
Orienting Equalities with the Knuth-Bendix Order

Konstantin Korovin

MPI Informatik

D-66123 Saarbrücken, Germany

korovin@mpi-sb.mpg.de

Andrei Voronkov

Computer Science Department

University of Manchester, M139PL, UK

voronkov@cs.man.ac.uk

Abstract

Orientability of systems of equalities is the following

problem: given a system of equalities s1 ≃ t1, . . . , sn ≃ tn,

does there exist a simplification ordering ≻ which orients

the system, that is for every i ∈ {1, ..., n}, either si ≻ ti
or ti ≻ si. This problem can be used in rewriting for find-

ing a canonical rewrite system for a system of equalities

and in theorem proving for adjusting simplification order-

ings during completion. We prove that (rather surprisingly)

the problem can be solved in polynomial time when we re-

strict ourselves to the Knuth-Bendix orderings.

1. Introduction

In this section we give an informal overview of the re-

sults proved in this paper. The formal definitions will be

given in the next section.

Let ≻ be any order on ground terms and l → r be a

rewrite rule. We say that ≻ orients l → r if for every ground

instance l′ → r′ of l → r we have l′ ≻ r′. We write l � r if

for every ground instance l′ → r′ of l → r we have l′ ≻ r′

or l′ = r′. We say that ≻ orients an equality s ≃ t, if it

orients either the rewrite rule s → t or the rewrite rule t →
s. The orientability problem is a problem of determining

whether there exists a simplification ordering which orders

a given system of equalities and rewrite rules.

There are situations where we want to check if there

exists a simplification order on ground terms that orients

a given system of (possibly non-ground) rewrite rules and

equalities. One example is when we would like to obtain a

canonical rewrite system equivalent to a given set of equal-

ities. This can be achieved in the following way. We can

apply a paramodulation-based completion procedure using

different ways of orienting critical pairs. Of course, this

could be done by trying, one by one, all possible orienta-

tions of the current set of equalities, but this may result in a

combinatorial explosion of the search space.

A similar situation arises in paramodulation-based rea-

soning, where we may want to adjust a reduction ordering

during the saturation of a clause set. Again, we may want to

check whether a given set of equalities is orientable at all.

It is hard to understand how to solve the orientability

problem in general, since there is no good description of

the class of all simplification orderings. Instead of solving

the general problem, one may want to solve the orientability

problem for known large classes of orderings, such as lexi-

cographic path orderings or the Knuth-Bendix orderings. In

this paper we investigate the orientability problem for the

class of the Knuth-Bendix orderings and prove a surprising

result that for this class of orderings there exists a polyno-

mial time algorithm for checking orientability.

Algorithms for, and complexity of, orientability problem

of systems of rewrite rules for the Knuth-Bendix orders and

various versions of the recursive path orders are considered

in [Dick, Kalmus and Martin 1990, Korovin and Voronkov

2003, Lescanne 1984, Detlefs and Forgaard 1985, Krish-

namoorthy and Narendran 1985].

Related problems of solving ordering constraints for lex-

icographic, recursive path orders and for KBO are NP-

complete, see [Comon 1990, Jouannaud and Okada 1991,

Nieuwenhuis 1993, Narendran, Rusinowitch and Verma

1999, Korovin and Voronkov 2001a]. However, to check

if ≻ orients l → r, it is sufficient to check solvability of

a single ordering constraint r � l. This problem is NP-

complete for LPO as shown in [Comon and Treinen 1994],

and therefore the problem of checking if an LPO orients a

single rewrite rule is coNP-complete. As far as we know,

the orientability problem for sets of equalities has not been

previously studied.

We had to omit some proofs due to lack of space. For

example, we removed all of the proofs related to rewrite

systems as they can be found in [Korovin and Voronkov

2003]. But we give a reasonably detailed proof related to

the main idea of our algorithm, which allows one to avoid

exponential search in the space of all possible orientations.

2. Preliminaries

A signature is a finite set of function symbols with asso-

ciated arities. In this paper Σ denotes an arbitrary signature.

Constants are function symbols of the arity 0. We assume

that Σ contains at least one constant. We denote variables by

x, y, z, constants by a, b, c, d, e, function symbols by f, g, h,

and terms by l, r, s, t. A rewrite rule is a pair of terms (l, r),
usually denoted by l → r. An equality is a multiset of two

terms s, t, usually denoted by s ≃ t. Note that s ≃ t and

t ≃ s are regarded as the same equality. A system of equal-

ities and rewrite rules is a finite set of equalities and rewrite

rules. An expression E (e.g. a term, equality, or a rewrite

rule) is called ground if no variable occurs in E. Denote the

set of natural numbers by N.

The Knuth-Bendix order is a family of orders

parametrized by two parameters: a weight function and a

precedence relation.

DEFINITION 2.1 (weight function) We call a weight func-

tion on Σ any function w : Σ → N such that (i) w(a) > 0
for every constant a ∈ Σ, (ii) there exist at most one unary

function symbol f ∈ Σ such that w(f) = 0. Given a

weight function w, we call w(g) the weight of g. The

weight of any ground term t, denoted |t|, is defined as fol-

lows: for every constant c we have |c| = w(c) and for ev-

ery function symbol g of a positive arity |g(t1, . . . , tn)| =
w(g) + |t1| + . . . + |tn|.

DEFINITION 2.2 A precedence relation on Σ is any total

order ≫ on Σ. A precedence relation ≫ is said to be com-

patible with a weight function w if for every unary function

symbol f , if w(f) = 0, then f is the greatest element w.r.t.

≫.

DEFINITION 2.3 (Knuth-Bendix order) Let w be a weight

function on Σ and ≫ a precedence relation on Σ compatible

with w. The instance of the Knuth-Bendix order induced by

(w,≫) is the binary relation≻ on the set of ground terms of

Σ defined as follows. For all ground terms t = g(t1, . . . , tn)
and s = h(s1, . . . , sk) we have t ≻ s if one of the following

conditions holds:

1. |t| > |s|;

2. |t| = |s| and g ≫ h;

3. |t| = |s|, g = h and for some 1 ≤ i ≤ n we have

t1 = s1, . . . , ti−1 = si−1 and ti ≻ si.

The compatibility condition ensures that every instance of

the Knuth-Bendix order is a simplification order total on

ground terms.

In the sequel we will often refer to the least and the great-

est terms among the terms of the minimal weight for a given

instance of KBO. It is easy to see that every term of the min-

imal weight is either a constant of the minimal weight, or a

term fn(c), where c is a constant of the minimal weight,

and w(f) = 0. Therefore, the least term of the minimal

weight is always the constant of the minimal weight which

is the least among all such constants w.r.t. ≫. This constant

is also the least term w.r.t. ≻.

The greatest term of the minimal weight exists if and

only if there is no unary function symbol of the weight 0.

In this case, this term is the constant of the minimal weight

which is the greatest among such constants w.r.t. ≫.

DEFINITION 2.4 (substitution) A substitution is a map-

ping from a set of variables to the set of terms. A substi-

tution θ is grounding for an expression E (i.e., term, rewrite

rule etc.) if for every variable x occurring in E the term

θ(x) is ground. We denote by Eθ the expression obtained

from E by replacing in it every variable x by θ(x). A

ground instance of an expression E is any expression Eθ

which is ground.

The following definition is central to this paper.

DEFINITION 2.5 (orientability) An instance ≻ of KBO

orients a rewrite rule l → r if for every ground instance

l′ → r′ of l → r we have l′ ≻ r′. An instance ≻ of KBO

orients an equality s ≃ t if it orients either s → t or t → s.

An instance of KBO orients a system R of equalities and

rewrite rules if it orients every equality and rewrite rule in

R.

In [Korovin and Voronkov 2001b, Korovin and Voronkov

2003] we proved that orientability can be solved in polyno-

mial time for systems consisting of rewrite rules only.

Let us show that the problem of orientability of systems

of equalities is at least as hard as the problem of orientability

of systems of rewrite rules.

PROPOSITION 2.6 There exists a logarithmic-space algo-

rithm which for a given system of rewrite rules R produces

a system of equalities E such that R is orientable by an

instance of KBO if and only if so is E.

PROOF. Consider a rewrite system R. Let g be a new bi-

nary symbol and c be a new constant which do not occur

in R. Consider a rewrite system R′ which is obtained from

R by replacing each rewrite rule l → r with a rewrite rule

g(l, x) → g(r, c) where x is a variable which does not occur

in l → r. Let us check that R is orientable by the Knuth–

Bendix order if and only if R′ is. Indeed, let ≻ be an in-

stance of the Knuth–Bendix order which orients R then we

extend parameters of this order to the new symbols in such

a way that c becomes a minimal term in this order. Now it

is straightforward to check that the obtained order ≻′ ori-

ents R′. For the converse direction let us note that if an in-

stance of the Knuth–Bendix order orients R′ then the same

instance also orients R.

To conclude the proof we consider the system of equal-

ities E induced by R′. Since in each rewrite rule from R′

there exists a variable occurring in the left hand-side and

not occurring in the right hand-side it is easy to see that E

is orientable if and only if R′ is orientable. ✷

Note that this reduction also works for the lexicographic

path orderings.

3. Systems of homogeneous linear inequalities

In our proofs and in the algorithm we will use several

properties of homogeneous linear inequalities. The defini-

tions related to systems of linear inequalities can be found

in standard textbooks, see e.g. [Schrijver 1998]. We will

denote column vectors of variables by X , integer or real

vectors by V, W , integer or real matrices by A, B. Column

vectors consisting of 0’s will be denoted by 0. The set of

real numbers is denoted by R, and the set of non-negative

real numbers by R+.

DEFINITION 3.1 (homogeneous linear inequalities) A ho-

mogeneous linear inequality has the form either V X ≥ 0
or V X > 0. A system of homogeneous linear inequalities

is a finite set of homogeneous linear inequalities.

Solutions (real or integer) to systems of homogeneous linear

inequalities are defined as usual. When we write a system

of homogeneous linear inequalities as AX ≥ 0, we assume

that every inequality in the system is of the form V X ≥ 0
(but not of the form V X > 0).

In [Korovin and Voronkov 2003] one can find a proof

of a key property of integer systems of homogeneous lin-

ear inequalities: the existence of a real solution implies the

existence of an integer solution.

LEMMA 3.2 Let W be a system of homogeneous linear in-

equalities with an integer matrix. Let V be a real solution

to this system and for some subsystem of W with the matrix

C we have CV > 0. Then there exists an integer solution

V ′ to W for which we also have CV ′ > 0. ✷

The following lemma was proved in [Martin 1987] for

the systems of linear homogeneous inequalities over the real

numbers. A simpler proof can also be found in [Korovin

and Voronkov 2003]. We formulate this lemma for integer

solutions, which makes no difference by Lemma 3.2.

LEMMA 3.3 Let AX ≥ 0 be a system of homogeneous lin-

ear inequalities where A is an integer matrix and let Sol be

the set of all integer solutions to the system. Then the sys-

tem can be split into two disjoint subsystems BX ≥ 0 and

CX ≥ 0 such that

1. BV = 0 for every V ∈ Sol.

2. If C is non-empty then there exists a solution V ∈ Sol
such that CV > 0. ✷

Let W be a system of homogeneous linear inequalities. We

will call the subsystem BX ≥ 0 of W the degenerate sub-

system if the following holds. Denote by C the matrix of

the complement to BX ≥ 0 in W and by Sol the set of all

integer solutions to W. Then

1. BV = 0 for every V ∈ Sol.

2. If C is non-empty then there exists a solution V ∈ Sol
such that CV > 0.

For every system W of homogeneous linear inequalities the

degenerate subsystem of W will be denoted by W=. Note

that the degenerate subsystem is defined for arbitrary sys-

tems, not only those of the form AX ≥ 0.

The following lemma follows from Lemmas 3.3 and 3.2.

LEMMA 3.4 Let W be a system of homogeneous linear in-

equalities with an integer matrix and its degenerate subsys-

tem is different from W. Let C be the matrix of the com-

plement of the degenerate subsystem. Then there exists an

integer solution V to W such that CV > 0. ✷

We will call any such solution to W best-positive.

We will use the following fundamental property of sys-

tem of homogeneous linear inequalities to prove the lemma

below.

THEOREM 3.5 Let AX ≥ 0 be a system of homogeneous

linear inequalities, where A is an integer matrix. Then there

exists a finite number of integer vectors V1, . . . , Vn such that

the set of solutions to AX ≥ 0 is
{r1V1 + . . . + rnVn | r1, . . . , rn ∈ R

+}. (1)

The proof can be found in, e.g. [Schrijver 1998].

LEMMA 3.6 Consider a system of homogeneous linear in-

equalities W and an integer homogeneous linear inequal-

ity UX > 0. If there exists a solution S to the system

W ∪ {UX > 0} then the degenerate subsystem of W coin-

cides with the degenerate subsystem of W ∪ {UX > 0}.

PROOF. We can assume that W is of the form AX ≥ 0. By

Theorem 3.5 we can find integer vectors V1, . . . , Vn such

that the set of solutions to AX ≥ 0 is (1). Since we have

that US > 0 for a solution to AX ≥ 0 then for some 1 ≤
i ≤ n we have UVi > 0. Also from Lemma 3.3 we have

that there exists a solution S to AX ≥ 0 such that for each

inequality WX ≥ 0 from the nondegenerate subsystem of

AX ≥ 0 we have WS > 0. Now we consider a positive

number r such that rUVi + US > 0, such a number always

exists since we have UVi > 0. It is straightforward to check

that rVi + S satisfies the required properties. ✷

COROLLARY 3.7 Consider a system of homogeneous lin-

ear inequalities W, then W= coincides with (W=)=.

PROOF. From the previous lemma it follows that if we add

to the system W= an inequality from the non-degenerate

subsystem of W then we obtain a new system with the de-

generate part equal to (W=)=. If we continue this process

until we have added all inequalities from the non-degenerate

subsystem of W we obtain that W= coincides with (W=)=.

✷

Let us consider a system of homogeneous linear inequalities

W. We say that an equality V X = 0 follows from W if for

every solution S to W we have V S = 0. Now our goal is

to show that for every equality V X = 0 if it follows from

W then it already follows from the degenerate subsystem of

W. For this we use the following theorem.

THEOREM 3.8 (Fundamental theorem of linear inequal-

ities.) Let A1, . . . , Am, U be vectors in n–dimensional

space. Then, either

1. U is a non-negative linear combination of linearly in-

dependent vectors from A1, . . . , Am, or

2. there exists a vector W such that UW < 0 and

AiW ≥ 0 for 1 ≤ i ≤ m.

PROOF. The proof can be found in, e.g. [Schrijver 1998].

✷

LEMMA 3.9 Consider a system of homogeneous linear in-

equalities W with an integer matrix and an integer homo-

geneous linear equality UX = 0. If UX = 0 follows from

W then it follows from the degenerate subsystem of W .

PROOF. We can assume that W is of the form AX ≥ 0.

First we prove that if UX = 0 follows from AX ≥ 0 then

the vector U is a non-negative linear combination of the row

vectors of the degenerate subsystem of AX ≥ 0. For this

we apply Theorem 3.8 to the row vectors of the matrix A

and the vector U . There are two possible cases.

• U is a non-negative linear combination of the row vec-

tors from the matrix A. 1 ≤ i ≤ k Let us show that

in this combination all coefficients of the vectors from

the non-degenerate subsystem of AX ≥ 0 are equal to

zero. Otherwise, we consider such a vector C. Since

C is a row vector from the non-degenerate subsystem,

there exists a solution S to AX ≥ 0 such that CS > 0
and therefore US > 0, which contradicts to the as-

sumption that UX = 0 follows from AX ≥ 0.

• there exists a vector W such that for each row vector

Q of A we have QW ≥ 0 and also UW < 0. But this

contradicts to the assumption that UX = 0 follows

from AX ≥ 0.

We have shown that U is a non-negative linear combination

of the row vectors from the degenerate subsystem of AX ≥
0.

Now using Corollary 3.7 it is easy to see that UX = 0
follows from the degenerate subsystem of AX ≥ 0. ✷

The following result due to [Khachiyan 1979] is well-

known.

LEMMA 3.10 The existence of a real solution to a system

of linear inequalities can be decided in polynomial time. ✷

This lemma and Lemma 3.2 imply the following key re-

sult, see [Korovin and Voronkov 2003].

LEMMA 3.11 (i) The existence of an integer solution to an

integer system of homogeneous linear inequalities can be

decided in polynomial time. (ii) If an integer system W of

homogeneous linear inequalities has a solution, then its de-

generate subsystem W= can be found in polynomial time.

✷

4. Constraints

In Section 6 we will present an algorithm for orientabil-

ity by the Knuth-Bendix order. The algorithm works not

only with equalities and rewrite rules. It also uses linear

inequalities on the weights of the signature symbols, con-

straints on the precedence relation, and some additional in-

formation. All this information will be formalized using the

notion of constraint.

Let > be any binary relation on ground terms. We extend

it lexicographically to a relation on tuples of ground terms

as follows: we have 〈l1, . . . , ln〉 > 〈r1, . . . , rn〉 if for some

i ∈ {1, . . . , n} we have l1 = r1, . . . , li−1 = ri−1 and li >

ri.

In the sequel we assume that Σ is a fixed signature. We

also assume that different equalities and rewrite rules have

disjoint sets of variables. This can be achieved by renaming

variables.

Our algorithm will work on constraints. Orientability of

a rewrite rule or an equality are special kinds of constraints.

In addition, there are constraints on the precedence relation

and on the weights of the symbols in Σ. The algorithm will

transform constraints step by step. We will show that every

step preserves satisfiability of constraints. Before defining

constraints, we introduce special kind of variables, called

marked variables. Intuitively, marked variables range only

over terms of the minimal weight.

DEFINITION 4.1 (Constraint) An atomic constraint is an

expression having one of the following forms:

1. 〈l1, . . . , ln〉 ?≻ 〈r1, . . . , rn〉, where

l1, . . . , ln, r1, . . . , rn are terms. Such constraints

are called rewriting constraints.

2. 〈l1, . . . , ln〉 ≺?≻ 〈r1, . . . , rn〉, where

l1, . . . , ln, r1, . . . , rn are terms. Such constraints

are called orientability constraints.

3. A (strict or non-strict) homogeneous linear inequality

over the variables {wg | g ∈ Σ}. Such constraints are

called weight constraints.

4. g ?≫ h, where g, h ∈ Σ. Such constraints are called

precedence constraints.

5. gtmw(c), where c is a constant.

A constraint C is a conjunction C1 ∧ . . . ∧ Cn of (zero or

more) atomic constraints. Alternatively, we will sometimes

regard a constraint as the set {C1, . . . , Cn} of all atomic

constraints in it. In this case we say that C contains the

atomic constraints C1, . . . , Cn. Conjunctions (or sets) of

atomic rewriting constraints are called rewriting constraints,

and similar for the orientability, weight, and precedence

constraints.

We consider constraints as conditions on the Knuth-Bendix

order. Every instance of the Knuth-Bendix order which sat-

isfies all atomic constraints in C is called a solution to this

constraint. In order to define solutions, let us give a tech-

nical definition. A substitution σ is called an admissible

substitution for a weight function w if for every marked

variable x the term σ(x) is a ground term of the minimal

weight, that is w(σ(x)) is equal to the smallest weight of a

constant in Σ.

DEFINITION 4.2 (Solution) Let ≻ be the instance of the

Knuth-Bendix order induced by (w,≫). This instance is

called a solution to an atomic constraint C if one of the fol-

lowing conditions holds.

1. C is a rewriting constraint

〈l1, . . . , ln〉 ?≻ 〈r1, . . . , rn〉, and for every ad-

missible substitution σ we have 〈l1σ, . . . , lnσ〉 ≻
〈r1σ, . . . , rnσ〉.

2. C is an orientability constraint

〈l1, . . . , ln〉 ≺?≻ 〈r1, . . . , rn〉 and ≻ is a so-

lution to either 〈l1, . . . , ln〉 ?≻ 〈r1, . . . , rn〉 or

〈r1, . . . , rn〉 ?≻ 〈l1, . . . , ln〉.

3. C is a weight constraint and w solves C in the fol-

lowing sense: replacement of each wg by w(g) gives a

tautology.

4. C is a precedence constraint g ?≫ h, and g ≫ h.

5. C is a constraint gtmw(c), and c is the greatest term of

the minimal weight.

A solution to an arbitrary constraint C is a solution to every

atomic constraint in C. A constraint C is satisfiable if it has

a solution. A constraint C1 implies a constraint C2, denoted

by C1 ⊃ C2, if every solution to C1 is also a solution to

C2. Two constraints are equivalent if they have the same

solutions.

We will often write atomic constraints in W in an equivalent

form, for example write wc > we instead of wc − we > 0.

We will now show how to reduce the orientability prob-

lem for the systems of equalities and rewrite rules to the

satisfiability problem for constraints.

Let R be a system of equalities and rewrite rules such

that every two different rules in R have disjoint variables.

Denote by CR the conjunction of the following constraints:

1. rewriting constraints 〈l〉 ?≻ 〈r〉 such that l → r be-

longs to R.

2. orientability constraints 〈l〉 ≺?≻ 〈r〉 such that l ≃ r

belongs to R.

The following lemma is straightforward.

LEMMA 4.3 An instance ≻ of KBO orients R if and only if

≻ is a solution to CR. ✷

5. Rich constraints and trivial signatures

For technical reasons, it will be convenient for us to work

with constraints which contain enough information to de-

cide some properties of its solutions, for example, which

of the constants of Σ is the smallest. Such constraints are

introduced here and called rich constraints.

DEFINITION 5.1 (Rich Constraint) A constraint C is

called rich if

1. C contains all the constraints wc > 0, where c ∈ Σ is a

constant, and all the constraints wg ≥ 0, where g ∈ Σ
is a non-constant function symbol.

2. There is a constant e ∈ Σ such that for all constants

c ∈ Σ distinct from e, C contains the atomic constraint

c ?≻ e.

3. Exactly one of the following conditions holds. (i)

There is a unary function symbol f ∈ Σ such that

C contains the atomic constraint wf ≤ 0, all of the

atomic constraints f ?≫ g for g ∈ Σ distinct from f ,

and all of the atomic constraints wg > 0 for unary

function symbols g distinct from f . (ii) For some con-

stant d ∈ Σ, C contains the constraint gtmw(d). For

every unary function symbol g ∈ Σ, C contains the

atomic constraint wg > 0.

LEMMA 5.2 Let C be a rich constraint and the KBO ≻
induced by (w,≫) satisfies C.

1. e is the least term with respect to ≻.

2. There exists a unary function symbol f ∈ Σ such that

w(f) = 0 if and only if (i) holds. In addition, if such

a function f does not exist, then the constraint con-

tains gtmw(d), and hence d is the greatest term of the

minimal weight.

3. There exists more than one term of the minimal weight

if and only if either there exists a unary function sym-

bol f ∈ Σ such that w(f) = 0 or there exists a con-

stant d ∈ Σ distinct from e such that C contains the

atomic constraint gtmw(d).

LEMMA 5.3 The orientability problem can be solved in

polynomial time if the orientability problem for rich con-

straints can be solved in polynomial time.

The idea of the proof of the lemma is as follows: one can

“guess” the following properties of solutions: (a) which of

the constants is smallest one, (b) does there exist a unary

function symbol of the weight 0, (c) if such a function does

not exist, then which of the constants is the greatest term

of the minimal weight. Note that we make only a constant

number of guesses.

For technical reasons, we will distinguish two kinds of

signatures. Essentially, our algorithm depends on whether

the weights of terms are restricted or not. For the so-called

non-trivial signatures, the weights are not restricted. When

we present the orientability algorithm for the non-trivial sig-

natures, we will use the fact that terms of sufficiently large

weights always exist. The (straightforward) proof for trivial

signatures is omitted due to lack of space.

A signature is called trivial if it contains no function

symbols of arity ≥ 2, and at most one unary function sym-

bol. Note that a signature is non-trivial if and only if it

contains either a function symbol of arity ≥ 2 or at least

two function symbols of arity 1. The following lemma is

straightforward, the proof can be found in [Korovin and

Voronkov 2003].

LEMMA 5.4 Let Σ be a non-trivial signature and w be a

weight function for Σ. Then for every integer m there exists

a ground term of the signature Σ such that |t| > m.

6. The orientability algorithm

In this section we only consider non-trivial signatures.

Our algorithm works as follows.

Given a system R of equalities or rewrite rules, we build

the initial constraint C = CR. Using Lemma 5.3 we can as-

sume that C is rich. We will always denote by e the constant

such that C contains all atomic constraints c ?≻ e, where c

is a constant distinct from e (such a constant e exists, since

C is rich). Then we repeatedly transform C as described

below. We call the essential size of a constraint the total

number of occurrences of function symbols and variables

in its rewriting and orientability part. Every transformation

step will either terminate with success or failure, or replace

an equality by a rewrite rule, or decrease the essential size

of C.

At each step the constraint C can be represented as a con-

junction R∧W∧O∧P∧G, where R is a rewrite constraint,

W a weight constraint, O an orientability constraints, P a

precedence constraint, and G either empty or has the form

gtmw(c).

For every variable x and term t, denote by n(x, t)
the number of occurrences of x in t. For example,

n(x, g(x, h(y, x))) = 2. Likewise, for every function sym-

bol g ∈ Σ and term t, denote by n(g, t) the number of oc-

currences of g in t. For example, n(h, g(x, h(y, x))) = 1.

For every term t, denote by W (t) the linear expression

obtained as follows. Let v be the number of occurrences of

variables in t. Then

W (t) =
∑

g∈Σ

n(g, t)wg + vwe. (2)

For example, if t = h(x, x, c, e, f(y)), then

W (l) = wh + wc + wf + 4we.

6.1. The algorithm

The algorithm works as follows. Every step con-

sists of a number of state transformations, beginning with

REWRITE RULE defined below. During the algorithm,

we will perform two kinds of satisfiability checks:

• The satisfiability check on W is the check whether W

has a solution. If it does not, we terminate with failure.

• The satisfiability check on P is the check whether

P is satisfiable, that is the transitive closure of the

set {(g, h) | g ?≫ h is an atomic constraint in P} is ir-

reflexive. i.e., contains no pair (g, g). If P is inconsis-

tent, then we terminate with failure.

It is not hard to argue that both kinds of satisfiability checks

can be performed in polynomial time. The satisfiability

check on W is polynomial by Lemma 3.11. The satisfia-

bility check on P is polynomial since the transitive closure

of a binary relation can be computed in polynomial time,

see, e.g. [Cormen, Leiserson and Rivest 1991].

When any of the sets W or P changes, we assume that

we perform the corresponding satisfiability check and ter-

minate with failure if it fails.

We will label parts of the algorithm, these labels will be

used in the proof of its soundness.

REWRITE RULE.

(R0) Do the following transformations while possible. If R

contains a tuple inequality 〈l1, . . . , ln〉 ?≻ 〈l1, . . . , ln〉,
terminate with failure. Otherwise, if R contains a tu-

ple inequality 〈l, l1, . . . , ln〉 ?≻ 〈l, r1, . . . , rn〉, replace

it by 〈l1, . . . , ln〉 ?≻ 〈r1, . . . , rn〉.

Now R has the form
〈l1, L1〉 ?≻ 〈r1, R1〉,

· · ·
〈lk, Lk〉 ?≻ 〈rk, Rk〉,

(3)

such that each li is a term different from the corresponding

term ri.

(R1) For all x and i such that n(x, li) > n(x, ri), mark the

variable x.

(R2) If for some i there exists an unmarked variable x such

that n(x, li) < n(x, ri), then terminate with failure.

(R3) Add to W all the linear inequalities W (li) ≥ W (ri)
for all i and perform the satisfiability check on W.

Now compute W=. If W= contains none of the inequalities

W (li) ≥ W (ri) proceed to EQUALITY. Otherwise, for all

i such that (W (li) ≥ W (ri)) ∈ W
= apply the applicable

case below, depending on the form of li and ri.

(R4) If li = g(s1, . . . , sn) and ri = h(t1, . . . , tp), where

g is different from h, then replace the constraint

〈li, Li〉 ?≻ 〈ri, Ri〉 by g ?≫ h. Perform the satisfia-

bility check on P.

(R5) If li = g(s1, . . . , sn) and ri = g(t1, . . . , tn),
then replace 〈li, Li〉 ?≻ 〈ri, Ri〉 by

〈s1, . . . , sn, Li〉 ?≻ 〈t1, . . . , tn, Ri〉.

(R6) If (li, ri) has the form (x, y), where x and y are dif-

ferent variables, do the following. (Note that at this

point both x and y are marked.) If Li is empty, then

terminate with failure. If the constraint guarantees the

existence of more than one term of the minimal weight

(see Lemma 5.2), then also terminate with failure. Oth-

erwise, replace 〈li, Li〉 ?≻ 〈ri, Ri〉 by 〈Li〉 ?≻ 〈Ri〉.

(R7) If (li, ri) has the form (x, t), where t is not a vari-

able, do the following. If t is different from e, or Li is

empty, then terminate with failure. Otherwise replace

in Li and Ri the variable x by e, obtaining L′

i and R′

i

respectively, and then replace 〈li, Li〉 ?≻ 〈ri, Ri〉 by

〈L′

i〉 ?≻ 〈R′

i〉.

(R8) If (li, ri) has the form (t, x), where t is not a vari-

able, do the following. If t contains x, remove

〈li, Li〉 ?≻ 〈ri, Ri〉 from C. Otherwise, if t is a non-

constant or Li is empty, terminate with failure. (Note

that at this point x is marked and (W (t) ≥ W (x)) ∈
W=.) Let now t be a constant c. If C does not contain

the atomic constraint gtmw(c), then terminate with

failure. Otherwise replace in Li and Ri the variable

x by c, obtaining L′

i and R′

i respectively, and then re-

place 〈li, Li〉 ?≻ 〈ri, Ri〉 by 〈L′

i〉 ?≻ 〈R′

i〉.

After this step repeat REWRITE RULE.

EQUALITY.

(E0) Do the following transformations while

possible. If O contains an atomic con-

straint 〈s1, . . . , sn〉 ≺?≻ 〈s1, . . . , sn〉, termi-

nate with failure. Otherwise, if O contains

〈s, s1, . . . , sn〉 ≺?≻ 〈s, t1, . . . , tn〉, replace it by

〈s1, . . . , sn〉 ≺?≻ 〈t1, . . . , tn〉.

If O is empty, proceed to TERMINATE. Otherwise, O now

has the form
〈s1, S1〉 ≺?≻ 〈t1, T1〉,

· · ·
〈sk, Sk〉 ≺?≻ 〈tk, Tk〉,

(4)

such that each si is a term different from the corresponding

term ti.

(E1) If, for some i and variable x we have

n(x, si) > n(x, ti), replace 〈si, Si〉 ≺?≻ 〈ti, Ti〉
by 〈si, Si〉 ?≻ 〈ti, Ti〉 and proceed to REWRITE

RULE. Likewise, if for some i and variable x we have

n(x, ti) > n(x, si), replace 〈si, Si〉 ≺?≻ 〈ti, Ti〉 by

〈ti, Ti〉 ?≻ 〈si, Si〉 and proceed to REWRITE RULE.

Note that after this step for every i and variable x, the num-

ber of occurrences of x in si coincides with its number of

occurrences in ti.

Now for each 〈si, Si〉 ≺?≻ 〈ti, Ti〉 in O such that W ⊃
W (si) = W (ti) apply (E2) below, if there is no such tuples

in O then proceed to TERMINATE.

(E2) If the top symbols of si and ti coin-

cide, i.e., si = g(u1, . . . , um) and ti =
g(v1, . . . , vm), then replace 〈si, Si〉 ≺?≻ 〈ti, Ti〉
by 〈u1, . . . , um, Si〉 ≺?≻ 〈v1, . . . , vm, Ti〉 and pro-

ceed to REWRITE RULE. Otherwise, remove

〈si, Si〉 ≺?≻ 〈ti, Ti〉 from the constraint, and proceed

to EQUALITY.

TERMINATE. If the constraint contains gtmw(d), then

for all constants c different from d such that wc ≥ we be-

longs to W= add d ?≫ c to the constraint. Perform the sat-

isfiability check on P. Terminate with success.

Note that after TERMINATE, for each

〈si, Si〉 ≺?≻ 〈ti, Ti〉 in O either W ∧ W (si) > W (ti) or

W ∧ W (ti) > W (si) is satisfiable.

6.2. Correctness

In this section we prove correctness of the algorithm and

show how to find a solution when the algorithm terminates

with success. The correctness will follow from a series of

lemmas asserting that all of the transformation steps per-

formed by the algorithm preserve the set of solutions. Al-

though the algorithm can terminate with success without

eliminating all orientability constraints, we will be able to

show that in this case the resulting constraint is always sat-

isfiable. To prove this we employ lemmas on homogeneous

linear inequalities from Section 3.

We will use the following notation and terminology

in the proof. We say that a step of the algorithm is

equivalence-preserving if the set of solutions to the con-

straint before this step coincides with the set of solutions

after the step. When we use substitutions in the proof, we

always assume that the substitutions are grounding for the

relevant terms.

The following lemma can be proved by a straightforward

application of the definition of solution to a state.

LEMMA 6.1 (satisfiability check) If satisfiability check on

W or on P terminates with failure, then S has no solution.

✷

In [Korovin and Voronkov 2003] we presented an algo-

rithm for checking orientability of systems of rewrite rules

by the KBO. Since REWRITE RULE uses the same steps

as the algorithm of [Korovin and Voronkov 2003] (though

written in a slightly different notation), we can deduce the

following lemma about REWRITE RULE.

LEMMA 6.2 Steps (R0)–(R8) are equivalence-preserving.

✷

LEMMA 6.3 Step (E1) is equivalence-preserving .

PROOF. Consider 〈si, Si〉 ≺?≻ 〈ti, Ti〉 in O such that for

some variable x, n(x, si) > n(x, ti). To prove the lemma it

suffices to show that if we replace 〈si, Si〉 ≺?≻ 〈ti, Ti〉 by

〈ti, Si〉 ?≻ 〈si, Ti〉 in our constraint, then we obtain an un-

satisfiable constraint C′. Assume that C′ has a solution ≻.

Let σ be any substitution grounding for this tuple inequal-

ity. Take any term u and modify σ by mapping x into u,

obtaining σu
x . We have

|siσ
u
x | − |tiσ

u
x | =

|siσ| − |tiσ| + (n(x, si) − n(x, ti)) · (|u| − |xσ|).

Since there exist terms of an arbitrarily large weight, for

a term u of a large enough weight we have |siσ
u
x | >

|tiσ
u
x |, which contradicts to the assumption 〈ti, Si〉σ

u
x ≻

〈si, Ti〉σ
u
x . ✷

LEMMA 6.4 Step (E2) is equivalence-preserving.

PROOF. At this step we have that for each variable x the

number of occurrences of x in si is the same as the the num-

ber of occurrences of x in ti and therefore neither si nor ti
is a variable. Also, for every solution to the constraint and

every grounding substitution σ we have |siσ| = |tiσ|.
Consider the case when top symbols of si and ti coin-

cide, i.e., si = g(u1, . . . , um) and ti = g(v1, . . . , vm).
Then it easy to see that if we have a solution to our

constraint such that 〈si, Si〉 ≺?≻ 〈ti, Ti〉 the same solu-

tion will satisfy 〈u1, . . . , um, Si〉 ≺?≻ 〈v1, . . . , vm, Ti〉 and

vice versa.

Now we consider the case when top symbols of si and

ti are different, i.e. si = g(ū) and ti = h(v̄). It suffices

to show that if we have a solution ≻ to the constraint after

removing 〈si, Si〉 ≺?≻ 〈ti, Ti〉, denoted as C′, then ≻ is

also a solution to 〈si, Si〉 ≺?≻ 〈ti, Ti〉. Consider a solution

≻ to C′ induced by (w,≫). Assume that g ≫ h, then for

every substitution σ we have siσ ≻ tiσ since |siσ| = |tiσ|.
Similar, if h ≫ g then for every substitution σ we have

tiσ ≻ siσ. ✷

Let us show that TERMINATE preserves satisfiability.

LEMMA 6.5 TERMINATE is equivalence-preserving.

PROOF. Let us show that the addition of all atomic con-

straints d ?≫ c at this step preserves equivalence. If C has

no solution, then this is obvious. Otherwise, take any so-

lution ≻ to C and let this solution be induced by (w,≫).

We know C contains gtmw(d), hence d must be the great-

est term of the minimal weight. It is not hard to argue

that at the TERMINATE step, W contains all constraints

wc ≥ we, where c is a constant different from d. If such

a constraint belongs to W
=, then we have w(c) = w(e),

hence c is a term of the minimal weight. But then we must

have d ≻ c. By the construction, C also contains we ≥ wd,

so C ⊃ we = wd. Therefore, d ≻ c also implies d ≫ c, and

the addition of d ?≫ c does not change the set of solutions.

✷

We have shown that all steps of our algorithm preserve

satisfiability of constraints. Now we show that if the algo-

rithm terminates with success then the constraint is satis-

fiable, moreover we will be able to find a solution to the

constraint in polynomial time.

We call a constraint C saturated if application of our ori-

entability algorithm to C does not change C and terminates

with success.

LEMMA 6.6 If a constraint C = R ∧ W ∧ P ∧ G ∧ O

is saturated then the constraint C′ = R ∧ W ∧ P ∧ G is

satisfiable.

PROOF. We have that W is satisfiable, and for each rewrit-

ing constraint 〈li, Li〉 ?≻ 〈ri, Ri〉 the weight constraint

W (li) ≥ W (ri) does not belong to W=. By Lemma 3.4

there exists a solution w to W such that for each rewriting

constraint 〈li, Li〉 ?≻ 〈ri, Ri〉 we have W (li)w > W (ri)w.

Let ≻ be an ordering induced by (w,≫), where ≫ is an ar-

bitrary extension of P to a linear order. We need to show that

≻ satisfies the rewriting constraint R (constraints W,P,G,

are obviously satisfied). For this let us consider a tuple

〈li, Li〉 ?≻ 〈ri, Ri〉 in R and an admissible substitution σ

and show that 〈li, Li〉σ ≻ 〈ri, Ri〉σ. From algorithm (rules

(R1), (R2)) we have that for each unmarked variable x,

n(x, li) = n(x, ri), also for each marked variable y we have

|yσ| = w(e). Therefore

|liσ| − |riσ| = W (li)w − W (ri)w > 0,

this shows that 〈li, Li〉σ ≻ 〈ri, Ri〉σ. ✷

LEMMA 6.7 Every saturated constraint is satisfiable.

PROOF. Consider a saturated constraint

C = R ∧ W ∧ P ∧ G ∧ O.

We show that C is satisfiable by induction on the number

of atomic constraints in O. If O is empty then the claim

follows from Lemma 6.6. Now assume that O is not empty.

Since C is saturated we have that for each atomic constraint

〈si, Si〉 ≺?≻ 〈ti, Ti〉 in O either W ∧ W (si) > W (ti) or

W ∧ W (ti) > W (si) is satisfiable. Assume that W ∧
W (si) > W (ti) is satisfiable, then add W (si) > W (ti)
to W and remove 〈si, Si〉 ≺?≻ 〈ti, Ti〉 from O, obtaining

W′ and O′ respectively. Let us show that the obtained con-

straint

C′ = R ∧ W
′ ∧ P ∧ G ∧ O

′

is saturated. From Lemma 3.6 it follows that the degen-

erate subsystem of W′ coincides with the degenerate sub-

system of W and since C is saturated we have that none

of the rules (R0)–(R8), (E0), (E1) can change the con-

straint C′. Also from Lemma 3.9 it follows that for each

〈s′i, S
′

i〉 ≺?≻ 〈t′i, T
′

i 〉 in O′ either W′ ∧ W (s′i) > W (t′i) or

W′ ∧ W (t′i) > W (s′i) is satisfiable. Hence, rule (E2) also

can not change the constraint C′ and we conclude that C′ is

saturated. Since O′ contains less atomic constraints than O′

and C′ is saturated, we can apply the induction hypothesis.

✷

6.3. Time complexity

Provided that we use a polynomial-time algorithm for

solving systems of homogeneous linear inequalities, and a

polynomial-time algorithm for transitive closure, a careful

analysis of our algorithm shows the following.

LEMMA 6.8 The algorithm runs in time polynomial of the

size of the system of rewrite rules. ✷

7. Main results

Lemmas 6.1–6.7 guarantee that the orientability algo-

rithm is correct. Lemma 6.8 implies that it runs in poly-

nomial time. Hence we obtain the following theorem.

THEOREM 7.1 The problem of the existence of an instance

of KBO which orients a given system of equalities and

rewrite rules can be solved in the time polynomial in the

size of the system. Moreover, if the system of equalities and

rewrite rules is orientable by an instance of KBO we can

find a such instance in polynomial time. ✷

In [Korovin and Voronkov 2003] we proved that the

problem of orientability by the KBO is P-complete for sys-

tems of rewrite rules, moreover it is P-hard even for ground

rewrite rule systems. Therefore, the following result follows

from [Korovin and Voronkov 2003] and Proposition 2.6.

THEOREM 7.2 The problem of orientability of systems of

equalities and rewrite rules by the KBO is P-complete.

Moreover, it is P-hard even for systems consisting only of

equalities. ✷

References

COMON H. [1990], ‘Solving symbolic ordering constraints’,

International Journal of Foundations of Computer Science

1(4), 387–411.

COMON H. AND TREINEN R. [1994], Ordering constraints on

trees, in S. Tison, ed., ‘Trees in Algebra and Programming:

CAAP’94’, Vol. 787 of Lecture Notes in Computer Science,

Springer Verlag, pp. 1–14.

CORMEN T., LEISERSON C. AND RIVEST R. [1991], Introduc-

tion to Algorithms, The MIT Press.

DETLEFS D. AND FORGAARD R. [1985], A procedure for auto-

matically proving the termination of a set of rewrite rules, in

J.-P. Jouannaud, ed., ‘Rewriting Techniques and Applications,

First International Conference, RTA-85’, Vol. 202 of Lecture

Notes in Computer Science, Springer Verlag, Dijon, France,

pp. 255–270.

DICK J., KALMUS J. AND MARTIN U. [1990], ‘Automating the

Knuth-Bendix ordering’, Acta Informatica 28(2), 95–119.

JOUANNAUD J.-P. AND OKADA M. [1991], Satisfiability of sys-

tems of ordinal notations with the subterm property is decid-

able, in J. Albert, B. Monien and M. Rodrı́guez-Artalejo, eds,

‘Automata, Languages and Programming, 18th International

Colloquium, ICALP’91’, Vol. 510 of Lecture Notes in Com-

puter Science, Springer Verlag, Madrid, Spain, pp. 455–468.

KHACHIYAN L. [1979], ‘A polynomial algorithm in linear pro-

gramming’, Soviet Mathematical Doklady 20, 191–194.

KOROVIN K. AND VORONKOV A. [2001a], Knuth-Bendix or-

dering constraint solving is NP-complete, in F. Orejas, P. Spi-

rakis and J. van Leeuwen, eds, ‘Automata, Languages and

Programming, 28th International Colloquium, ICALP 2001’,

Vol. 2076 of Lecture Notes in Computer Science, Springer

Verlag, pp. 979–992.

KOROVIN K. AND VORONKOV A. [2001b], Verifying orientabil-

ity of rewrite rules using the Knuth-Bendix order, in A. Mid-

deldorp, ed., ‘Rewriting Techniques and Applications, 12th

International Conference, RTA 2001’, Vol. 2051 of Lecture

Notes in Computer Science, Springer Verlag, pp. 137–153.

KOROVIN K. AND VORONKOV A. [2003], ‘Verifying orientabil-

ity of rewrite rules using the Knuth-Bendix order’, Informa-

tion and Computation pp. 1–29. To appear.

KRISHNAMOORTHY M. AND NARENDRAN P. [1985], ‘On

recursive path ordering’, Theoretical Computer Science

40, 323–328.

LESCANNE P. [1984], Term rewriting systems and algebra, in

R. Shostak, ed., ‘7th International Conference on Automated

Deduction, CADE-7’, Vol. 170 of Lecture Notes in Computer

Science, pp. 166–174.

MARTIN U. [1987], How to choose weights in the Knuth-Bendix

ordering, in ‘Rewriting Techniques and Applications’, Vol.

256 of Lecture Notes in Computer Science, pp. 42–53.

NARENDRAN P., RUSINOWITCH M. AND VERMA R. [1999],

RPO constraint solving is in NP, in G. Gottlob, E. Grandjean

and K. Seyr, eds, ‘Computer Science Logic, 12th International

Workshop, CSL’98’, Vol. 1584 of Lecture Notes in Computer

Science, Springer Verlag, pp. 385–398.

NIEUWENHUIS R. [1993], ‘Simple LPO constraint solving

methods’, Information Processing Letters 47, 65–69.

SCHRIJVER A. [1998], Theory of Linear and Integer Program-

ming, John Wiley and Sons.

