
Knuth–Bendix Constraint Solving Is
NP-Complete

KONSTANTIN KOROVIN
Max-Planck-Institut für Informatik, Saarbrücken, Germany
and
ANDREI VORONKOV
The University of Manchester, UK

We show the NP-completeness of the existential theory of term algebras with the Knuth–Bendix
order by giving a nondeterministic polynomial-time algorithm for solving Knuth–Bendix ordering
constraints.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languges]:
Mathematical Logic—Computational logic; I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving—Resolution

General Terms: Theory

Additional Key Words and Phrases: Ordering constraints, automated deduction, Knuth–Bendix
orders

1. INTRODUCTION

Solving ordering constraints in term algebras with various reduction orders is
used in rewriting to prove termination of recursive definitions and in automated
deduction to prune the search space [Comon 1990; Kirchner 1995; Nieuwen-
huis 1999; Nieuwenhuis and Rubio 2001; Ganzinger and Nieuwenhuis 2001].
Nieuwenhuis [1999] connects further progress in automated deduction with
constraint-based deduction.

Two kinds of orders are used in automated deduction: the Knuth–Bendix
order [Knuth and Bendix 1970] and various versions of recursive path or-
ders [Dershowitz 1982; Kamin and Lévy 1980]. The Knuth–Bendix order is
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used in the state-of-the-art theorem provers, for example, E [Schulz 2002],
SPASS [Weidenbach et al. 1999], Vampire [Riazanov and Voronkov 2002], and
Waldmeister [Löchner and Hillenbrand 2002]. There is extensive literature on
solving recursive path ordering constraints (e.g., Comon [1990], Jouannaud
and Okada [1991], Nieuwenhuis [1993], and Narendran et al. [1999]). The de-
cidability of Knuth–Bendix ordering constraints was proved only recently in
Korovin and Voronkov [2000]. The algorithm described in that paper shows
that the problem belongs to 2-NEXPTIME. It was also shown that the prob-
lem is NP-hard by reduction of the solvability of systems of linear Diophantine
equations to the solvability of Knuth–Bendix ordering constraints. In this aricle,
we present a nondeterministic polynomial-time algorithm for solving Knuth–
Bendix ordering constraints, and hence show that the problem is contained in
NP for every term algebra with a Knuth–Bendix order. As a consequence, we
obtain that the existential first-order theory of any term algebra with a Knuth–
Bendix order is NP-complete too. Let us note that the problem of solvability of
a Knuth–Bendix ordering constraints consisting of a single inequality can be
solved in polynomial time [Korovin and Voronkov 2001].

This article is structured as follows. In Section 2, we define the main no-
tions of this paper. In Section 3, we introduce the notion of isolated form
of constraints and show that every constraint can be effectively transformed
into an equivalent disjunction of constraints in isolated form. This transfor-
mation is represented as a nondeterministic polynomial-time algorithm com-
puting members of this disjunction. After this, it remains to show that solv-
ability of constraints in isolated form can be decided by a nondeterminis-
tic polynomial-time algorithm. In Section 4, we present such an algorithm
using transformation to systems of linear Diophantine inequalities over the
weights of variables. Finally, in Section 5, we complete the proof of the main
result and present some examples. Section 6, discusses related work and open
problems.

2. PRELIMINARIES

We call a signature a finite set of function symbols with associated arities.
In this article we assume an arbitrary but fixed signature �. Constants are
function symbols of the arity 0. We assume that � contains at least one con-
stant. We denote variables by x, y , z and terms by r, s, t. The set of all ground
terms of the signature � can be considered as the term algebra of this sig-
nature, TA(�), by defining the interpretation gTA(�) of any function symbol g
by gTA(�)(t1, . . . , tn) = g (t1, . . . , tn). For details, see, for example, Hodges [1993]
or Maher [1988]. It is easy to see that in term algebras any ground term is
interpreted by itself.

Denote the set of natural numbers by N. The Knuth–Bendix order is a family
of orders parameterized by two parameters: a weight function and a precedence
relation.

Definition 2.1 (Weight Function). We call a weight function on � any func-
tion w : � → N such that (i) w(a) > 0 for every constant a ∈ �, (ii) there exists
at most one unary function symbol f ∈ � such that w( f ) = 0. Given a weight
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function w, we call w(g ) the weight of g . The weight of any ground term t,
denoted |t|, is defined as follows: for every constant c we have |c| = w(c) and for
every function symbol g of a positive arity |g (t1, . . . , tn)| = w(g )+|t1|+· · ·+|tn|.

These conditions on the weight function ensure that the Knuth–Bendix order
is a simplification order total on ground terms (see, e.g., Baader and Nipkow
[1998]). In this article, f will always denote a unary function symbol of the
weight 0.

The following lemma is straightforward.

LEMMA 2.2. Every weight function satisfies the following properties.

(1) The weight of every ground term is positive.
(2) If � contains no unary function symbol of the weight 0, then for every natural

number n there is only a finite number of terms of the weight n. If � contains
the unary function symbol of the weight 0, then every weight contains either
no terms at all or an infinite number of different terms.

(3) If a term s is a subterm of t and |s| = |t|, then t has the form f m(s) for some
m (recall that f is the function symbol of the weight 0).

Definition 2.3. A precedence relation on � is any total order � on �. A
precedence relation � is said to be compatible with a weight function w if the
existence of a unary function symbol f of the weight zero implies that f is the
greatest element with respect to �.

In the sequel, we assume a fixed weight function w on � and a fixed prece-
dence relation � on �, compatible with w.

Definition 2.4. The Knuth–Bendix order on TA(�) is the binary relation �
defined as follows: For any ground terms t = g (t1, . . . , tn) and s = h(s1, . . . , sk),
we have t � s if one of the following conditions holds:

(1) |t| > |s|;
(2) |t| = |s| and g � h;
(3) |t| = |s|, g = h and for some 1 ≤ i ≤ n we have t1 = s1, . . . , ti−1 = si−1 and

ti � si.

Some authors [Martin 1987; Baader and Nipkow 1998] define Knuth–Bendix
orders with real-valued weight functions. We do not consider such orders here,
because for real-valued functions even the comparison of ground terms can be
undecidable (see Example 5.7 in Section 5).

The main result of this article is the following:

THEOREM 5.2. The existential first-order theory of any term algebra with the
Knuth–Bendix order in a signature with at least two symbols is NP-complete.

To prove this result, we introduce a notion of Knuth–Bendix ordering con-
straint and show the following:

THEOREM 5.1. For every Knuth–Bendix order, the problem of solving order-
ing constraints is contained in NP.
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We also show that the systems of linear Diophantine equations and inequalities
can be represented as ordering constraints for some Knuth–Bendix orders, and
as a corollary we obtain the following:

THEOREM 5.4. For some Knuth-Bendix orders, the problem of solving order-
ing constraints is NP-complete.

The proof of Theorem 5.2 will be given after a series of lemmas. The idea of
the proof is as follows: First, we will make TA(�) into a two-sorted structure by
adding the sort of natural numbers, and extend its signature by

(1) the weight function | · | on ground terms;
(2) the addition function + on natural numbers;
(3) the Knuth–Bendix order � on ground terms.

Given an existential formula of the first-order theory of a term algebra with
the Knuth–Bendix order, we will transform it step by step into an equiva-
lent disjunction of existential formulas of the extended signature. The main
aim of these steps is to replace all occurrences of � by linear Diophantine in-
equalities on the weights of variables. After such a transformation we will
obtain existential formulas consisting of linear Diophantine inequalities on the
weight of variables plus statements expressing that, for some fixed natural
number N , there exists at least N terms of the same weight as |x|, where x
is a variable. We will show how these statements can be expressed using sys-
tems of linear Diophantine inequalities on the weights of variables and then
use the fact that the decidability of systems of linear Diophantine equations is
in NP.

We denote by TA+(�) the following structure with two sorts: the term alge-
bra sort and the arithmetical sort. The domains of the term algebra sort and
the arithmetical sort are the sets of ground terms of � and natural numbers,
respectively. The signature of TA+(�) consists of

(1) all symbols of � interpreted as in TA(�);
(2) symbols 0, 1, >, + having their conventional interpretation over natural

numbers;
(3) the binary relation symbol � on the term algebra sort, interpreted as the

Knuth–Bendix order;
(4) the unary function symbol | · |, interpreted as the weight function mapping

terms to numbers.

When we need to distinguish the equality = on the term algebra sort from the
equality on the arithmetical sort, we denote the former by =TA, and the latter
by =N.

We will prove that the existential theory of TA+(�) is in NP, from which the
fact that the existential theory of any term algebra with the Knuth–Bendix
order belongs to NP follows immediately. We consider satisfiability, validity,
and equivalence of formulas with respect to the structure TA+(�). We call a
constraint in the language of TA+(�) any conjunction of atomic formulas of this
language.
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LEMMA 2.5. The existential theory of TA+(�) is in NP if and only if so is the
constraint satisfiability problem.

PROOF. Obviously, any instance A of the constraint satisfiability problem can
be considered as validity of the existential sentence ∃x1 · · · xn A, where x1, . . . , xn
are all variables of A, so the “only if” direction is trivial.

To prove the “if” direction, take any existential formula ∃x1, . . . , xn A. This
formula is satisfiable if and only if so is the quantifier-free formula A. By con-
verting A into disjunctive normal form we can assume that A is built from
literals using ∧, ∨. Replace in A

(1) any formula ¬s � t by s =TA t ∨ t � s,
(2) any formula ¬s =TA t by s � t ∨ t � s,
(3) any formula ¬p > q by p =N q ∨ q > p,
(4) any formula ¬p =N q by p > q ∨ q > p,

and convert A into disjunctive normal form again. It is easy to see that we obtain
a disjunction of constraints. The transformation gives an equivalent formula
since both orders � and > are total.

It follows from these arguments that there exists a nondeterministic
polynomial-time algorithm which, given an existential sentence A, computes
on every branch a constraint Ci such that A is valid if and only if one of the
constraints Ci is satisfiable.

Definition 2.6 (Substitution, Solution). A substitution is a mapping from
the set of variables to the set of terms. A substitution θ is called grounding for
an expression C (i.e., term or constraint) if for every variable x occurring in C
the term θ (x) is ground. Let θ be a substitution grounding for an expression
C. We denote by Cθ the expression obtained from C by replacing in it every
variable x by θ (x). A substitution θ is called a solution to a constraint C if θ is
grounding for C and Cθ is valid in TA+(�).

In the sequel, we will often replace a constraint C(x̄) by a formula A(x̄, ȳ)
containing extra variables ȳ and say that they are “equivalent”. By this we
mean that TA+(�) |= ∀x̄(C(x̄) ↔ ∃ ȳ A(x̄, ȳ)). In other words, the set of solutions
to C is exactly the set of solutions to A projected on x̄.

3. ISOLATED FORMS

We are interested not only in satisfiability of constraints, but also in their
solutions. Our algorithm will consist of equivalence-preserving transforma-
tion steps. When the signature contains no unary function symbol of the
weight 0, the transformation will preserve equivalence in the following strong
sense. At each step, given a constraint C(x̄), we transform it into constraints
C1(x̄, ȳ), . . . , Cn(x̄, ȳ) such that for every sequence of ground terms t̄, the con-
straint C(t̄) holds if and only if there exist k and a sequence of ground terms s̄
such that Ck(t̄, s̄) holds. In other words, the following formula holds in TA+(�):

C(x̄) ↔ ∃ ȳ(C1(x̄, ȳ) ∨ · · · ∨ Cn(x̄, ȳ)).
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Moreover this transformations will be presented as a nondeterministic
polynomial-time algorithm which computes on every branch some Ci(x̄, ȳ), and
every Ci(x̄, ȳ) is computed on at least one branch. When the signature contains
a unary function symbol of the weight 0, the transformation will preserve a
weaker form of equivalence: some solutions will be lost, but solvability will be
preserved. More precisely, we will introduce a notion of an f-variant of a term
and show that the following formula holds:

C(x̄) ↔ ∃ ȳ∃z̄(f-variant(x̄, z̄) ∧ (C1(z̄, ȳ) ∨ · · · ∨ Cn(z̄, ȳ))), (1)

where f -variant(x̄, z̄) expresses that x̄ and z̄ are f-variants.
In our proof, we will reduce solvability of Knuth–Bendix ordering constraints

to the problem of solvability of systems of linear Diophantine inequalities on
the weights of variables. Condition (1) of the definition of the Knuth–Bendix
order |t| > |s| has a simple translation into a linear Diophantine inequality, but
conditions (2) and (3) do not have one. So we will split the Knuth–Bendix order
in two partial orders: �w corresponding to condition 1 and �lex corresponding
to conditions (2) and (3). Formally, we denote by t �w s the formula |t| > |s|
and by t �lex s the formula |t| =N |s| ∧ t � s. Obviously, t1 � t2 if and only if
t1 �lex t2 ∨ t1 �w t2. So in the sequel we will assume that � is replaced by the
new symbols �lex and �w.

We use x1 � x2 � · · · � xn to denote the formula x1 � x2∧x2 � x3∧. . .∧xn−1 �
xn, and similar for other binary symbols in place of �.

A term t is called flat if t is either a variable or has the form g (x1, . . . , xm),
where g ∈ �, m ≥ 0, and x1, . . . , xm are variables. We call a constraint chained
if

(1) it has a form t1#t2# · · · #tn, where each occurrence of # is �w, �lex or =TA;
(2) each term ti is flat;
(3) if some of the ti ’s has the form g (x1, . . . , xn), then x1, . . . , xn are some of the

t j ’s.

For example g (x, y) �w f ( y) �lex y �w x =TA z is a chained constraint.
Denote by ⊥ the logical constant “false”.

LEMMA 3.1. Any constraint C is equivalent to a disjunction C1 ∨ · · · ∨ Ck of
chained constraints. Moreover, there exists a nondeterministic polynomial-time
algorithm which, for a given C, computes on every branch either ⊥ or some Ci;
and every Ci is computed on at least one branch.

PROOF. First, we can apply flattening to all terms occurring in C as follows. If
a nonflat term g (t1, . . . , tm) occurs in C, take any i such that ti is not a variable.
Then replace C by v = ti ∧ C′, where v is a new variable and C′ is obtained
from C by replacing all occurrences of ti by v. After a finite number of such
replacements all terms will become flat.

Let s, t be flat terms occurring in C such that no comparison s#t occurs in C.
Using the valid formula s �w t ∨ s �lex t ∨ s =TA t ∨ t �w s ∨ t �lex s we can
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replace C by the disjunction of the constraints

s �w t ∧ C, s �lex t ∧ C, s =TA t ∧ C,
t �w s ∧ C, t �lex s ∧ C.

By repeatedly doing this transformation we obtain a disjunction of constraints
C1 ∨ · · · ∨ Ck in which for every i ∈ {1, . . . , k} and every terms s, t occurring in
Ci, some comparison constraint s#t occurs in Ci.

To complete the proof we show how to turn each Ci into a chained constraint.
Let us call a cycle any constraint s1#s2# · · · #sn#s1, where n ≥ 1. We can remove
all cycles from Ci using the following observation:

(1) if all # in the cycle are =TA, then sn#s1 can be removed from the constraint;
(2) if some # in the cycle is �w or �lex, then the constraint Ci is unsatisfiable.

After removal of all cycles the constraint Ci can still be not chained because it
can contain transitive subconstraints of the form s1#s2# · · · #sn ∧ s1#sn, n ≥ 2.
Then either Ci is unsatisfiable or s1#sn can be removed using the following
observations:

(1) Case: s1#sn is s1 �w sn. If some # in s1#s2# · · · #sn is �w, then s1 �w sn follows
from s1#s2# · · · #sn, otherwise s1#s2# · · · #sn implies |s1| = |sn| and hence Ci is
unsatisfiable.

(2) Case: s1#sn is s1 �lex sn. If some # in s1#s2# · · · #sn is �w, then Ci is unsatisfi-
able. If all # in s1#s2# · · · #sn are =TA, then Ci is unsatisfiable too. Otherwise,
all # in s1#s2# · · · #sn are either �lex or =TA, and at least one of them is �lex.
It is not hard to argue that s1 �lex sn follows from s1#s2# · · · #sn.

(3) Case: s1#sn is s1 =TA sn. If all # in s1#s2# · · · #sn are =TA, then s1 =TA sn
follows from s1#s2# · · · #sn, otherwise Ci is unsatisfiable.

It is easy to see that after the removal of all cycles and transitive subconstraints
the constraint Ci becomes chained.

Note that the transformation of C into the disjunction of constraints C1∨. . .∨
Ck in the proof can be done in nondeterministic polynomial time in the following
sense: there exists a nondeterministic polynomial-time algorithm which, given
C, computes on every branch either ⊥ or some Ci, and every Ci is computed on
at least one branch.

We will now introduce several special kinds of constraints which will be used
in our proofs below, namely arithmetical, triangle, simple, and those in isolated
form.

A constraint is called arithmetical if it uses only arithmetical relations =N

and >, for example | f (x)| > |a| + 3.
A constraint y1 =TA t1 ∧ . . . ∧ yn =TA tn is said to be in triangle form if

(1) y1, . . . , yn are pairwise different variables, and
(2) for all j ≥ i the variable yi does not occur in t j .

The variables y1, . . . , yn are said to be dependent in this constraint.
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A constraint is said to be simple if it has the form

x11 �lex x12 �lex · · · �lex x1n1 ∧ · · · ∧ xk1 �lex xk2 �lex · · · �lex xknk ,

where x11, . . . , xknk are pairwise different variables.
A constraint is said to be in isolated form if either it is ⊥ or it has the form

Carith ∧ Ctriang ∧ Csimp,

where Carith is an arithmetical constraint, Ctriang is in triangle form, and Csimp
is a simple constraint such that no variable of Csimp is dependent in Ctriang.

Our decision procedure for the Knuth–Bendix ordering constraints is de-
signed as follows: By Lemma 3.1, we can transform any constraint into an
equivalent disjunction of chained constraints. Our next step is to give a transfor-
mation of any chained constraint into an equivalent disjunction of constraints
in isolated form. Then, in Section 4, we show how to transform any constraint
in isolated form into an equivalent disjunction of systems of linear Diophantine
inequalities on the weights of variables. Then we can use the result that the
decidability of systems of linear Diophantine inequalities is in NP.

Let us show how to transform any chained constraint into an equivalent
disjunction of isolated forms. The transformation will work on the constraints
of the form

Cchain ∧ Carith ∧ Ctriang ∧ Csimp, (2)

such that

(1) Carith, Ctriang, Csimp are as in the definition of isolated form;
(2) Cchain is a chained constraint;
(3) each variable of Cchain neither occurs in Csimp nor is dependent in Ctriang.

We will call such constraints (2) working. Let us call the size of a chained con-
straint C the total number of occurrences of function symbols and variables in
C. Likewise, the essential size of a working constraint is the size of its chained
part Cchain.

At each transformation step we will replace working constraint (2) by a dis-
junction of working constraints but of smaller essential sizes. Evidently, when
the essential size is 0, we obtain a constraint in isolated form.

Let us prove some lemmas about solutions to constraints of the form (2). Note
that any chained constraint is of the form

t11#t12# · · · #t1m1

�w
· · ·
�w

tk1#tk2# · · · #tkmk ,

(3)

where each # is either =TA or �lex and each ti j is a flat term. We call a row in
such a constraint any maximal subsequence ti1#ti2# · · · #timi in which �w does
not occur. So constraint (3) contains k rows, the first one is t11#t12# · · · #t1m1 and
the last one tk1#tk2# · · · #tkmk . Note that for any solution to (3) all terms in a row
have the same weight.
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LEMMA 3.2. There exists a polynomial-time algorithm which transforms any
chained constraint C into an equivalent chained constraint C′ such that (i) the
size of C′ is not greater than the size of C; (ii) C′ is either ⊥ or of the form (3);
and (iii) C′ has the following property. Suppose some term of the first row t1 j of
C′ is a variable y. Then either

(1) y has exactly one occurrence in C′, namely t1 j itself; or
(2) y has exactly two occurrences in C′, both in the first row: some t1n has the

form f ( y) for n < j , and w( f ) = 0; moreover in this case there exists at
least one �lex between t1n and t1 j .

PROOF. Note that if y occurs in any term t( y) which is not in the first row,
then C is unsatisfiable, since for any solution θ to C we have | yθ | > |t( y)θ |,
which is impossible. Suppose that y has another occurrence in a term t1n of the
first row. Consider two cases.

(1) t1n coincides with y . Then either C has no solution, or part of the first row
between t1n and t1 j has the form y =TA · · · =TA y . In the latter case part
y =TA can be removed from the first row, so we can assume that no term in
the first row except t1 j is y .

(2) t1n is a nonvariable term containing y. Since t1n and y are in the same row,
for every solution θ to C we have | yθ | = |t1nθ |. Since t1n is a flat term, by
Lemma 2.2 the equality | yθ | = |t1nθ | is possible only if t1n is f ( y), n < j
and there exists at least one �lex between t1n and t1 j . Finally, if f ( y) has
more than one occurrence in the first row, we can get rid of all of them but
one in the same way as we got rid of multiple occurrences of y .

Note that the transformation presented in this proof can be made in polynomial
time. It is also not hard to argue that the transformation does not increase the
size of the constraint.

We will now take a working constraint Cchain ∧ Carith ∧ Ctriang ∧ Csimp, whose
chained part satisfies Lemma 3.2 and transform it into an equivalent disjunc-
tion of working constraints of smaller essential sizes in Lemma 3.5 below. More
precisely, these constraints will be equivalent when the signature contains no
unary function symbol of the weight 0. When the signature contains such a sym-
bol f , a weaker notion of equivalence will hold, see formula (1) at the beginning
of this section.

A term s is called an f -variant of a term t if s can be obtained from t by a
sequence of operations of the following forms: replacement of a subterm f (r) by
r or replacement of a subterm r by f (r). Evidently, f -variant is an equivalence
relation. Two substitutions θ1 and θ2 are said to be f -variants if for every
variable x the term xθ1 is an f -variant of xθ2. In the proof of several lemmas
below, we will replace a constraint C(x̄) by a formula A(x̄, ȳ) containing extra
variables ȳ and say that C(x̄) and A(x̄, ȳ) are equivalent up to f . By this, we
mean the following:

(1) For every substitution θ1 grounding for x̄ such that TA+(�) |= C(x̄)θ1, there
exists a substitution θ2 grounding for x̄, ȳ such that TA+(�) |= A(x̄, ȳ)θ2,
and the restriction of θ2 to x̄ is an f -variant of θ1.
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(2) For every substitution θ2 grounding for x̄, ȳ such that TA+(�) |= A(x̄, ȳ)θ2,
there exists a substitution θ1 such that TA+(�) |= C(x̄)θ1 and θ1 is an
f -variant of the restriction of θ2 to x̄.

In other words, formula (1) holds. Note that when the signature contains no
unary function symbol of the weight 0, equivalence up to f is the same as
equality of terms in TA+(�).

LEMMA 3.3. Let C = Cchain ∧ Carith ∧ Ctriang ∧ Csimp be a working constraint
and θ1 be a solution to C. Let θ2 be an f -variant of θ1 such that

(1) θ2 is a solution to Cchain and
(2) θ2 coincides with θ1 on all variables not occurring in Cchain.

Then there exists an f -variant θ3 of θ2 such that

(1) θ3 is a solution to C and
(2) θ3 coincides with θ2 on all variables except for the dependent variables of

Ctriang.

PROOF. Let us first prove that θ2 is a solution to both Carith and Csimp. Since
Csimp and Cchain have no common variables, it follows that θ1 and θ2 agree on all
variables of Csimp, and so θ2 is a solution to Csimp. Since θ1 and θ2 are f -variants
and the weight of f is 0, for every term t we have |tθ1| = |tθ2|, whenever tθ1
is ground. Therefore, θ2 is a solution to Carith if and only if so is θ1. So θ2 is a
solution to Carith.

It is fairly easy to see that θ2 can be changed on the dependent variables
of Ctriang obtaining a solution θ3 to C, which satisfies the conditions of the
lemma.

This lemma will be used below in the following way. Instead of considering
the set �1 of all solutions to Cchain, we can restrict ourselves to a subset �2 of
�1 as soon as for every solution θ1 ∈ �1 there exists a solution θ2 ∈ �2 such
that θ2 is an f -variant of θ1.

Let us call an f -term any term of the form f (t). By the f -height of a term t,
we mean the number n such that t = f n(s) and s is not an f -term. Note that the
f -terms are exactly the terms of a positive f -height. We call the f -distance be-
tween two terms s and t the difference between the f -height of s and f -height of
t. For example, the f -distance between the terms f (a) and f ( f (g (a, b))) is −1.

Let us now prove a lemma that implies that any solution to C can be trans-
formed into a solution with a “small” f -height.

LEMMA 3.4. Let Cchain be a chained constraint of the form

pl #pl−1# · · · #p1 �w . . . ,

where each # is either =TA or �lex. Further, let Cchain satisfy the conditions of
Lemma 3.2 and θ be a solution to Cchain. Then, there exists an f -variant θ ′ of θ

such that

(1) θ ′ is a solution to Cchain and
(2) for every k ∈ {1, . . . , l }, the f -height of pkθ ′ is at most k.
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PROOF. Let us first prove the following statement

(4) The row pl #pl−1# · · · #p1 has a solution θ1, such that (i) θ1 is an f -variant
of θ , (ii) for every 1 < k ≤ l the f -distance between pkθ1 and pk−1θ1 is at
most 1.

Suppose that for some k the f -distance between pkθ and pk−1θ is d > 1. Evi-
dently, to prove (4) it is enough to show the following.

(5) There exists a solution θ2 such that (i) θ2 is an f -variant of θ , (ii) the
f-distance between pkθ2 and pk−1θ2 is d − 1, and (iii) for every k′ �= k the
f-distance between pk′θ2 and pk′−1θ2 coincides with the f-distance between
pk′θ and pk′−1θ .

Let us show (5), and hence (4). Since θ is a solution to the row, then for every
k′′′ ≥ k the f -distance between any pk′′′θ and pkθ is nonnegative. Likewise, for
every k′′ < k − 1 the f -distance between any pk−1θ and pk′′θ is nonnegative.
Therefore, for all k′′′ ≥ k > k′′, the f -distance between pk′′′θ and pk′′θ is ≥ d ,
and hence is at least 2. Let us prove the following:

(6) Every variable x occurring in pl #pl−1# · · · #pk does not occur in pk−1# · · · #p1.

Let x occur in terms pi and pj such that l ≥ i ≥ k and k − 1 ≥ j ≥ 1.
Since the constraint satisfies Lemma 3.2, then pi = f (x) and pj = x. Then, the
f-distance between piθ and pj θ is 1, but by our assumption it is at least 2, so
we obtain a contradiction. Hence, (6) is proved.

Now note the following:

(7) If for some k′′′ ≥ k a variable x occurs in pk′′′ , then xθ is an f -term.

Suppose, by contradiction, that xθ is not an f -term. Note that pk′′′θ has a posi-
tive f -height, so pk′′′ is either x of f (x). But we proved before that the f -distance
between pk′′′θ and pk−1θ is at least 2, so x must be an f -term.

Now, to satisfy (5), define the substitution θ2 as follows:

θ2(x) =
{

θ (x), if x does not occur in pl , . . . , pk ;
t, if x occurs in pl , . . . , pk and θ(x) = f (t).

By (6) and (7), θ2 is defined correctly. We claim that θ2 satisfies (5). The properties
(i)–(iii) of (5) are straightforward by our construction, it only remains to prove
that θ2 is a solution to the row, that is, for every k′ we have pk′θ2#pk′−1θ2.
Consider the case when k′ > k. Since θ is a solution to the row, for each k′′ ≥ k
we have pk′′θ is an f -term and hence pk′′ is either a variable or a term f (x)
for some variable x. Therefore, by definition of θ2, we have pk′θ = f (pk′θ2) and
pk′−1θ = f (pk′−1θ2), so pk′θ2#pk′−1θ2 follows from pk′θ#pk′−1θ . When k′ < k we
have pk′θ = pk′θ2 and pk′−1θ = pk′−1θ2, hence pk′θ2#pk′−1θ2. The only remaining
case is k = k′.

Assume k = k′. Since the f -distance between pkθ and pk−1θ is d > 1, we
have pkθ �= pk−1θ , and hence pk#pk−1 must be pk �lex pk−1. Since θ is a solution
to pk �lex pk−1 and since θ2 is an f -variant of θ , the weights of pkθ2 and pk−1θ2
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coincide. But then pkθ2 �lex pk−1θ2 follows from the fact that the f -distance
between pkθ2 and pk−1θ2 is d − 1 ≥ 1.

Now the proof of (5), and hence of (4), is completed. In the same way as (4),
we can also prove

(8) The constraint Cchain has a solution θ ′ such that (i) θ ′ is an f -variant of θ ,
(ii) for every 1 < k ≤ l the f -distance between pkθ1 and pk−1θ

′ is at most 1.
(iii) the f -height of p1θ

′ is at most 1, and (iv) θ ′ and θ coincide on all variables
occurring in the rows below the first one.

It is easy to see that θ ′ from (8) satisfies all conditions required by our lemma.

The following lemma is the main lemma of this section.

LEMMA 3.5. Let C = Cchain ∧ Carith ∧ Ctriang ∧ Csimp be a working constraint
in which Cchain is nonempty. There exists a nondeterministic polynomial-time
algorithm that transforms C into a disjunction of working constraints having
Cchain of smaller sizes and equivalent to C up to f .

PROOF. The proof is rather complex, so we will give a plan of it. The proof
is presented as a series of transformations on the first row of Cchain. These
transformations may result in new constraints added to Carith, Ctriang, and Csimp.
First, we will get rid of equations s =TA t in the first row, by introducing quasi-
flat terms, that is, terms f k(t), where t is flat. If the first row contained no
function symbols, then we will replace the first row by new constraints added
to Csimp and Carith, thus decreasing the size of the chained part. If there were
function symbols in the first row, we will continue as follows:

We will “guess” the values of some variables x of the first row, that is, replace
each of them by a quasi-flat term f m(g ( ȳ)), where ȳ is a sequence of new
variables. After these steps, the size of the first row can, in general, increase.
Then we will show how to replace the first row by new constraints involving
only variables occurring in the row, but not function symbols. Finally, we will
prove that the number of variables from the new constraints that remain in the
chained part is not greater than the original number of variables in the first
row, and therefore the size of the chained part decreases.

Formally, consider the first row of Cchain. Let this row be pl #pl−1# · · · #p1.
Then Cchain has the form pl #pl−1# · · · #p1 �w t1# · · · #tn. If l = 1, that is, the
first row consists of one term, we can remove this row and add |p1| > |t1|
to Carith obtaining an equivalent constraint with smaller essential size, that
is, the size of Cchain. So we assume that the first row contains at least two
terms.

As before, we assume that f is a unary function symbol of the weight 0. By
Lemma 3.4, if some pi is either a variable x or a term f (x), it is enough to
search for solutions θ such that the height of xθ is at most l .

A term is called quasi-flat if it has the form f k(t) where t is flat. We will now
get rid of equalities in the first row, but by introducing quasi-flat terms instead
of the flat ones. When we use notation f k(t) below, we assume k ≥ 0, and f 0(t)
will stand for t. We eliminate equalities from the first row in two steps. First,
we will eliminate equalities among variables and f -terms transforming them
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into an equivalent set of equalities in triangle form, then we eliminate all other
equalities in the first row.

Consider the set S of all equalities t =TA s occurring in the first row of
Cchain, where s and t are either variables or flat f -terms. We will transform
S into an equivalent system F in triangle form such that all terms in F will
be flat. We assume that before the transformation F is empty. First, we re-
place all equalities in S of the form f (x) =TA f ( y) by x =TA y obtaining an
equivalent system S′ in which all equalities are of the form x =TA t. Now, ei-
ther S′ is unsatisfiable or there exists an equality x =TA t in S′, such that
x does not occur in f -terms of S′. We move such an equality x =TA t into
F and replace all occurrences of x in S′ by t, obtaining S′′. It is easy to
see that the system F ∪ S′′ is equivalent to S, all terms in F ∪ S′′ are flat,
F is in triangle form and the number of variables occurring into S′′ is less
than the number of variables occurring into S. Repeating this process, we
can eliminate all variables from S and obtain the required F in polynomial
time.

Now we remove from Cchain all equalities occurring in S. Let us note that
variables of F can occur in Cchain only in the first row, and only in the terms
f r ( y) for 0 ≤ r ≤ 1. Next we repeatedly replace all occurrences of dependent
variables of F occurring in Cchain obtaining an equivalent constraint in chained
form with terms of the form f k(x) where k is bounded by the size of F . Finally,
we move F into Ctriang.

After all these transformations, we can assume that equalities f k(x) =TA
f m( y) do not occur in the first row.

If the first row contains an equality x =TA t between a variable and a term,
we replace this equality by t, replace all occurrences of x by t in the first row,
and add x =TA t to Ctriang obtaining an equivalent working constraint. Since
x can occur only in the terms of the form f r (x), it is easy to see that these
replacements can be done in polynomial time.

If the first row contains an equality g (x1, . . . , xm) =TA h(t1, . . . , tn) where g
and h are different function symbols, the constraint is unsatisfiable.

If the first row contains an equality g (x1, . . . , xn) =TA g ( y1, . . . , yn), we do
the following: If the term g (x1, . . . , xn) coincides with g ( y1, . . . , yn), replace this
equality by g (x1, . . . , xn). Otherwise, find the smallest number i such that xi is
different from yi and

(1) add yi =TA xi to Ctriang;
(2) replace all occurrences of yi in Cchain by xi.

We apply this transformation repeatedly until all equalities g (x1, . . . , xn) =TA
g ( y1, . . . , yn) disappear from the first row.

So we can now assume that the first row contains no equalities and hence it
has the form qn �lex qn−1 �lex · · · �lex q1, where all of the terms qi are quasi-flat.

If all of the qi are variables, we can move qn �lex qn−1 �lex · · · �lex q1 to
Csimp and add |q1| > |t1| to Carith obtaining an equivalent working constraint
of smaller essential size. Hence, we can assume that at least one of the qi is a
nonvariable term.
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Take any term qk in the first row such that qk is either a variable x or a term
f r (x). Note that other occurrences of x in Cchain can only be in the first row, and
only in the terms of the form f k(x).

Consider the formula G defined as∨
g∈�−{ f }

∨
m=0...l

x =TA f m(g ( ȳ)), (9)

where ȳ is a sequence of pairwise different new variables. Since we proved that
it is enough to restrict ourselves to solutions θ for which the height of xθ is at
most l , the formulas C and C ∧ G are equivalent up to f .

Using the distributivity laws, C ∧ G can be turned into an equivalent dis-
junction of formulas x =TA f m(g ( ȳ)) ∧ C. For every such formula, replace x by
f m(g ( ȳ)) in the first row, and add x =TA f m(g ( ȳ)) to the triangle part. We do
this transformation for all terms in the first row of the form f k(z), where k ≥ 0
and z is a variable. Now all the terms in the first row are of the form f m(g ( ȳ)),
where g is different from f and m ≥ 0.

Let us show how to replace constraints of the first row with equiva-
lent constraints consisting of constraints on variables and arithmetical con-
straints. Consider the pair qn, qn−1. Now qn = f k(g (x1, . . . , xu)) and qn−1 =
f m(h( y1, . . . , yv)) for some variables x1, . . . , xu, y1, . . . , yv and function symbols
g , h ∈ � − { f }. Then qn �lex qn−1 is f k(g (x1, . . . , xu)) �lex f m(h( y1, . . . , yv)). If
k < m or (k = m and h � g ), then f k(g (x1, . . . , xu)) �lex f m(h( y1, . . . , yv)) is
equivalent to ⊥. If k > m or (k = m and g � h), then f k(g (x1, . . . , xu)) �lex
f m(h( y1, . . . , yv)) is equivalent to the arithmetical constraint |g (x1, . . . , xu)| =N

|h( y1, . . . , yv)| which can be added to Carith. If k = m and g = h (and hence
u = v), then

f k(g (x1, . . . , xu)) �lex f m(h( y1, . . . , yv)) ↔ |g (x1, . . . , xu)| =N |h( y1, . . . , yv)| ∧∨
i=1...u

(x1 =TA y1 ∧ · · · ∧ xi−1 =TA yi−1 ∧ xi � yi).

We can now do the following. Add |g (x1, . . . , xu)| =N |h( y1, . . . , yv)| to Carith and
replace qn �lex qn−1 with the equivalent disjunction∨

i=1...u

(x1 =TA y1 ∧ · · · ∧ xi−1 =TA yi−1 ∧ xi � yi).

Then using the distributivity laws turn this formula into the equivalent
disjunction of constraints of the form C∧x1 =TA y1∧· · ·∧xi−1 =TA yi−1 ∧xi � yi
for all i = 1 · · · u. For each of these constraints, we can move, as before, the
equalities x =TA y one by one to the triangle part Ctriang, and make Cchain ∧ xi �
yi into a disjunction of chained constraints as in Lemma 3.1.

Let us analyze what we have achieved. After these transformations, in each
member of the obtained disjunction the first row is removed from the chained
part Cchain of C. Since the row contained at least one function symbol, each
member of the disjunction will contain at least one occurrence of a function
symbol less than the original constraint. This is enough to prove termination of
our algorithm, but not enough to present it as a nondeterministic polynomial-
time algorithm. The problem is that, when pn is a variable x or a term f (x),
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one occurrence of x in pn can be replaced by one or more constraints of the form
xi � yi, where xi and yi are new variables. To be able to show that the essential
sizes of each of the resulting constraints is strictly less than the essential size
of the original constraint, we have to modify our algorithm slightly.

The modification will guarantee that the number of new variables introduced
in the chained part of the constraint is not greater than the number of variables
eliminated from the first row. We will achieve this by moving some constraints to
the simple part Csimp. The new variables only appear when we replace a variable
in the first row by a term f k(h(u1, . . . , um)) or by f k(h(v1, . . . , vm)) obtaining a
constraint f k(h(u1, . . . , um)) �lex f k(h(v1, . . . , vm)), which is then replaced by

u1 =TA v1 ∧ · · · ∧ ui−1 =TA vi−1 ∧ ui � vi. (10)

Let us call a variable ui (respectively, vi) new if f k(h(u1, . . . , um)) (respectively,
f k(h(v1, . . . , vm))) occurred in the terms of the first row when we replaced a
variable by a nonvariable term containing h using formula (9). In other words,
new variables are those that did not occur in the terms of the first row be-
fore our transformation, but appeared in the terms of the first row during the
transformation. All other variables are called old. After the transformation we
obtain a conjunction E of constraints of the form xi =TA x j or xi � x j , where
xi, x j can be either new or old. Without loss of generality we can assume that
this conjunction of constraints does not contain chains of the form x1# · · · #xn#x1
where n ≥ 2 and at least one of the #’s is �. Indeed, if E contains such a chain,
then it is unsatisfiable.

We will now show that the number of new variables can be restricted by
moving constraints on these variables into the triangle or simple parts. Among
the new variables, let us distinguish the following three kinds of variables. A
new variable x is called blue in E if E contains a chain x =TA x1 =TA · · · =TA xn,
where xn is an old variable. Evidently, a blue variable x causes no harm since
it can be replaced by an old variable xn. Let us denote by ≺ the inverse relation
to �. A new variable x is called red in E if it is not blue in E and E contains
a chain x#x1# · · · #xn, where xn is an old variable, and all of the #’s are either
=TA, or �, or ≺. Red variables are troublesome, since there is no obvious way to
get rid of them. However, we will show that the number of red variables is not
greater than the number of replaced variables (such as the variable x in (9)).
Finally, all new variables that are neither blue nor red in E are called green
in E.

Getting Rid of the Green Variables. We will now show that the green variables
can be moved to the simple part of the constraint Csimp. To this end, note an
obvious property: if E contains a constraint x# y and x is green, then y is green
too. We can now do the following with the green variables. As in Lemma 3.1, we
can turn all the green variables into a disjunction of chained constraints of the
form v1# · · · #vn, where # are =TA, �w, or �lex, and use the distributivity laws to
obtain chained constraints v1# · · · #vn. Let us call this constraint a green chain.
Then, if there is any equality vi =TA vi+1 in the green chain, we add this equality
to Ctriang and replace this equality by vi+1 in the chain. Further, if the chain has
the form v1 �lex · · · �lex vk �w vk+1# · · · #vn, we add v1 �lex · · · �lex vk to Csimp and
|vk| > |vk+1| to Carith, and replace the green chain by vk+1# · · · #vn. We do this
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transformation until the green chain becomes of the form v1 �lex · · · �lex vk . Af-
ter this, the green chain can be removed from E and added to Csimp. Evidently,
this transformation can be presented as a nondeterministic polynomial-time
algorithm.

The Red Variables. Let us show the following: in every term f k(h(u1, . . . , um))
in the first row at most one variable among u1, . . . , um is red. It is not hard to
argue that it is sufficient to prove a stronger statement: if for some i the variable
ui is red or blue, then all variables u1, . . . , ui−1 are blue. So suppose that ui is
either red or blue and ui# yn# · · · # y1 is a shortest chain in E such that y1 is old.
We prove that the variables u1, . . . , ui−1 are blue, by induction on n. When n = 1
and ui is red, E contains either ui � y1 or y1 � ui, where y1 is old. Without
loss of generality, assume that E contains ui � y1. Then (cf. (10)), this equation
appeared in E when we replaced f k(h(u1, . . . , um)) �lex f k(h(v1, . . . , vm)) by
u1 =TA v1 ∧ · · · ∧ ui−1 =TA vi−1 ∧ ui � vi and y1 = vi. But then E also contains
the equations u1 =TA v1, . . . , ui−1 =TA vi−1, where the variables v1, . . . , vi−1 are
old, and so the variables u1, . . . , ui−1 are blue. In the same way, we can prove
that, if ui is blue, then u1, . . . , ui−1 are blue. The proof for n > 1 is similar, but
we use the fact that v1, . . . , vi−1 are blue rather than old.

To complete the transformation, we add all constraints on the red and the
old variables to Cchain and make Cchain into a disjunction of chained constraints
as in Lemma 3.1.

Getting Rid of the Blue Variables. If E contains a blue variable x, then it
also contains a chain of constraints x =TA x1 =TA · · · =TA xn, where xn is an
old variable. We replace x by xn in C and add x =TA xn to the triangle part
Ctriang.

When we completed the transformation on the first row, the row disappears
from the chained part Cchain of C. If the first row contained no function
symbols, the size of Cchain will become smaller, since several variables will be
removed from it. If Cchain contained at least one function symbol, then, after
the transformation, the number of occurrences of function symbols in Cchain
will decrease. Some red variables will be introduced, but we proved that their
number is not greater than the number of variables eliminated from the first
row. Therefore, the size of Cchain strictly decreases after the transformation
due to elimination of at least one function symbol.

Again, it is not hard to argue that the transformation can be presented as
a nondeterministic polynomial-time algorithm computing all members of the
resulting disjunction of constraints.

Lemmas 3.1 and 3.5 imply the following:

LEMMA 3.6. Let C be a constraint. Then there exists a disjunction C1∨· · ·∨Cn
of constraints in isolated form equivalent to C up to f . Moreover, members
of such a disjunction can be found by a nondeterministic polynomial-time
algorithm.

Our next aim is to present a nondeterministic polynomial-time algorithm
solving constraints in isolated form.
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4. FROM CONSTRAINTS IN ISOLATED FORM TO SYSTEMS OF LINEAR
DIOPHANTINE INEQUALITIES

Let C be a constraint in isolated form

Csimp ∧ Carith ∧ Ctriang.

Our decision algorithm will be based on a transformation of the simple con-
straint Csimp into an equivalent disjunction D of arithmetical constraints. Then,
in Section 5, we show how to check the satisfiability of the resulting formula
D ∧ Carith ∧ Ctriang by using an algorithm for solving systems of linear Diophan-
tine inequalities on the weights of variables.

To transform Csimp into an arithmetical formula, observe the following. The
constraint Csimp is a conjunction of the constraints of the form

x1 �lex · · · �lex xN

having no common variables. To solve such a constraint we have to ensure
that there exist at least N different terms of the same weight as x1 (since the
Knuth–Bendix order is total).

In this section, we will show that for each N the statement “there exists
at least N different terms of a weight w” can be expressed in the Presburger
Arithmetic as an existential formula of one variable w.

We say that a relation R(x̄) on natural numbers is ∃-definable, if there
exists an existential formula of Presburger Arithmetic C(x̄, ȳ) such that
R(x̄) is equivalent to ∃ ȳC(x̄, ȳ). We call a function r(x̄) ∃-definable if so
is the relation r(x̄) = y . Note that composition of ∃-definable functions is
∃-definable.

Let us fix an enumeration g1, . . . , gS of the signature �. We assume that the
first B symbols g1, . . . , gB is the sequence of all symbols in � of arity ≥ 2, and
the first F symbols g1, . . . , gF is the sequence of all nonconstant symbols in �.
The arity of each gi is denoted by arityi. In this section we assume that B, F ,
S, and the weight function w are fixed.

We call the contents of a ground term t the tuple of natural numbers
(n1, . . . , nS) such that ni is the number of occurrences of gi in t for all i. For exam-
ple, if the sequence of elements of � is g , h, a, b, and t = h(g (h(h(a)), g (b, b))),
the contents of t is (2, 3, 1, 2).

LEMMA 4.1. The following relation exists(x, n1, . . . , nS) is ∃-definable: there
exists at least one ground term of � of the weight x and contents (n1, . . . , nS).

PROOF. We will define exists(x, n1, . . . , nS) by a conjunction of two linear
Diophantine inequalities.

The first equation is

x =
∑

1≤i≤S

w(gi) · ni. (11)

It is not hard to argue that this equation says: Every term with the contents
(n1, . . . , nS) has weight x.
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The second formula says that the number of constant and nonconstant func-
tion symbols in (n1, . . . , nS) is appropriately balanced for constructing a term:

1 +
∑

1≤i≤S

(arityi − 1) · ni = 0. (12)

Let us prove some lower bounds on the number of terms of a fixed weight.
We leave the following two lemmas to the reader. The first one implies that,

if there exists any ground term t of a weight x with at least N occurrences of
nonconstant symbols, including at least one occurrence of a function symbol of
an arity ≥ 2, then there exists at least N different ground terms of the weight x.

LEMMA 4.2. Let x, n1, . . . , nS be natural numbers such that exists(x,
n1, . . . , nS) holds, n1 + · · · + nB ≥ 1 and n1 + · · · + nF ≥ N. Then, there ex-
ist at least N different ground terms with the contents (n1, . . . , nS).

The second lemma implies that, if there exists any ground term t of a weight x
with at least N occurrences of nonconstant function symbols, including at least
two different unary function symbols, then there exists at least N different
ground terms of the weight x.

LEMMA 4.3. Let x, n1, . . . , ns be natural numbers such that exists(x,
n1, . . . , nS) holds, n1+· · ·+nF ≥ N and at least two numbers among nB+1, . . . , nF
are positive. Then there exists at least N different ground terms with the contents
(n1, . . . , nS).

Let us note that if our signature consists only of a unary function symbol
of a positive weight and constants, then the number of different terms in any
weight is less than or equal to the number of constants in the signature.

The remaining types of signatures are covered by the following lemma.

LEMMA 4.4. Let � contain a function symbol of an arity greater than or equal
to 2, or contain at least two different unary function symbols. Then there exist
two natural numbers N1 and N2 such that for all natural numbers N and x
such that x > N · N1 + N2, the number of terms of the weight x is either 0 or
greater than N.

PROOF. If � contains a unary function symbol of the weight 0 then the num-
ber of different terms of any weight is either 0 or ω and the lemma trivially
holds.

Therefore, we can assume that our signature contains no unary function
symbol of the weight 0. Define

W = max{w(gi)|1 ≤ i ≤ S};
A = max{arityi|1 ≤ i ≤ S};

N1 = W · A;
N2 = W 2 · (A + 1) + W.

Take any N and x such that x > N · N1 + N2.
Let us prove that if there exists a term of the weight x then the number of

occurrences of nonconstant function symbols in this term is greater than N .
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Assume the opposite, that is, there exists a term t of the weight x such that
the number of occurrences of nonconstant function symbols in t is M ≤ N .
Let (n1, . . . , nS) be the contents of t and L denote the number of occurrences
of constants in t. Note that (12) implies L = 1 + ∑

1≤i≤F (arityi − 1) · ni. Then,
using (11), we obtain

N · N1 + N2 < |t| = ∑
1≤i≤S w(gi) · ni ≤ W · ∑

1≤i≤S ni

= W · (M + L) = W · (M + 1 + ∑
1≤i≤F (arityi − 1) · ni)

≤ W · (M + 1 + (A − 1)
∑

1≤i≤F ni)

= W · (M + 1 + (A − 1) · M )

= W · (M · A + 1) ≤ W · (N · A + 1) < N · N1 + N2.

So we obtain a contradiction.
Consider the following possible cases:

(1) There exists a term of the weight x with an occurrence of a function symbol of
an arity greater than or equal to 2. In this case by Lemma 4.2, the number
of different terms of the weight x is greater than N .

(2) There exists a term of the weight x with occurrences of at least two different
unary function symbols. In this case by Lemma 4.3, the number of different
terms of the weight x is greater than N .

(3) All terms of the weight x have the form gk(c) for some unary function symbol
g and a constant c. We show that this case is impossible. In particular, we
show that for any nonconstant function symbol h there exists a term of the
weight x in which g and h occur; therefore, we obtain a contradiction with
the assumption.
We have x = w(g ) · k + w(c). Denote by H the arity of h. Let us define
integers M1, M2, M3 as follows

M1 = w(g );
M2 = k − w(h) − w(c) · (H − 1);
M3 = w(g )(H − 1) + 1.

Let us prove that M1, M2, M3 > 0 and there exists a term of the weight x
with M1 occurrences of h, M2 occurrences of g and M3 occurrences of c and
hence obtain a contradiction.
Since g is unary, w(g ) > 0, and so M1 > 0. Since H ≥ 1, we have M3 > 0.
Let us show that M2 > 0, i.e. k > w(h) + w(c) · (H − 1). We have

k = (x − w(c))/w(g ) > (N · N1 + N2 − w(c))/w(g )
≥ (N2 − w(c))/w(g ) = (W 2 · (A + 1) + W − w(c))/w(g )
≥ (W 2 · (A + 1))/w(g ) ≥ W · (A + 1) = W + W · A
≥ w(h) + w(c) · A > w(h) + w(c) · (H − 1).

It remains to show that there exists a term of the weight x with M1 occur-
rences of h, M2 occurrences of g and M3 occurrences of c. To this end, we
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have to prove (cf. (11) and (12))

x = w(h) · M1 + w(g ) · M2 + w(c) · M3;

1 + (H − 1) · M1 + (1 − 1) · M2 + (0 − 1)M3 = 0.

These equalities can be verified directly by replacing M1, M2, M3 by their
definitions and x by w(g ) · k + w(c).

Define the binary function tnt (truncated number of terms) as follows:
tnt(N , M ) is the minimum of N and the number of terms of the weight M
and let us show that tnt can be computed in time polynomial of N + M . To give
a polynomial-time algorithm for this function, we need an auxiliary definition
and a lemma.

Definition 4.5. Let (n1, . . . , ns) and (m1, . . . , ms) be two tuples of natural
numbers. We say that (n1, . . . , ns) extends (m1, . . . , ms) if ni ≥ mi for 1 ≤ i ≤ s.

The depth of a term is defined by induction as usual: the depth of every
constant is 1 and the depth of every nonconstant term g (t1, . . . , tn) is equal to
the maximum of the depth of the ti ’s plus 1.

LEMMA 4.6. Let t1, . . . , tn be a collection of different terms of the same depth
and Con be the contents of a term such that Con extends the contents of all terms
ti, 1 ≤ i ≤ n. Then, there exist at least n different terms with the contents Con.

PROOF. Let us define the notion of leftmost subterm of a term t as follows:
every constant c has only one leftmost subterm, namely c itself, and leftmost
subterms of a nonconstant term g (r1, . . . , rn) are this term itself and all leftmost
subterms of r1. Evidently, for each positive integer d and term t, t has at most
one leftmost subterm of the depth d .

It is not hard to argue that from the condition of the lemma it follows that
for every term ti there exists a term si with the contents Con such that ti is
a leftmost subterm of si. But then the terms s1, . . . , sn are pairwise different,
since they have different leftmost subterms of the depth d .

LEMMA 4.7. Let the signature � contain no unary function symbol of the
weight 0 and contain either a function symbol of an arity greater than or equal
to 2 or contain at least two different unary function symbols. Then the function
tnt(N , M ) is computable in time polynomial of M + N.

PROOF. It is not hard to argue that for every contents (n1, . . . , nS) such that
some of the ni ’s is greater than M , any term with these contents has the weight
greater than M . The number of different contents in which each of the ni ’s is
less than or equal to M is M S , that is, it is polynomial in M , moreover, all
these contents can be obtained by an algorithm working in time polynomial
in M .

Therefore, it is sufficient to describe a polynomial-time algorithm that, for
all contents (n1, . . . , nS), where 1 ≤ ni ≤ M , returns the minimum of N and the
number of terms with these contents.

Let us fix contents Con = (n1, . . . , nS) where 1 ≤ ni ≤ M . Using Eqs. (11)
and (12), one can check in polynomial time whether there exists a term
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with the contents Con, so we assume that there exists at least one such
term.

Our algorithm constructs, step by step, sets T0, T1, . . ., of different terms with
contents which can be extended to the contents Con. Each set Ti will consist
only of terms of the depth i.

(1) Step 0. Define T0 = ∅.
(2) Step i + 1. Define

Ti+1 = {g (t1, . . . , tm) | g ∈ �, t1, . . . , tm ∈ T1 ∪ . . . ∪ Ti,
Con extends the content of g (t1, . . . , tm), and
the depth of g (t1, . . . , tm) is i + 1}.

If Ti+1 has N or more terms, then, by Lemma 4.6, there exists at least N
different terms of the content Con, so we terminate and return N . If Ti+1 is
empty, we return as the result the minimum of N and the number of terms
with the content Con in T1 ∪ · · · ∪ Ti+1.

Let us prove some obvious properties of this algorithm.

(1) If some Ti contains N or more terms, then there exists at least N terms with
the content Con. As we noted, this follows from Lemma 4.6.

(2) At the end of step i + 1 the set T1 ∪ · · · ∪ Ti+1 contains all the terms with
the contents Con of the depth ≤ i + 1. This property obviously holds by our
construction.

This property ensures that the algorithm is correct. To prove that it works
in time polynomial in M + N it is enough to note that each step can be made
in time polynomial in N and the total number of steps is at most M + 1.

Now we are ready to prove the main lemma of this section.

LEMMA 4.8. There exists a polynomial time of N algorithm, which constructs
an existential formula at leastN (x) valid on a natural number x if and only if
there exists at least N different terms of the weight x.

PROOF. If the signature � contains a unary function symbol of the weight,
0, then the number of different terms in any weight is either 0 or ω. Therefore,
we can define at leastN (x) as ∃n1 · · · ∃nSexists(x, n1, . . . , nS).

Let us consider the case when the signature � consists of a unary function
symbol g of a positive weight and constants. For every constant c in �, consider
the formula Gc(x) = ∃k(w(g )k + w(c) = x). It is not hard to argue that Gc(x)
holds if and only if there exists a term of the form gk(c) of weight x. Let P be
the set of all sets of cardinality N consisting of constants of � (the cardinality
of P is obviously polynomial in N ). It is easy to see that

at leastN (x) ↔
∨
Q∈P

∧
c∈Q

Gc(x).

It remains to consider the case when our signature contains a function symbol
of an arity greater than or equal to 2, or contains at least two different unary
function symbols. By Lemma 4.4, there exist constants N1 and N2 such that for
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any natural number x such that x > N · N1 + N2 the number of terms of the
weight x is either 0 or greater than N . Let us denote N · N1 + N2 as M and the
set {M ′|M ′ ≤ M ∧ tnt(N , M ′) ≥ N } as W . By Lemmas 4.4 and 4.7, we have

at leastN (x) ↔ (∃n1, . . . , nSexists(x, n1, . . . , nS) ∧ x > M ) ∨
( ∨

M ′∈W

x = M ′
)

.

5. MAIN RESULTS

In this section, we complete the proofs of the main results of this article.

THEOREM 5.1. For every Knuth–Bendix order, the problem of solving order-
ing constraints is contained in NP.

PROOF. Take a constraint. By Lemma 3.5, it can be effectively transformed
into an equivalent disjunction of isolated forms, so it remains to show how to
check satisfiability of constraints in isolated form.

Suppose that C is a constraint in isolated form. Recall that C is of the form

Carith ∧ Ctriang ∧ Csimp. (13)

Let Csimp contain a chain x1 �lex · · · �lex xN such that x1, . . . , xN does not
occur in the rest of Csimp. Denote by C′

simp the constraint obtained from Csimp by
removing this chain. It is easy to see that C is equivalent to the constraint

Carith ∧ Ctriang ∧ C′
simp ∧

∧
i=2...N

(|xi| =N |x1|) ∧ at leastN (|x1|).

In this way, we can replace Csimp by an arithmetical constraint, so we assume
that Csimp is empty. Let Ctriang have the form

y1 =TA t1 ∧ · · · ∧ yn =TA tn.

Let Z be the set of all variables occurring in Carith ∧ Ctriang. It is not hard to
argue that Carith ∧ Ctriang is satisfiable if and only if the following constraint is
satisfiable:

Carith ∧ | y1| =N |t1| ∧ · · · ∧ | yn| =N |tn| ∧ ∧
z∈Z at least1(|z|).

So we reduced the decidability of the existential theory of term algebras with
a Knuth–Bendix order to the problem of solvability of systems of linear Dio-
phantine inequalities. Our proof can be represented as a nondeterministic
polynomial-time algorithm.

This theorem implies the main result of this article. Let us call a signature
� trivial if it consists of one constant symbol. Evidently, the first-order theory
of the term algebra of a trivial signature is polynomial.

THEOREM 5.2. The existential first-order theory of any term algebra of a non-
trivial signature with the Knuth–Bendix order is NP-complete.

PROOF. The containment in NP follows from Theorem 5.1. It is easy to prove
NP-hardness by reducing propositional satisfiability to the existential theory
of the algebra (even without the order).
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Let us show that for some Knuth–Bendix orders even constraint solving can
be NP-hard.

Example 5.3. Consider the signature � = {s, g , h, c}, where h is binary, s, g
are unary, and c is a constant. Define the weight of all symbols as 1, and use any
order � on � such that g � s. Our aim is to represent any linear Diophantine
equation by Knuth–Bendix constraints. To this end, we will consider any ground
term t as representing the natural number |t| − 1.

Define the formula
equal weight(x, y) ↔

g (x) � s( y) ∧ g ( y) � s(x).

Obviously, for any ground terms r, t equal weight(r, t) holds if and only if |r| =
|t|.

It is enough to consider systems of linear Diophantine equations of the form

x1 + · · · + xn + k = x0, (14)

where x0, . . . , xn are pairwise different variables, and k ∈ N. Consider the con-
straint

equal weight(sk+2(h( y1, h( y2, . . . ,
h( yn−1, yn)))),

s2n( y0)).

(15)

It is not hard to argue that

(16) Formula (15) holds if and only if

| y1| − 1 + · · · + | yn| − 1 + k = | y0| − 1.

Using (16), we can transform any system D(x0, . . . , xn) of linear Diophantine
equations of the form (14) into a constraint C( y0, . . . , yn) such that for every
tuple of ground terms t0, . . . , tn, C(t0, . . . , tn) holds if and only if so does D(|t0| −
1, . . . , |tn| − 1).

Similar, using a formula

greater weight(x, y) ↔
s(x) � g ( y)

one can represent systems of linear inequalities using Knuth–Bendix
constraints.

Since it is well-known that solving linear Diophantine equations is NP-hard,
we have the following theorem.

THEOREM 5.4. For some Knuth–Bendix orders, the problem of solving order-
ing constraints is NP-complete.

This result does not hold for all non-trivial signatures, as the following the-
orem shows.

LEMMA 5.5. There exists a polynomial time algorithm that solves ordering
constraints for any given term algebra over a signature consisting of constants
and any total ordering � on that term algebra.
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PROOF. Let � = {c1, . . . , cn}, without loss of generality we can assume that
cn � cn−1 � . . . � c1. Let C be an ordering constraint. First, we get rid of
equalities as follows. If t =TA s occurs in C and t is syntactically equal to s, then
we remove t =TA s from C, if t is a variable then we replace all occurrences of t
in C by s and remove t =TA s from C; otherwise, t and s are different constants
and C is unsatisfiable. Now C consists of conjunctions of atomic formulas of the
form t � s. We define a relation �′

C on terms as follows: t �′
C s if and only if

t � s occurs in C. Let �C denote a transitive closure of �′
C. It is easy to see, that

using a polynomial time algorithm for transitive closure, we can compute the
relation t �C s in polynomial time. Note that if �C is not a strict order then the
constraint C is unsatisfiable. So we assume that �C is a strict partial order.

Now we replace all variables in C by constants as follows: Take a variable
x such that there is no variable less than x with respect to �C. There are two
possible cases:

(1) x is a minimal term with respect to �C, then we replace all occurrences of
x in C by c1.

(2) there exist some constants less than x with respect to �C, then let cmax
be the greatest with respect to � constant among such constants. If cmax
is the maximal constant in TA(�), then the constraint C is unsatisfiable;
otherwise, we replace all occurrences of x by cmax+1.

Repeating this process, we replace all variables in C in polynomial time. To
complete the proof of the lemma, it remains to show that transformations (1)
and (2) above, preserve satisfiability of constraints without equality. To this
end, we consider a constraint C without equality and a solution θ to C. If the
transformation (1) is applicable to C then it is easy to see that

θ ′(x) =
{

c1, if x is a minimal term with respect to �C,
θ (x) otherwise.

is a solution to the constraint obtained after applying the transformation 1 to
C.

Similarly, one can show that the transformation (2) preserves satisfiability
of constraints without equality.

COROLLARY 5.6. There exists a polynomial time algorithm which checks solv-
ability of ordering constraints for any given Knuth–Bendix order on any term
algebra over a signature consisting of constants.

As we mentioned in Section 2, if we consider real-valued Knuth–Bendix or-
ders then even comparison of ground terms might be undecidable. Let us show
it by the following example.

Example 5.7. Consider a non-computable real number r such that 0 < r <

1, that is, there is no algorithm that is, given a positive integer n computes r
with the precision 1/n, in other words, finds two natural numbers p, q such
that |r − p/q| < 1/n.

Now we consider a signature consisting of two unary symbols g , h and a
constant c and consider any Knuth–Bendix order � on the corresponding term
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algebra, such that w(g ) = 1 and w(h) = r. Let us show that comparison of
terms in this Knuth–Bendix order is undecidable. Consider a positive integer
n. Then, it is easy to see that there exists a positive integer m such that gm(c) �
hn(c) � gm−1(c). Since |gm(c)| �= |hn(c)| �= |gm−1(c)|, we have |gm(c)| > |hn(c)| >

|gm−1(c)|. From the definition of the weight function we have that m > rn >

m − 1 and therefore m/n > r > (m − 1)/n. Let us take p = m − 1 and q = n,
then we have |r − p/q| < 1/n. Therefore, using comparison of terms, we can
compute r with the precision 1/n. This implies that comparison of terms for
this Knuth–Bendix order is undecidable.

6. RELATED WORK AND OPEN PROBLEMS

In this section, we overview previous work on Knuth–Bendix orders, recursive
path orders, and extensions of term algebras with various relations.

The Knuth–Bendix order was introduced in Knuth and Bendix [1970]. Later,
Dershowitz [1982] introduced recursive path orders (RPOs) and Kamin and
Lévy [1980] lexicographic path orders (LPOs). A number of results on recursive
path orders and solving LPO and RPO ordering constraints are known.

However, except for the very general result of Nieuwenhuis [1993], the tech-
niques used for RPO constraints are not directly applicable to Knuth–Bendix
orders. We used systems of linear Diophantine inequalities in our decidabil-
ity proofs. This is not coincidental: Example 5.3 shows that systems of linear
Diophantine inequalities are definable in the Knuth–Bendix order.

Comon and Treinen [1994] proved that LPO constraint solving is NP-hard al-
ready for constraints consisting of a single inequality. In Korovin and Voronkov
[2001] we prove that the problem of solving Knuth–Bendix ordering constraints
consisting of a single inequality can be solved in polynomial time.

In Korovin and Voronkov [2001], we present a polynomial time algorithm for
the orientability problem: given a system of rewrite rules R, does there exist
a Knuth–Bendix order which orients every ground instance of every rewrite
rule in R. A similar problem of orientability for the non-ground version of the
real-valued Knuth–Bendix order was studied by Dick, Kalmus, and Martin
[Martin 1987; Dick et al. 1990] and an algorithm for orientability was given.
Algorithms for, and complexity of, orientability problem for various versions
of the recursive path orders were considered in Lescanne [1984], Detlefs and
Forgaard [1985], and Krishnamoorthy and Narendran [1985]. In particular,
in Krishnamoorthy and Narendran [1985], it is shown that the orientability
problem by the non-ground version of the recursive path order is NP-complete.
In automated deduction we often need to orient systems consisting of equations
and term rewriting rules. In Korovin and Voronkov [2003a] we show that the
orientability problem for systems of equations and term rewriting rules can be
also solved in polynomial time for the Knuth–Bendix order.

Comon [1990] proved the decidability and Nieuwenhuis [1993] NP-
completeness of LPO constraint solving. Jouannaud and Okada [1991] proved
the decidability and Narendran et al. [1999] NP-completeness of RPO con-
straint solving. Recently, Nieuwenhuis and Rivero [1999] proposed a new effi-
cient method for solving RPO constraints.
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Lepper [2001] studies derivation length and order types of Knuth–Bendix
orders, both for integer-valued and real-valued weight functions.

Term algebras are rather well-studied structures. Maĺcev [1961] was the
first to prove the decidability of the first-order theory of term algebras. Other
methods of proving decidability were developed by Comon and Lescanne [1989],
Kunen [1987], Belegradek [1988] and Maher [1988].

If we introduce a binary predicate into a term algebra, then one can obtain
a richer theory. Term algebras with the subterm predicate have an undecid-
able first-order theory and a decidable existential theory [Venkataraman 1987].
Term algebras with lexicographic path orders have an undecidable first-order
theory [Comon and Treinen 1997]. However, if we consider term algebras over
signatures consisting of unary symbols and constants then the first-order the-
ory of lexicographic path orders over such term algebras is decidable [Naren-
dran and Rusinowitch 2000]. In Korovin and Voronkov [2002], we show that
the first-order theory of any Knuth–Bendix order over any term algebra over a
signature consisting of unary function symbols and constants is decidable.

To conclude, we mention two open problems related to Knuth–Bendix orders.
One problem is whether the whole first-order theory of Knuth–Bendix orders
is decidable. Another problem is to describe the complexity of the constraint
solving problem for Knuth–Bendix orders in the case of signatures consisting
of unary function symbols and constants.
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