step is correct. O

LEMMA 6.18 Step (T4) is correct.

PROOF. Suppose U = one, then for every solution there exists a unique term of the minimal
weight. If, ¢ is a constant such that w, — w, > 0 belongs to D=, then ¢ must be a term of the
minimal weight. Therefore, there cannot be more than one such a constant c. O

6.3 Extracting a solution

In this section we will show how to find a solution when the algorithm terminates with success.

LEMMA 6.19 Step (T5) is correct.

ProOF. To prove correctness of (T5) we have to show the existence of solution. In fact, we will
show how to build a particular solution.

Note that when we terminate at step (T5), the system D is solvable, since it was solvable initially
and we performed consistency checks on every change of .

By Lemma 3.5 there exists an integer solution w to I which is also a solution to the strict
versions of every inequality in D — D=. Likewise, there exists a linear order > extending >>, since
we performed consistency checks on every change of >>. We claim that (w,>>) is a solution to
(R,M, D, U, G,L,>>). To this end we have to show that w is weight function, > is compatible
with w and all items 1-5 of the definition of solution are satisfied.

Let us first show that w is a weight function. Note that D contains all inequalities w, > 0,
where g € ¥ is a non-constant, the inequality w, > 0 and the inequalities wy — w, > 0 for every
constant d € ¥. So to show that w is a weight function it remains to show that at most one unary
function symbol f has weight 0. Indeed, if there were two such function symbols f; and fo, then
at step (T2) we would add both fi; >> fo and fo >> f1, but the following consistency check on >>
would fail.

The proof that > is compatible with w is similar.

Denote by > the instance of KBO order induced by (w,>>).

1. For every tuple inequality (l;, L;) > (r;, R;) in R and every substitution o minimal for M we
have (l;0, Lio) = (rio, R;o). In the proof we will use the fact that w(e) is the minimal weight.

By step (M3), the inequality W (l;,r;) does not belong to D= (otherwise (l;, L;) > (ri, R;)
would be removed at one of steps (M4)-(M8)). It follows from the definition of W that if
W(li,r;) € D— D=, then |[;0.] > |r;©.|, where ¢ is any constant of the minimal weight. In
Lemma 6.8 we proved that |l;0| — |rjo| does not depend on o, whenever o is minimal for M.
Therefore, |l;o| > |rjo| for all substitutions o minimal for M.

2. The weight function w solves every inequality in D and w(e) coincides with the minimal
weight. This follows immediately from our construction, if we show that w(e) is the minimal
weight. Let us show that we is the minimal weight. Indeed, since D initially contains the
inequalities w, — w, > 0 for all constants ¢, we have that w(e) is less than or equal to the
minimal weight. By step (T3), there exists a constant ¢ such that w, —we > 0 is in D™, hence
w(c) = w(e), and so w(e) is greater than or equal to the minimal weight.

3. If U = one, then there exists exactly one term of the minimal weight. Assume U = one.
We have to show that (i) there exists no unary function symbol f of weight 0 and (ii) there
exists exactly one constant of the minimal weight. Let f be a unary function symbol. By our
construction, wy > 0 belongs to . By step (T2) wy > 0 does not belong to D=, so by the
definition of w we have w(f) > 0. By our construction, w, — w, > 0 belongs to D for every
constant ¢. By step (T4), at most one of such inequalities belongs to D=. But if w, — w, > 0
does not belong to D=, then w(c) —w(e) > 0 by the construction of w. Therefore, there exists
at most one constant of the minimal weight.

4. If d € G (respectively d € L) for some constant d, then d is the greatest (respectively least)
term among the terms of the minimal weight. We consider the case d € G, the case d € L is
similar. But by step (T2) there is no unary function symbol f such that w; > 0 belongs to
D=, therefore w(f) > 0 for all unary function symbols f. This implies that only constants
may have the minimal weight. But by step (T1) and the definition of w, for all constants ¢
of the minimal weight we have d > ¢, and hence also d > c.

5. > extends >>. This follows immediately from our construction.

6.4 Time complexity

Provided that we use a polynomial-time algorithm for solving homogeneous linear inequalities, and
a polynomial-time algorithm for transitive closure, we can prove the following lemma.

LEMMA 6.20 The algorithm runs in time polynomial of the size of the system of rewrite rules.

PROOF. Note that the algorithm makes polynomial number of steps. Indeed, initially the size of
R is O(nlogn) of the size of the system of rewrite rules (and can even be made linear, if we avoid
renaming variables). Each of the steps (M4)-(M8) decreases the size of R. The algorithm can
make a non-deterministic choice, but at most once, and the number of non-deterministic branches
is bounded by the number of constants, so it is linear in the size of the original system.

We proved that the number of steps is polynomial in the size of the input. It remains to prove
that every step can be made in polynomial time of the size of a state and that the size of every
state is polynomial in the size of the input.

Solvability of D can be checked in polynomial time by Lemma 3.7. The system D= can be
built in polynomial time by the same lemma. The relation > can be extended to an order if and
only if the transitive closure >>' of >> is irreflexive, i.e., there is no g such that g >>' g. The
transitive closure can be built in polynomial time. The check for irreflexivity can be obviously done
in polynomial time too. Therefore, every step can be performed in polynomial time of the size of
the state.

It remains to show that the size of S is bound by a polynomial. The only part of S that is
not immediately seen to be polynomial is . However, it is not hard to argue that the number of
equations in S of the form W (l,r) is bound by the size of the input, and every equation obviously
has a polynomial size. It is also easy to see that the size of the remaining equations is polynomial
too. a

6.5 A simple example

Let us consider how the algorithm works on the rewrite rule g(x,a,b) — ¢(b,b,a) of Example 2.6.
Initially, R consists of one tuple inequality

(g(z,a,0)) > (g(b; b, a)) (5)

and D consists of the following linear inequalities:

wg >0, we >0, wg—we>0, wp—we>0.

At step (M1) we note that n(z, g(z,a,b)) =1 >0 = n(z,g(b,b,a)). Therefore, we add x to M.
At step (M3) we add the linear inequality we — wp > 0 to D obtaining

wg >0, we >0, wg—we>0, wp—we>0, we—wy=>0.

Now we compute D=. It consists of two equations wp, — w, > 0 and we — wp > 0, so we have to
apply one of the steps (M4)—(MS8), in this case the applicable step is (M5). We replace (5) by

(z,a,b) > (b,b,a). (6)

At the next iteration of step (M3) we should add to D the linear inequality w, — wy, > 0, but this
linear inequality is already a member of D, and moreover a member of ID=. So we proceed to step
(M7). At this step we set L = {b} and replace (6) by

(a,b) > (b, a). (7)
Then at step (M2) we add w, — wp > 0 to D obtaining

UJgZO, w6>03 ’U’a—’weZO, wb—weZO, ’we—waOa ’wa—’waO-

Now wg —wyp > 0 does not belong to the degenerate subsystem of I, so we proceed to TERMINATE.
Steps (T1)—(T4) change neither D nor >, so we terminate with success.

Solutions extracted according to Lemma 6.19 will be any pairs (w,>>) such that w(a) > w(b).
Note that these are not all solutions. There are also solutions such that w(a) = w(b) and a > b.
However, if we try to find a description of all solutions we cannot any more guarantee that the
algorithm runs in polynomial time.

7 Orientability for trivial signatures

Consider a trivial signature which consists of a unary function symbol g and some constants. Let
R be a system of rewrite rules in this signature. If some rule in R has the form ¢t — ¢"(z) such
that = does not occur in ¢, then the system is evidently not orientable. If R contains no such rule,
then R can be replaced by an equally orientable ground system, as the following lemma shows.

LEMMA 7.1 Let R be a system of rewrite rules in a trivial signature 3 such that no rule in R
contains a variable occurring in its right-hand side but not the left-hand side. Define the ground
system R' obtained from R by the following transformations:

1. Replace every rule g™ (z) = ¢™(d) in R by all rules g™ (c) — g"(d) such that c is a constant

n 2.
2. For every rule g¢"(x) — ¢"(z) in R, if m > n then remove this rule, otherwise terminate with
failure.
Then an instance of KBO = orients R if and only if it orients R'. O

We leave the proof of this lemma to the reader. Note that the size of R’ in the lemma is polynomial

in the sum of the sizes of R and Y. Therefore, we can restrict ourselves to ground systems.
Moreover, we can assume that for every rule in R’ the function symbol g never occurs in both

left-hand side and right-hand side of R. Indeed, this can be achieved by replacing every rewrite

rule g(s) — ¢(¢) in R’ by s — t until g occurs in at most one side of the rule. Evidently, we can
assume that R’ contains no trivial rules ¢ — ¢. So we obtain a system consisting of rules g"(c) — d,
¢ — g"(d), where n > 0, or ¢ — d such that ¢, d are different constants. In other words, for every
rule [— r in R’ the outermost symbol of [is different from the outermost symbol of r.

In order to check orientability of R’, consider the system of homogeneous linear inequalities I
which consists of

1. the inequalities w. > 0 for all constants ¢ € ¥ and the inequality w, > 0;
2. for every rule I — r in R' the inequalities W (l,7) = >, cx(n(h, 1) — n(h,r))wy > 0.

Evidently, D can be built in time polynomial in the size of R'. Evidently, if D is unsatisfiable, then
R’ is not orientable. If D is satisfiable, let D~ be the degenerate subsystem of . Let us build a
binary relation >> on ¥ as follows:

1. for every rule [— r in R, if W(l,r) € D™, then we take the outermost symbols hy and hy of
I and r respectively and add hy 3> ho to >>;

2. if wy > 0 belongs to D™, then add g >> ¢ to >> for all constants ¢ € X.

We leave it to the reader to check that R’ is orientable if and only if > can be extended to a linear
order. We can prove in the same way as before, that the check for orientability of R’ can be done
in polynomial time.

8 The problem of orientability by the KBO is P-complete

In Section 6.4 we have shown that the orientability problem can be solved in polynomial time. In
this section we show that this problem is P-complete, and moreover it is P-hard even for ground
rewrite systems. To this end, we reduce the circuit value problem which is known to be P-complete
(see e.g., [Papadimitriou 1994]), to the orientability problem. Our reduction consists of two steps:

1. we reduce the problem of solving systems of linear inequalities AX > 0, X > 0, where A is
an integer matrix, to the orientability problem;

2. we reduce the circuit value problem to solvability of such systems.

In the systems of linear inequalities, we assume all coefficients to be written in the unary notation.
Both reductions will be LOGSPACE.

Let AX > 0 be a system of linear inequalities and we are looking for strictly positive solutions
to it. For every variable z; in the system we introduce a unary function symbol f;. We consider the
signature Y consisting of all such symbols f;, two unary symbols g, h, and a constant c. We will
construct a ground rewrite rule system R whose orientability will be equivalent to the existence of
a solution to AX > 0, X > 0 as follows. First of all, R contains the rewrite rule

ghc — hggc.

An instance of KBO with parameters (w,>>) orients this rule if and only if w(g) = 0 (and hence
also g > h). For each linear inequality I in the system, we add to R a rewrite rule r(I), which will
be demonstrated by an example (in order to avoid double indices). Suppose, for example, that the
inequality can be rewritten in the form

a1x] + ...+ apxp > A 1Tps1 + oo+ ATy (8)

where x1, ..., z, are different variables and a1, ..., an, b1, ..., b, are non-negative coefficients. Then
r(I) has the form

ghfi" - fite = hgflt - fare 9)

Note that for every solution we must have w(f;) > 0 since there may be at most one function
symbol of the weight 0. For every weight function w consider the substitution s of integers to
variables such that w(f;) = s(z;) and let > be an arbitrary precedence relation such that g is
maximal w.r.t. >. We leave it to the reader to check that (w,>>) is a solution to R if and only if
s is a solution to AX > 0,X > 0.

It is not hard to argue that the reduction of A to R is LOGSPACE, provided that the coefficients
of the linear inequations are written in the unary notation.

Let us now describe a reduction of the circuit value problem to the problem of whether a given
system of linear integer inequalities has a positive solution. Consider a circuit with gates g1, ..., gn.
For each gate g; we introduce a new numerical variable z;. We will also use an auxiliary numerical
variable y. We construct a system of linear integer inequalities D in such a way that the circuit
has the value TRUE if and only if D has a positive solution. For each gate g; we introduce a
system of numerical constraints I); in the following way. If ¢; is a FALSE gate then D is {z; = y},
likewise if g; is a TRUE gate then D is {z; = 2y}. If g; is a NOT gate with an input g; then D
is {z; = 3y — z;}. If g; is an AND gate with inputs g; and g then D; is {y < z; < 2y, z; < zj,
z; < xk, Tj +xp — 2y < z;}. Let IV be the union of all I; for 1 <4 < n. It is straightforward to
check that for every positive solution to the system IV each variable z; has the value of the variable
y or twice that value, moreover it has the value of y if and only if the gate g; has the value FALSE.
To complete the construction we obtain D by adding to I an equation z, = 2y. Note that the
coefficients of D are small, so they can be considered as written in the unary notation.

We have shown how to reduce the circuit value problem to the orientability problem. It is clear
that all reductions can be done by a logarithmic-space algorithm.

9 Solving constraints consisting of a single inequality

In [Korovin and Voronkov 2000b] it is shown that the problem of solving the Knuth-Bendix ordering
constraints is NP-complete. Let us show that the problem of solving the Knuth-Bendix ordering
constraints consisting of a single inequality can be solved in polynomial time. Let us fix an instance
of KBO on ground terms, i.e., a precedence relation on the signature 3 and a weight function w. Our
problem is to decide for a given pair of terms s and ¢t whether there exists a grounding substitution
o such that so > to. Since every instance of the Knuth-Bendix order is total on ground terms our
problem is equivalent to the following problem: for a given pair of terms ¢ and s decide whether
for every grounding substitutions o, to > so holds. The algorithm we present is similar to the
algorithm for the orientability. The main difference is that there is no need to solve systems of
linear inequalities for this problem. Since the order is given, we can use a simpler version of the
notion of state S = (R, M), where R is a single tuple inequality and M is a set of variables. Instead
of tuple inequalities (L) > (R) we will consider a new kind of tuple inequalities (L) > (R) with
a natural interpretation. Initially R consists of the tuple inequality (¢) > (s) and M =). Let e
denote the constant that is the minimal term w.r.t. . Instead of using the inequality W (l,r), we

will use the inequality W'(l,r) = > s (n(g,l) — n(g,7))w(g) + (v — vr)w(e) > 0, where v; and v,
are the numbers of occurrences of variables in [and r respectively. Let us present the algorithm.

PREPROCESS. Do the following transformations while possible. If R has the form () > (), then
terminate with success. If R consists of a tuple inequality ([,1,...,l,) > (l,r1,...,m,), replace it

by (l1,...,ln) > (r1,...,m).

MAIN. Now we can assume that R consists of a tuple ([, L) > (r, R) and the term [is different
from the term r.

(M1) For all z such that n(z,l) > n(z,r), add z to M.
(M2) If there exists a variable x & M such that n(z,l) < n(z,r), then terminate with failure.

(M3) If W'(I,r) > 0 then terminate with success. If W'(l,7) < 0 then terminate with failure.
Note that at this point we have W'(l,r) = 0.

(M4) If ({,r) has the form (g(si,...,spn),h(t1,...,%,)) where g and h are distinct, then do the
following. If g > h terminate with success, otherwise terminate with failure.

(M5) If (I,r) has the form (g(s1,...,8n),g(t1,-..,t)), thenreplace (I, L) > (r, R) by (s1,..., 8, L)
(t1,...,tn, R).

(M6) If (I,r) has the form (z,y), where z and y are different variables, do the following. (Note
that at this point x,y € ML) If there exists only one term of the minimal weight, then replace
(I,L) > (r,R) by (L) > (R). Otherwise terminate with failure.

(MT7) If (I,r) has the form (z,t), where ¢ is not a variable, do the following. If ¢ is different from e,
then terminate with failure. Otherwise, replace all occurrences of in L and R by e obtaining
L' and R'. Replace (I, L) > (r,R) by (L") > (R').

(MS8) If ({,7) has the form (¢,z), where ¢ is not a variable, do the following. If ¢ contains z then
terminate with success. Otherwise, if ¢ is not the greatest term among the terms of the
minimal weight, then terminate with failure. Otherwise, replace all occurrences of z in L
and R by t obtaining L' and R/, and replace (I, L) > (r,R) by (L") > (R'). Note that this
step does not increase the size of the tuple inequality since ¢ must be a constant, when we
substitute it for x.

After this step repeat PREPROCESS.

The proof of correctness of each step is almost the same as the proof of correctness for the
corresponding steps in the orientability algorithm, so we leave it to the reader. It is obvious that
the algorithm terminates in polynomial time, since every step of the algorithm can be done in
polynomial time and after every step the size of R decreases.

10 Main results

Lemmas 6.1-6.19 guarantee that the orientability algorithm is correct. Lemma 6.20 implies that it
runs in polynomial time. Hence we obtain the following theorem.

v

THEOREM 10.1 The problem of the existence of an instance of KBO which orients a given rewrite
rule systems can be solved in polynomial time. O

From the reductions of Section 8 we also obtain the following.

THEOREM 10.2 The orientability problem for the KBO is P-complete. Moreover, it is P-hard even
for ground rewrite systems. O

Similarly, in Section 9 we proved the following theorem.

THEOREM 10.3 The problem of solving a given Knuth-Bendix ordering constraint consisting of a
single inequality can be solved in polynomial time. O

The real-valued Knuth-Bendixz order is in the same way as above, except that the range of the
weight function is the set of non-negative real numbers. The real-valued KBO was introduced in
[Martin 1987]. Note that in view of the results of Section 3 on systems of homogeneous linear
inequalities (Lemmas 3.4 and 3.5) the algorithm is also sound and complete for the real-valued
orders. Therefore, we have

THEOREM 10.4 If a rewrite rule system is orientable using the real-valued KBO, then it is also
orientable using the integer-valued KBO. O

It follows from this theorem that all our results formulated for the integer-valued KBO also
hold for the real-valued KBO.

References

BAADER F. AND N1PKOW T'. [1998], Term Rewriting and All That, Cambridge University press, Cambridge.

ComoN H. [1990], ‘Solving symbolic ordering constraints’, International Journal of Foundations of Com-
puter Science 1(4), 387-411.

CoMON H. AND TREINEN R. [1994], Ordering constraints on trees, in S. Tison, ed., ‘Trees in Algebra and
Programming: CAAP’94’, Vol. 787 of Lecture Notes in Computer Science, Springer Verlag, pp. 1-14.

CoRMEN T., LEISERSON C. AND RIVEST R. [1991], Introduction to Algorithms, The MIT Press.

DERSHOWITZ N. AND PLAISTED D. [2001], Rewriting, in A. Robinson and A. Voronkov, eds, ‘Handbook
of Automated Reasoning’, Vol. I, Elsevier Science, chapter 9, pp. 533-608.

DETLEFS D. AND FORGAARD R. [1985], A procedure for automatically proving the termination of a set
of rewrite rules, in J.-P. Jouannaud, ed., ‘Rewriting Techniques and Applications, First International
Conference, RTA-85, Vol. 202 of Lecture Notes in Computer Science, Springer Verlag, Dijon, France,
pp- 255-270.

Dick J., KaLmus J. AND MARTIN U. [1990], ‘Automating the Knuth-Bendix ordering’, Acta Informatica
28(2), 95-119.

JOUANNAUD J.-P. AND OKADA M. [1991], Satisfiability of systems of ordinal notations with the subterm
property is decidable, in J. Albert, B. Monien and M. Rodriguez-Artalejo, eds, ‘Automata, Languages
and Programming, 18th International Colloquium, ICALP’91’, Vol. 510 of Lecture Notes in Computer
Science, Springer Verlag, Madrid, Spain, pp. 455-468.

K~NuTH D. AND BENDIX P. [1970], Simple word problems in universal algebras, in J. Leech, ed., ‘Compu-
tational Problems in Abstract Algebra’, Pergamon Press, Oxford, pp. 263-297.

KorovIN K. AND VORONKOV A. [2000q], A decision procedure for the existential theory of term algebras
with the Knuth-Bendix ordering, in ‘Proc. 15th Annual IEEE Symp. on Logic in Computer Science’,
Santa Barbara, California, pp. 291-302.

KOROVIN K. AND VORONKOV A. [2000b], Knuth-Bendix constraint solving is NP-complete, Preprint CSPP-
8, Department of Computer Science, University of Manchester.
*http://www.cs.man.ac.uk/preprints/index.html

KorovIN K. AND VORONKOV A. [2001], Knuth-bendix ordering constraint solving is NP-complete, in
F. Orejas, P. Spirakis and J. van Leeuwen, eds, ‘Automata, Languages and Programming, 28th Inter-
national Colloquium, ICALP 2001’, Vol. 2076 of Lecture Notes in Computer Science, Springer Verlag,
pp. 979-992.

KRISHNAMOORTHY M. AND NARENDRAN P. [1985], ‘On recursive path ordering’, Theoretical Computer
Science 40, 323-328.

LESCANNE P. [1984], Term rewriting systems and algebra, in R. Shostak, ed., ‘7th International Conference
on Automated Deduction, CADE-7’, Vol. 170 of Lecture Notes in Computer Science, pp. 166-174.

MaRrTIN U. [1987], How to choose weights in the Knuth-Bendix ordering, in ‘Rewriting Techniques and
Applications’, Vol. 256 of Lecture Notes in Computer Science, pp. 42-53.

NARENDRAN P., RUSINOWITCH M. AND VERMA R. [1999], RPO constraint solving is in NP, in G. Gottlob,
E. Grandjean and K. Seyr, eds, ‘Computer Science Logic, 12th International Workshop, CSL’98’, Vol.
1584 of Lecture Notes in Computer Science, Springer Verlag, pp. 385—-398.

NIEUWENHUIS R. [1993], ‘Simple LPO constraint solving methods’, Information Processing Letters 47, 65—
69.

PapaDIMITRIOU C. [1994], Computational Complexity, Addison-Wesley.
SCHRIJVER A. [1998], Theory of Linear and Integer Programming, John Wiley and Sons.

Index

Symbols
> — Knuth-Bendix order 2
1 4
O 11
P 3
|t | — weight of ¢ ...t 2
Ol 10
C
compatible precedence relation 2
consistency check il 8
constant o i i i 2
correct Step ... 9
counterexample oo 10
D
degenerate subsystem L. 4
E
2 5
G
ground ... 2
ground instanceo.ooiiiiiiaon 3
grounding substitutionl 3
H
homogeneous linear inequality 4
I
induced ... 2
K
KBO 1
Knuth-Bendix order 2
induced ... 2
real-valuedl 20
L
length of tuple inequality 5
M
MAIN 8, 19
minimal for X 6
N
N — the set of natural numbers 2
(T,) 8
o

P
precedence relationo 2
PREPROCESS ... 8, 19
R
R — the set of real numbers 3
R* — the set of non-negative real numbers ...3
real-valued Knuth-Bendix order 20
S
ST 10
signature ...l 2
trivial ... 7
SIZ€ it 7
solution i 6
state ...)
substitution 3
grounding i 3
system of homogeneous linear inequalities 4
T
TERMINATE ... 9
trivial signature o il 7
tuple inequalityo ool)
%%
W) 8
weight ... 2
of function symbol 2
weight function ool 2

