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1 Introduction

Solving ordering constraints in term algebras with various reduction orderings is used in rewrit-
ing to prove termination of recursive definitions and in automated deduction to prune the
search space [Comon 1990, Kirchner 1995, Nieuwenhuis 1999]. Nieuwenhuis [1999] connects
further progress in automated deduction with constraint-based deduction.

Two kinds of orderings are used in automated deduction: the Knuth-Bendix ordering [Knuth
and Bendix 1970] and various versions of recursive path orderings [Dershowitz 1982]. Knuth-
Bendix orderings are used in the state-of-the-art theorem provers, for example, E [Schulz 1999],
Vampire [Ryazanov and Voronkov 1999], and SPASS [Weidenbach 1999]. There is extensive
literature on solving recursive path ordering constraints [e.g. Comon 1990, Jouannaud and
Okada 1991, Nieuwenhuis 1993, Narendran, Rusinowitch and Verma 1999]. The decidability of
Knuth-Bendix ordering constraints was proved only recently in [Korovin and Voronkov 2000aq].
The algorithm described in [Korovin and Voronkov 2000a| shows that the problem belongs
to 2-NEXPTIME. In this paper we present a nondeterministic polynomial-time algorithm for
solving Knuth-Bendix ordering constraints, and hence show that the problem is NP-complete.
As a consequence, we obtain that the existential first-order theory of any term algebra with a
Knuth-Bendix ordering is NP-complete too.

This paper is structured as follows. In Section 2 we define the main notions of this paper. In
Section 3 we introduce the notion of isolated form of constraints and show that every constraint
can be effectively transformed into an equivalent disjunction of constraints in isolated form.
This transformation is represented as a nondeterministic polynomial-time algorithm computing
members of this disjunction. After this, it remains to show that solvability of constraints in
isolated form can be decided by a nondeterministic polynomial-time algorithm. In Section 4
we present such an algorithm using transformation to systems of linear Diophantine equations
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2 2 Preliminaries

over the weights of variables. Finally, in Section 5 we complete the proof of the main result.
Section 6 discusses related work and open problems.

2 Preliminaries

A signature is a finite set of function symbols with associated arities. In this paper we assume
an arbitrary but fixed signature ¥. Constants are function symbols of the arity 0. We assume
that X contains at least one constant. We denote variables by z, y, z and terms by 7, s,t. The set
of all ground terms of the signature ¥ can be considered as the term algebra of this signature,
TA(X), by defining the interpretation g™ ) of any function symbol g by ¢™®)(¢1,...t,) =
g(t1,...,ty). For details see e.g. [Hodges 1993] or [Maher 1988]. It is easy to see that in term
algebras any ground term is interpreted by itself.

Denote the set of natural numbers by N. We call a weight function on % any function
w: 3 — N. A precedence relation on X is any linear ordering > on X.

The definition of a Knuth-Bendix ordering on TA(X) is parametrized by (i) a weight function
w on ¥; and (ii) a precedence relation > on ¥ such that (a) w(a) > 0 for every constant ¢ and
(b) if f is a unary function symbol and w(f) = 0, then f must be the greatest element of 3
w.r.t. >. These conditions on the weight function ensure that the Knuth-Bendix ordering is a
simplification ordering total on ground terms [see e.g. Baader and Nipkow 1998]. In this paper,
f will always denote a unary function symbol of the weight 0.

In the sequel we assume a fixed weight function w on ¥ and a fixed precedence relation >
on Y. We call w(g) the weight of g. The weight of any ground term ¢, denoted |t|, is defined as
follows: for any constant ¢ we have |c| = w(c) and for any function symbol g of a positive arity
|g(t1s - tn)| = wlg) + [ta] + .. + [tn.

The Knuth-Bendiz ordering on TA(X) is the binary relation > defined as follows. For any
ground terms ¢t = g(t1,...,t,) and s = h(sy,...,s,) we have t > s if one of the following
conditions holds:

Lt > [s[;
2. |t| =|s| and g > h;
3. |t| =|s|, g = h and for some 1 <3 <n we have t; = s1,...,t;—1 = s;—1 and t; > s;.

Some authors [Martin 1987, Baader and Nipkow 1998] define Knuth-Bendix orderings with
real-valued weight functions. We do not consider such orderings here, because for real-valued
functions even the comparison of ground terms can be undecidable.

The main result of this paper is the following

Theorem 5.2: The existential first-order theory of any term alge-
bra with the Knuth-Bendiz ordering is NP-complete.

To prove this result, we will introduce a notion of Knuth-Bendix ordering constraint and
prove

Theorem 5.1: The problem of solving Knuth-Bendiz ordering con-
straints 1s NP-complete.
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The proof will be given after a series of lemmas. The idea of the proof is as follows. First,
we will make TA(X) into a two-sorted structure by adding the sort of natural numbers, and
extend its signature by (i) the weight function on ground terms; (ii) the addition function on
natural numbers; (iii) the Knuth-Bendix ordering relation on ground terms.

Given an existential formula of the first-order theory of the term algebra with the Knuth-
Bendix ordering, we will transform it step by step into an equivalent disjunction of existential
formulas of the extended signature. The main aim of these steps is to replace all occurrences
of > by linear Diophantine equations on the weights of variables. After such a transformation
we will obtain existential formulas consisting of linear Diophantine equations on the weight of
variables plus statements expressing that, for some fixed natural number N, there exists at
least N terms of the same weight as |z|, where z is a variable. We will then show how this
statements can be expressed using systems of linear Diophantine equations on the weights of
variables and use the decidability of systems of linear Diophantine equations.

We denote by TA' () the following structure with two sorts: the term algebra sort and the
arithmetical sort. The domains of the term algebra sort and the arithmetical sort are the sets
of ground terms of ¥ and natural numbers, respectively. The signature of TA™(X) consists (i)
of all symbols of ¥ interpreted as in TA(X), (ii) symbols 0,1, >, + having their conventional
interpretation over natural numbers, (iii) the binary relation symbol > on the term algebra sort,
interpreted as the Knuth-Bendix ordering, (iv) the unary function symbol |...|, interpreted as
the weight function. When we need to distinguish the equality = on the term algebra sort from
the equality on the arithmetical sort, we denote the former by =14, and the latter by =y.

We will prove decidability of the existential theory of TA™(X), from which decidability of
the existential theory of any term algebra with the Knuth-Bendix ordering follows immediately.

We consider satisfiability and equivalence of formulas with respect to the structure TA™ (%),
We call a constraint in the language of TAT(X) any conjunction of atomic formulas of this
language.

PROPOSITION 2.1 The existential theory of TAT(X) is decidable if and only if so is the con-
straint satisfiability problem.

PROOF. Obviously any instance A of the constraint satisfiability problem can be considered as
validity of the existential sentence dxy ...z, A, where z1,...,x, are all variables of A, so the
“only if” direction is trivial.

To prove the “if” direction, take any existential formula Jxq,...,x,A. This formula is
satisfiable if and only if so is the quantifier-free formula A. By converting A into disjunctive
normal form we can assume that A is built from literals using A, V. Replace in A (i) any formula
—s =1t by s =pa tVi > s, (ii) any formula —s =15 t by s = tVt = s, (iii) any formula —s > ¢ by
s=1tVt>s; (iv) any formula —s =y ¢ by s >tV ¢ > s, and convert A into disjunctive normal
form again. It is easy to see that we obtain a disjunction of constraints. The transformation
gives an equivalent formula since both orderings > and > are total. O

It follows from this proof that there exists a nondeterministic polynomial-time algorithm which,
given an existential sentence A, computes on every branch a constraint C; such that A is valid
if and only if one of the constraints C; is satisfiable.

A substitution is a mapping from a set of variables to the set of terms. A substitution 6 is
called grounding for an expression C' (i.e., term or constraint) if for every variable z occurring
in C the term 6(z) is ground. Let € be a substitution grounding for an expression C. We
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4 3 Isolated forms

denote by C6 the expression obtained from C by replacing in it every variable x by 6(x). A
substitution € is called a solution to a constraint C' if 6 is grounding for C' and C0 is valid.

In the sequel we will often replace a constraint C(Z) by a formula A(Z,§) containing extra
variables 7 and say that they are “equivalent”. By this we mean that TAT(X) | Vz(C(z) +
A5A(Z,7)). In other words, the solutions to C are exactly the solutions to A projected on Z.

3 Isolated forms

We are interested not only in satisfiability of constraints, but also in their solutions. Our algo-
rithm will consist of equivalence-preserving transformation steps. When the signature contains
no unary function symbol of the weight 0, the transformation will preserve equivalence in the
following strong sense. At each step, given a constraint C'(z), we transform it into constraints
C1(Z,%),-..,Cn(Z,7) such that for every sequence of ground terms ¢, the constraint C(t) holds
if and only if there exist & and a sequence of ground terms s such that Cy(, 5) holds. When the
signature contains a unary function symbol of the weight 0, the transformation will preserve a
weaker form of equivalence: some solutions will be lost, but solvability will be preserved.

In our proof, we will reduce solvability of Knuth-Bendix ordering constraints to the problem
of solvability of systems of linear Diophantine equations on the weights of variables. Condition
1 of the definition of the Knuth-Bendix ordering |¢| > |s| has a simple translation into a linear
Diophantine equation, but conditions 2 and 3 do not have. So we will split the Knuth-Bendix
ordering in two partial orderings: >, corresponding to condition 1 and >, corresponding to
conditions 3 and 3. Formally, we denote by t >,, s the formula |t| > |s| and by ¢ >, s the
formula |t| = |s| At > s. Obviously, t; > to if and only if 1 =, to V 1 >y t2. So in the sequel
we will assume that > is replaced by the new symbols >, and >,.

We use z1 > z9 > ... > z, to denote the formula z1 > zo Axo > 3 A... ANx\_1 = x,, and
similar for other binary symbols in place of >.

A term ¢ is called flat if ¢ is either a variable or has the form g(z1,...,z,,), where g € 3, m >
0, and x1,. .., z,, are variables. We call a constraint chained if (1) it has a form ¢t #to# . . . #ty,
where each occurrence of # is >, >¢; Or =74, (ii) each term #; is flat, (iii) if some of the #;’s
has the form g(z1,...,zy), then z1,...,z, are some of the t;’s.

LEMMA 3.1 Any constraint C is equivalent to a disjunction of chained constraints.

PRroOOF. First, we can apply flattening to all terms occurring in C' as follows. If a nonflat term
g(t1,...,t,) occurs in C, take any ¢ such that ¢; is not a variable. Then replace C by v = t; AC’,
where v is a new variable and C’ is obtained from C by replacing all occurrences of ¢; by v.
After a finite number of such replacements all terms will become flat.

Let s,t be flat terms occurring in C' such that no comparison s#t occurs in C. Using the
valid formula s >, tV s e tV S =7A tVE =y sV T = s we can replace C' by the disjunction
of the constraints

SrwtNC, Sm tNC, s=ppatNC,
t=w SANC, t s sAC.

By repeatedly doing this transformation we obtain a disjunction of constraints C; V...V C} in
which for every terms s,t and every i € {1,...,k} some comparison constraint s#t¢ occurs in
Cj.
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To complete the proof we show how to turn each C; into a chained constraint. Let us call a
cycle any constraint sy #so# ... #sp#s1, where n > 1. We can remove all cycles from C; using
the following observation: (i) if all # in the cycle are =14, then s,#s1 can be removed from the
constraint, (ii) if some # in the cycle is =, or >, then the constraint C; is unsatisfiable. After
removal of all cycles the constraint C; can still be not chained because it can contain transitive
subconstraints of the form sy#so# ... #s, A s1#s,, n > 2. Then either C; is unsatisfiable or
$1# sy can be removed using the following observations:

1. Case: s1#5Sy 1S S1 = Sp- 1f some # in s1#SoF ... #8y, 1S =, then s1 =, s, follows from
S1#So# . .. #Sp, otherwise s1#so# ... #sy, implies |s1| = |s,| and hence Cj is unsatisfi-
able.

2. Case: S1#5Sp 1S S1 > lex Sn- If some # in s1#SoFF ... F#S, 18 =y, then C; is unsatisfiable.
If all # in s1#so# ... #s, are =pa, then C; is unsatisfiable too. Otherwise, all # in
S1#SoFF ... Fs, are either =, or =1a, and at least one of them is >, and s1 > Sp
follows from s1#so# ... #sp.

3. Case: s1#sy 1S S1 =7A Sp. If all # in s1#soFF ... #s, are =15, then s; =pa s, follows
from s1#so# ... #p, otherwise C} is unsatisfiable.

It is easy to see that after the removal of all cycles and transitive subconstraints the constraint
C; becomes chained. O

Denote by L the logical constant “false”. Note that the transformation of C' into the disjunction
of constraints C7 V...V C} in the lemma can be done in nondeterministic polynomial time in
the following sense: there exists a nondeterministic polynomial-time algorithm which, given
C computes on every branch either | or some Cj, and every C; is computed on at least one
branch.

We will now introduce several special kinds of constraints which will be used in our proofs
below, namely arithmetical, triangle, and isolated.

A constraint is called arithmetical if it uses only arithmetical relations =y and >, for example

|[f(@)| > |af + 3.

A constraint y; =7a t1 A ... Ay, =TA t, is said to be in triangle form if (i) y1,...,y, are
pairwise different variables, and (ii) for all j > 4 the variable y; does not occur in ¢;. The
variables y1,...,y, are said to be dependent in this constraint.

A constraint is said to be simple if it has the form

T11 = lex T12 ™lex -+ ~lex Tlny N -+ NTg1 = lex Tk2 >lex - - - > lex Tkny,

where z11,...,zy,, are pairwise different variables.
A constraint is said to be in isolated form if either it is L or it has the form

Carith A Ctriang A Csimpa

where Cy, is an arithmetical constraint, Clpigng is in triangle form, and Cgipy is a simple
constraint such that no variable of Cl;,, is dependent in Cipigng.

Our decision procedure for Knuth-Bendix ordering constraints is designed as follows. By
Lemma 3.1 we can transform any constraint into an equivalent disjunction of chained con-
straints. Our next step is to give a transformation of any chained constraint into an equivalent
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6 3 Isolated forms

disjunction of constraints in isolated form. Then in Section 4 we show how to transform any
constraint in isolated form into an equivalent disjunction of systems of linear Diophantine equa-
tions on the weights of variables. Then we can use the result on the decidability of systems of
linear Diophantine equations.

Let us show how to transform any chained constraint into an equivalent disjunction of
isolated forms. The transformation will work on the constraints of the form

Cchain A Carith A Ctriang A Csimpa (1)

such that (i) Corith, Ciriang, Csimp are as in the definition of isolated form; (ii) Cpgin is a chained
constraint; (iii) each variable of C¢pgin neither occurs in Cyip, nor is dependent in Clyigng. We
will call such constraints (1) working. Let us call the size of a chained constraint C' the total
number of occurrences of function symbols and variables in C'. Likewise, the essential size of a
working constraint is the size of its chained part Cpgin-

At each transformation step we will replace working constraint (1) by a disjunction of
working constraints but of smaller essential sizes. Evidently, when the essential size is 0, we
obtain a constraint in isolated form.

Let us prove some lemmas about solutions to constraints of the form (1). Note that any
chained constraint is of the form

ti#ttiodt . . #tim,
~w
2)
~w

ti#ttedt - . #tkm,

where each # is either =14 or »;.,. We call a row in such a constraint any maximal subsequence
tin#tio# . .. #tim, in which >, does not occur. So constraint (2) contains k rows, the first one
is tii#tio# . .. #tim, and the last one ) #tpo# . .. #tkm, . Note that for any solution to (2) all
terms in a row have the same weight.

LEMMA 3.2 Any chained constraint C can be effectively transformed into an equivalent chained
constraint that is either L, or of the form (2) and has the following property. Suppose some
term of the first row t1; is a variable y. Then either

1. y has exactly one occurrence in C, namely t1; itself; or

2. y has exactly two occurrences in C, both in the first row: some ti, has the form f(y) for
n < j, and w(f) = 0, moreover in this case there exists at least one =, between ty, and
th;.

PRrROOF. Note that if y occurs in any term ¢(y) which is not in the first row, then C is unsatis-
fiable, since for any solution 6 to C' we have |y6#| > |t(y)@|, which is impossible. Suppose that y
has another occurrence in a term ¢y, of the first row. Consider two cases.

1. t1, coincides with y. Then either C has no solution, or part of the first row between ¢,

and ?1; has the form y =7 ... =7a y. In the latter case part y =ta can be removed from
the first row, so we can assume that no term in the first row except t1; is y.
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2. tin s a nonvariable term containing y. Since ti, and y are in the same row, for every
solution € to C' we have |yf| = [t1,0|. Since ¢y, is a flat term, the equality |y6| = |t1,0|
is possible only if ¢1,, is f(y) and n < j. Finally, if f(y) has more than one occurrence
in the first row, we can get rid of all of them but one in the same way as we got rid of
multiple occurrences of y.

a

Note that the transformation presented in the proof of the lemma can be made in polynomial
time. It is not hard to argue that the transformation of Lemma 3.2 does not increase the size
of the constraint.

We will now take a working constraint Ccpgin A Coarith A Ciriang N Csimp, whose chained part
satisfies Lemma 3.2 and show how to transform it into an equivalent disjunction of working
constraints of smaller essential sizes. More precisely, these constraints will be equivalent when
the signature contains no unary function symbol of the weight 0. When the signature contains
such a symbol f, a weaker notion of equivalence will hold.

A term s is called an f-variant of a term ¢ if s can be obtained from ¢ by a sequence of
operations of the following forms: replacement of a subterm f(r) by r or replacement of a
subterm r by f(r). Evidently, f-variant is a symmetric relation. Two substitutions ¢, and 6
are said to be f-variants if for every variable x the term z6; is an f-variant of xf. In the
proof of several lemmas below we will replace a constraint C'(z) by a formula A(z,y) containing
extra variables § and say that C'(Z) and A(Z,7) are equivalent up to f. By this we mean the
following.

1. For every substitution ¢; grounding for Z such that TAT(X) = C(z)0; there exists a
substitution @y grounding for Z, ¥ such that TAT(Z) = A(Z, )02, and the restriction of
0> to x is an f-variant of 6.

2. For every substitution 6y such that 6, is grounding for Z,7 and TAT(X) = A(z, )0
there exists a substitution #; such that TAT(X) = C(Z)0 and 60, is an f-variant of the
restriction of 6y on 7.

Note that when the signature contains no unary function symbol of the weight 0, equivalence
up to f is the same as ordinary equivalence.

LEMMA 3.3 Let C' = Cepain A Coarith A\ Clriang A Csimp be a working constraint and 01 be a solution
to C. Let 0y be an f-variant of 01 such that (i) 02 is a solution to C pein and (i) Oz coincides
with 01 on all variables not occurring in Cepgin. Then there exists an f-variant 03 of 02 such that
(1) 03 is a solution to C' and (ii) 03 coincides with 0 on all variables except for the dependent
variables of Ciriang.

Proor. It is enough to prove that 63 is a solution to both Cypiyp, and Ciipyp. Since Cyipyyp and
C'chain have no common variables, it follows that ¢; and 6> agree on all variables of Cjjp,, and
so 0 is a solution to Clypy. Since ¢ and 0y are f-variants and the weight of f is 0, for every
term ¢ we have [t0;| = |tf,|, whenever t0; is ground. Therefore, 05 is a solution to Cyy, if and
only if so is 1. So 6- is a solution to Cypizp-

It is fairly easy to see that 63 can be changed on the dependent variables of Cjyj4ny obtaining
a solution 63 to C' which satisfies the conditions of the lemma. O
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8 3 Isolated forms

This lemma, will be used below in the following way. Instead of considering the set © of all
solutions to Cp4in We can restrict ourselves to a subset ©9 of ©; as soon as for every solution
0, € ©1 there exists a solution s € O9 such that 05 is an f-variant of 6.

Let us call an f-term any term of the form f(t). By the f-height of a term ¢ we mean
the number n such that ¢t = f™(s) and s is not an f-term. Note that f-terms have positive
f-height, while non f-terms have f-height 0. We call the f-distance between two terms s and ¢
the difference between the f-height of s and f-height of . For example, the f-distance between
the terms f(a) and f(f(g(a,b)) is —1.

Let us now prove a lemma that restricts f-height of solutions.

LEMMA 3.4 Let C be a chain constraint of the form

DIFHDLAFE - HDPL 7w -

where each # s either =1A or >e.. Further, let C' satisfy the conditions of Lemma 3.2 and 0
be a solution to C. Then there exists an f-variant @' of 0 such that (i) 6" is a solution to C and
(11) for every k € {1,...,1}, the f-height of px0' is at most k.

PROOF. Let us first prove the following statement

(3) The row p#p;_1# ... #p1 has a solution 0y, such that (i) 6, is an f-variant of 0, (ii)
for every 1 < k <[ the f-distance between pi0; and pi_10; is at most 1.

Suppose that for some k the f-distance between pi# and pip_10 is d > 1. Evidently, to prove
(3) it is enough to show the following.

(4) There exists a solution #y such that (i) 62 is an f-variant of 0, (ii) the f-distance between
prbo and pp_16- is d — 1, and (iii) for every k' # k the f-distance between py6y and
prr—162 coincides with the f-distance between p6 and pgr_16.

Let us show (4), and hence (3). Since € is a solution to the row, then for every k"' > k the f-
distance between any py6 and pi0 is nonnegative. Likewise, for every k" < k—1 the f-distance
between any pir_160 and pg»6 is nonnegative. Therefore, for all k" > k > k", the f-distance
between pgn0 and pgr6 is > d, and hence is at least 2. Let us prove the following.

(5) Every variable x occurring in p;#p;_1# . . . #px does not occur in py_1# ... #p1.

Let z occur in both py#p;_1# ... #pr and pp_1# . .. #p1. Since the constraint satisfies Lemma 3.2,
then p; = f(x) and p; = =. Then the f-distance between p;0 and p;6 is 1, but by our assumption
it is at least 2, so we obtain a contradiction. Hence (5) is proved.

Now note the following.

(6) If for some k" > k a variable = occurs in pgw then z6 is an f-term.
Suppose, by contradiction, that zf is not an f-term. Note that pg~ has a positive f-height, so
prr is either x of f(z). But we proved before that the f-distance between pgn and py_; is at

least 2, so x must be an f-term.
Now, to satisfy (4), define the substitution 0y as follows:
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K. Korovin and A. Voronkov. KBO constraint solving is NP-compete 9

0 (z) = 0(x), if z does not occur in py, ..., pg,
A if z occurs in py, ..., pr and O(x) = f(¢).

By (5) and (6), 05 is defined correctly. We claim that 0y satisfies (4). The properties (i)-(iii)
are straightforward by our construction, it only remains to prove that 6, is a solution to the
row, i.e. for every k' we have ppOs#pr 1602. Well, for k' > k we have pp0 = f(pp62) and
pk/_la = f(pkl_leg), and for ¥ < k we have pkle = pk/02 and pk/_la = pkl_leg, in both cases
prrO2#pr 102 follows from pr@#ps_160. The only difficult case is k = £'.

Assume k = £’. Since the f-distance between pi and pp_16 is d > 1, we have pi0 # pr_10,
and hence pp#pr_1 must be pi =jer Pr_1. Since @ is a solution to pg =y Pr_1 and since Oy is
an f-variant of 6, the weights of pifo and pi_160> coincide. But then pgOs >ie; pr—1602 follows
from the fact that the f-distance between ppfo and pr 102 isd — 1 > 1.

Now the proof of (4), and hence of (3), is completed. In the same way as (3), we can also
prove

(7) The constraint C' has a solution 6’ such that (i) 6 is an f-variant of 0, (ii) for every
1 < k < the f-distance between py60; and py_160’ is at most 1. (iii) the f-height of p,6’
is at most 1; (iv) 0" and 6 coincide on all variables occurring in the rows below the first
one .

It is not hard to derive Lemma 3.4 from (7). O
The following lemma is the main (and the last) lemma of this section.

LEMMA 3.5 Let C = Cepgin N Coarith N Chriang N\ Csimp be a working constraint in which Ccpain
is nonempty. Then C can be effectively transformed into a disjunction of working constraints
having Cepain of smaller sizes and equivalent to C' up to f.

ProOOF. The proof is rather complex, so we will give a plan of it. The proof is presented as
a series of transformations on the first row of C. These transformations may result in new
constraints added to Ciyrith, Clrigng, and Clyimp. First, we will get rid of equations s =1 ¢ in
the first row, by introducing quasi-flat terms, i.e. terms f¥(t), where t is flat. If the first row
contained no function symbols, then we simply eliminate the first row, thus decreasing the size
of the chained part. If there were function symbols in the first row, we continue as follows.

Second, we will “guess” the values of some variables x of the first row, i.e. replace them by
some quasi-flat term f™(g(y)), where y is a sequence of new variables. After these two steps,
the size of the first row can, in general, increase. Third, we show how to replace the first row
by new constraints involving only variables occurring in the row, but not function symbols.
Fourth, we prove that the number of variables from the new constraints that we leave in the
chained part is not greater than the original number of variables in the first row, and therefore
the size of the chained part decreases.

Consider the first row of C 4. Let this row be py#p_1# ... #p1. Then C,pyin has the
form pi#pi_ 1 ... #p1 0w LFE .. Hly. I 1= 1, ie., the first row consists of one term, we can
remove this row and add |pi| > [t1| to Cypigp obtaining an equivalent constraint with smaller
essential size. So we assume that the first row contains at least two terms.

As before, we assume that f is a unary function symbol of the weight 0. By Lemma 3.4, if
some p; is either a variable = or a term f(z), it is enough to search for solutions € such that
the height of 26 is at most .
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10 3 Isolated forms

A term is called quasi-flat if it has the form f*¥(t) where ¢ is flat. We will now get rid of
equalities in the first row, but by introducing quasi-flat terms instead of the flat ones. When
we use notation f¥(t) below, we assume k > 0, and f°(¢) will stand for ¢. Let us first get rid of
equalities of the form f*(z) = f™(y) and then of all other equalities.

If the first row contains an equality f*(x) =ta f™(y), we do the following. If z coincides
with ¥y and k£ # m, then the constraint is unsatisfiable. If x coincides with y and k = m, we
replace f¥(z) =ra f™(y) by f¥(x). Assume now that z is different from y. Without loss of
generality assume k > m. We add y = f*~™(z) to C'iriang, and replace other occurrences of y
in Cupain (if any) by f¥~™(x). Note that other occurrences of y in Cypai, can only be in the
first row, and only in the terms f"(y).

After all these transformations we can assume that equalities f*(z) =1a f™(y) do not occur
in the first row.

If the first row contains an equality x = ¢ between a variable and a term, we replace this
equality by ¢, replace all occurrences of = by ¢ in the first row, and add = t to Cjyijgng obtaining
an equivalent working constraint.

If the first row contains an equality g(x1,...,2Zn) =1a h(t1,...,t,) where g and h are
different function symbols, the constraint is unsatisfiable.
If the first row contains an equality g(z1,...,2,) =1a 9(y1,...,yn) we do the following.

If the term g¢(z1,...,z,) coincides with g(yi1,...,yn), replace this equality by g(zi,...,zy,).
Otherwise, find the smallest number 7 such that z; is different from y; and (i) add y; =ra z; to
Ciriang; (i) replace all occurrences of y; in Copgin by ;.

So we can now assume that the first row contains no equalities and hence it has the form
Un = lex Q-1 " lex - - - = lex 41, Where all of the terms ¢; are either flat or have the form f™(y) for
some variable y. Moreover, if some ¢; is a variable y, then it either has no other occurrences in
the row or only has other occurrences of the form f(y).

If all of the ¢; are variables, we can add ¢, >z @n—1 >lex - - - >1ex @1 10 Cyimp and |q1| > |t1]
to Curign, Obtaining an equivalent working constraint of smaller essential size. Hence, we can
assume that at least one of the ¢; is a nonvariable term.

Take any term gy, in the first row such that g is either a variable x or a term f"(z). Consider
the formula G defined as

VoV e ). ®)
gex—{f} m=0...1
where 7 is a sequence of pairwise different new variables. Since we proved that it is enough
to restrict ourselves to solutions 6 for which the height of 26 is at most [, the formulas C' and
C A G are equivalent up to f.
Using distributivity laws, C' A G can be turned into an equivalent disjunction of formulas
x = f™(g(g)) A C. For every such formula, do the following. Replace z by f™(g(%)) in the
first row, obtaining a constraint C’, and add z = f™(g(y)) to the triangle part. We do this
transformation for all terms in the first row of the form f¥(z), where k£ > 0 and z is a variable.
Consider the pair ¢,,q,—1. By our construction, there exist k,m > 0 such that g, =
fEg(z1,...,2zy)) and g, 1 = f™(h(y1,...,y,)) for some variables z1,..., 2y, y1,...,y, and
function symbols g,h € ¥ — {f}. Then g, >1ee qn_1is fF(g(z1,-- ., 24)) =1ezx [ (A (Y1, - Y0))-
If k <nor(k=mnandh>g), then f*(g(z1,...,24)) 1oz f™(h(y1,-..,y,)) is equivalent to L.
If k> nor (k=mnand g > h), then f¥(g(zy1,...,74)) =1ex f™(h(y1,...,yy)) is equivalent to
the arithmetical constraint |g(zy,...,zy)| = |h(y1,...,yy)| which can be added Cypiz,. If &k =m
and g = h (and hence u = v), then
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fk(g(xla'-' 7$U)) = lex fm(h(yla ayv)) Ans
|g($1a"' ,xu)| = |h(y1a 7yu)| A
(T1 =TA Y1 Ao ATy =TA Yio1 AT = Yi)-

i=1...u

We can now do the following. Add |g(z1,...,zy)| = |h(y1,--.,Yv)| to Curitn and replace C' with
the equivalent disjunction

cv \/ (1 =TA Y1 Ao  AZic1 =TA Yie1 AT > Yi).

i=1..u

Then using distributivity laws turn this formula into the equivalent disjunction of constraints
of the form

CAzy=TA Y1 N . NTi1 =TA Yi1 NTi = Y.

for all4 = 1...u. For each of these constraints, we can move, as before, the equalities x1 =1a y1
one by one to the triangle part Cirigng, and make Cepgin A z; = y; into a disjunction of chained
constraints as in Lemma 3.1. Thus, we have replaced ¢, > gn—1 by an equivalent disjunction
of constraints. Likewise, we get rid of ¢;,—1 ez qn—2,--.,92 >1ez q1- As in the beginning of the
proof, if the constraint had the second row, we add to Cypis |q1| > |t1], where ¢; is any term of
the second row.

Let us analyze what we have achieved. After these transformations, in each member of the
obtained disjunction the first row will be removed from the chained part C pqi, of C. Since we
assumed that the row contained at least one function symbol, each member of the disjunction
will contain at least one occurrence of a function symbol less than the original constraint. This is
enough to prove termination of our algorithm, but not enough to present it as nondeterministic
polynomial-time algorithm. The problem is that, when p, is a variable x or a term f(x) one
occurrence of = in p,, can be replaced by one or more constraints of the form x; > y;, where z;
and y; are new variables. To be able to show that the essential sizes of each of the resulting
constraints is strictly less than the essential size of the original constraint, we have to modify
our algorithm slightly.

The modification will guarantee that the number of new variables introduced in the chained
part of the constraint is not more than the number of variables eliminated from the first row.
We will achieve this by moving some constraints in the simple part Ciipp.

The new variables only appear in the chained part when we replace a variable in the first row
by a term h(uy, ..., Uy) or by the term h(v1, ..., v,,) obtaining a constraint f*(h(u1,...,um)) > e
fE(h(vy,...,vm)), which is then replaced by

U =TA V1 N ... NU;j—1 =TA Vi—1 A\u; > v;. (9)

Let us call a variable u; (respectively, v;) new if f¥(h(uy, ..., un)) (respectively f¥(h(vy,...,vm)))
appeared in the first row when we replaced a variable by a nonvariable term containing h using
formula (8). In other words, new variables are those that did not occur in the first row before
our transformation, but appeared in the first row during the transformation. All other variables
are called old. After the transformation we obtain a conjunction E of constraints of the form
x; = xj or x; = xj, where x;,z; can be either new or old. Without loss of generality we can
assume that this conjunction of constraints does not contain chains of the form
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12 3 Isolated forms

1 ... FFnfto

where n > 2 and at least one of the #’s is . Indeed, if E contains such a chain, then it is
unsatisfiable.

We will now show that the number of new variables in the chained part can be restricted
by moving constraints on them into the triangle or isolated part. Among the new variables, let
us distinguish the following three kinds of variables. A new variable z is called blue in E if E
contains a chain z = xy = ... = z,, where z, is an old variable. Evidently, a blue variable x
causes no harm since it can be replaced by an old variable z,,. Let us denote by < the inverse
relation to >. A new variable x is called red in E if it is not blue in £ and E contains a chain
TH#Hx1# ... #x,, where x,, is an old variable, and all of the #’s are among =ra, or >, or <. Red
variables are troublesome, since there is no obvious way to get rid of them. However, we will
show that the number of red variables is not greater than the number of replaced variables (as
the variable = in (8)). Finally, all variables that are neither blue nor red in £ are called green
in E.

Getting rid of green variables. We will now show that the green variables can be moved
to the simple part of the constraint Cj;py,. To this end, note an obvious property: if E contains
a constraint z#y and z is green, then y is green too. We can now do the following with
green variables. As in Lemma 3.1, we can turn all green variables into a disjunction of chained
constraints of the form v1# ... #v,, where # are =14, >, O >, and use distributivity laws
to obtain chained constraints vi# ... #wv,. Let us call this equality the green chain. Then, if
there is any equality v; =TA v;41 in the green chain, we add this equality to Cypiang and replace
this equality by v;41 in the chain. Further, if the chain has the form v; >y ... iz V& >w
V17 - .. Fp, we add vy >jep ... >ieg Uk t0 Cyimp and |vg| > |vg41| to Cypitn, and replace the
green chain by vg1# ... #v,. We do this transformation until the green chain becomes of the

form vy >z ... ez Vk. After this, the green chain can be removed from E and added to
Csimp. Evidently, this transformation can be presented as a nondeterministic polynomial-time
algorithm.

Getting rid of blue variables. If F contains a blue variable z, then it also contains a chain
of constraints x = 1 = ... = x,,, where z,, is an old variable. We replace = be z,, in C and add
x = z, to the triangle part Cipigng-

Red variables. Let us show the following: in every term f*(h(uy,...,u,)) in the first row
at most one variable among wuq, ..., uy, is red. It is not hard to argue that it is sufficient to
prove a stronger statement: if for some ¢ the variable w; is red, then all variables uy,...,u; 1
are blue. So suppose u; is red and u;#yn# ... #y1 is a shortest chain in E such that y; is
blue. We prove that the variables uy,...,u;—1 are blue by induction on n. When n =1, F
contains either the constraint w; > y; or y; > u;, where y; is old. Without loss of generality
assume that F contains u; > y;. Then (cf. (9)) this equation appeared in E when we replaced
fE(h(ur, .. um)) 1o fE(R(v1,. .., 0m)) by u1 =TA v1 A ... Au; 1 =TA v;i 1 Au; = v; and

y1 = v;. But then E also contains the equations u; =ra vi,...,u;—1 =T1A vj—1, Where the
variables vy, ...,v;_1 are old, and so the variables u1,...,u; 1 are blue. The proof for n > 1 is
similar, but we use the fact that v1,...,v;_1 are blue rather than old.
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To complete the transformation, we add all constraints on red variables to Cj4i, and make
Cehain Into a disjunction of chained constraint as in Lemma 3.1.

When we completed the transformation on the first row, the row disappears from the chained
part Cpqin of C. If the first row contained no function symbols, the size of Cp4i, will become
smaller since several variables will be removed from it. If C\,;, contained at least one function
symbol, that after the transformation the number of occurrences of function symbols in Cpgin
will decrease. Some red variables will be introduced, but we proved that their number is not
greater than the number of variables eliminated from the first row. Therefore, the size of Cepgin
strictly decreases after the transformation. O

Again, it is not hard to argue that the transformation can be presented as a nondeterministic
polynomial-time algorithm computing all members of the resulting disjunction of constraints.
Lemmas 3.1 and 3.5 imply the following;:

LEMMA 3.6 Let C be a constraint. Then there exists a disjunction C1V ...V Cy of constraints
in isolated form equivalent to C up to f. Moreover, members of such a disjunction can be found
by a nmondeterministic polynomial-time algorithm.

Our next aim is to present a nondeterministic polynomial-time algorithm solving constraints
in isolated form.

4 From constraints in isolated form to systems of linear Dio-
phantine Equations

Let C be a constraint in isolated form
Csimp A Carith A Ctriang-

Our decision algorithm will be based on a transformation of the simple constraint Cl;y, into
an equivalent disjunction D of arithmetical constraints. Then we can check the satisfiability of
the resulting formula D A Cy, by using an algorithm for solving systems of linear Diophantine
equations on the weights of variables.

To transform Cl;pp into an arithmetical formula, observe the following. The constraint
Csimp 1s a conjunction of the constraints of the form

L1 >lex « -+ = lex TN

having no common variables. To solve such a constraint we have to ensure that at least N
different terms of the same weight as x| exist.

In this section we will show that for each N the statement “there exists at least IV different
terms of a weight w” can be expressed as an existential formula of w in Presburger’s Arithmetic.

We say that a relation R(z) on natural numbers is 3-definable, if there exists an existential
formula of Presburger’s Arithmetic C'(Z,7) such that R(Z) is equivalent to 35C(Z, ). We call
a function r(z) 3-definable if so is the relation r(z) = y. Note that composition of 3-definable
function is 3-definable.

Let us fix an enumeration gy, . .., gs of the signature 3. We assume that the first B symbols
J1,--.,9p have an arity > 2, and the first /' symbols g1, ..., gr are nonconstants. The arity of
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14 4 From constraints in isolated form to systems of linear Diophantine Equations

each g; is denoted as arity;. In this section we assume that B, F', S, and the weight function
w are fized.
We call the contents of a ground term ¢ the tuple of natural numbers (nq,...,ng) such that

n; is the number of occurrences of g; in ¢ for all 7. For example, if the sequence of elements of
Y is g, h,a,b, and t = h(g(h(h(a)),g(b,b))), the contents of ¢ is (2, 3,1, 2).

LEMMA 4.1 The following relation exists(x,ni,...,ng) is I-definable: there exists at least one
ground term of ¥ of the weight x and contents (nq,...,ng).

Proor. We will define ezists(z,ni,...,ng) by a conjunction of two linear Diophantine equa-
tions.

The first equation is

T = Z w(gi) - ni. (10)

1<i<S
It is not hard to argue that this equation says: every term with the contents (nq,...,ng) has
weight x.
The second formula says that the number of constant and nonconstant function symbols in
(n1,...,ng) is appropriately balanced for constructing a term:
L+ ) (arity; — 1) -n; = 0. (11)
1<i<S

|

Let us prove some bounds on the number of terms of a fixed weight.

We leave the following two lemmas to the reader. The first one implies that, if there exists
any ground term ¢ of a weight x with at least N occurrences of nonconstant symbols, including
at least one occurrence of a function symbol of an arity > 2, then there exists at least N different
ground terms of the weight z.

LEMMA 4.2 Let z,ny,...,ns be natural numbers such that exists(z,ny,...,ng) holds, ni+. ..+
ng > 1and n1 + ... +np > N. Then there exists at least N different ground terms with the
contents (ni,...,ng). O

The second lemma implies that, if there exists any ground term ¢ of a weight = with at least
N occurrences of nonconstant function symbols, including at least two different unary function
symbols, then there exists at least IV different ground terms of the weight x.

LEMMA 4.3 Let z,nq,...,ns be natural numbers such that exists(z,n1,...,ng) holds, ni+...+
np > N and at least two numbers among npy1,...,np are positive. Then there exists at least
N different ground terms with the contents (ny,...,ng). O

Let us note that if our signature consists only of a unary function symbol of a positive weight
and constants, then the number of different terms in any weight is less or equal to the number
of constants in the signature.

The remaining types of signatures are covered by the following lemma.
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LEMMA 4.4 Let 3 contain a function symbol of an arity greater than or equal to 2, or contain
at least two different unary function symbols. Then there exist two natural numbers N1 and No
such that for all natural numbers N and x such that x > N - Ni + Na, the number of terms of
the weight © is either 0 or greater than N.

ProOOF. If ¥ contains a unary function symbol of the weight 0 then the number of different
terms of any weight is either 0 or w and the lemma trivially holds.

Therefore we can assume that our signature contains no unary function symbol of the weight
0. Define

W= max{w(g)|l <i< Sk
A max{arity;|1 <i < S}
W - A;

Ny = W2-(A+1)+W.

=
Il

Take any N and z such that x > N - Ny + No.

Let us prove that if there exists a term of the weight x then the number of occurrences of
nonconstant function symbols in this term is greater than N. Assume the opposite, i.e. there
exists a term ¢ of the weight x such that the number of occurrences of nonconstant function
symbols in ¢ is M < N. Let (ny,...,ng) be the contents of ¢ and L denote the number of
occurrences of constants in ¢. Note that (11) implies L =14 )", _, p(arity; — 1) - n;. Then
using (10) we obtain -

NNy + Ny <[t =3 1<icgw(gi) - mi SW -3 cicgmi =
W-(M+L)=W-(M+1+3plarity; — 1) - n;) <
W-(M+1+A-1) cepm) =W - (M+1+(A-1)-M) =
W-(M-A+1)<W-(N-A+1) < N:-N;+ Ns.

So we obtain a contradiction.
Consider the following possible cases.

1. There exists a term of the weight © with an occurrence of a function symbol of an arity
greater than or equal to 2. In this case by Lemma 4.2 the number of different terms of
the weight = is greater than N.

2. There exists a term of the weight x with occurrences of at least two different unary function
symbols. In this case by Lemma 4.3 the number of different terms of the weight « is greater
than N.

3. All terms of the weight = have the form g*(c) for some unary function symbol g and a
constant ¢. We show that this case is impossible. In particular, we show that for any
nonconstant function symbol A there exists a term of the weight = in which ¢g and A occur,
therefore we obtain a contradiction with the assumption.

We have z = w(g)-k+w(c). Denote by H the arity of h. Let us define integers My, My, M3
as follows

My = w(g),

My = k—w(h)—w(c)- (H-1),
Ms = w(g)(H—-1)+1.
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16 4 From constraints in isolated form to systems of linear Diophantine Equations

Let us prove that M, My, M3 > 0 and there exists a term of the weight z with M; occur-
rences of h, My occurrences of g and M3 occurrences of ¢ and hence obtain a contradiction.

Since g is unary, w(g) > 0, and so M; > 0. Since H > 1, we have M3 > 0. Let us show
that My > 0, i.e. k> w(h) +w(c) - (H — 1). We have

k= (z—w(c))/w(g) > (N - N1+ Ny —w(c))/w(g) =

(N2 —w(c)/w(g) = (W?- (A+1)+ W —w(c)/wlg) >
(W2 (A+ 1) w(g) >2W - (A+1) =W+ W A >
w(h) +w(c) - A>w(h) +w(c) - (H —1).

~—

It remains to show that there exists a term of the weight = with M; occurrences of h, Mo
occurrences of g and Mj occurrences of ¢. To this end we have to prove (cf. (10) and (11))

x=w(h) - My +w(g) - My + w(c) - Ms,
1+(H—1)-M1+(1—1)-M2+(0—1)M3:0.

This equalities can be verified directly by replacing M;, M, M3 by their definitions and
z by w(g) - k + w(c).

|

As before, we assume now that our signature contains no unary function symbol of the
weight 0. Define the binary function ¢nt (truncated number of terms) as follows: tnt(N, M) is
the minimum of N and the number of terms of the weight M and let us show that ¢nt can be
computed in time polynomial of N + M. To give a polynomial-time algorithm for this function
we need an auxiliary definition and a lemma.

DEFINITION 4.5 Let (ny,...,ns) and (mq,...,ms) be two tuples of natural numbers. We say
that (ny,...,ns) extends (my,...,mg) if n; > m; for 1 <i <s.

The depth of a term is defined by induction as usual: the depth of every constant is 1 and
the depth of every nonconstant term g¢(#1,...,%,) is equal to the maximum of the depth of the
t;’s plus 1.

LEMMA 4.6 Let tq,...,t, be a collection of different terms of the same depth and Con be the
contents of a term such that Con extends the contents of all terms t;, 1 < 1 < n. Then there
exists at least n different terms with the contents Con.

PRrOOF. Let us define the notion of leftmost subterm of a term ¢ as follows: every constant ¢
has only one leftmost subterm, namely c itself, and leftmost subterms of a nonconstant term
g(ri,...,ry) are this term itself and all leftmost subterms of r;. Evidently, for each positive
integer d and term ¢, ¢t has at most one leftmost subterm of the depth d.

It is not hard to argue that from the condition of the lemma it follows that for every term
t; there exists a term s; with the contents Con such that ¢; is a leftmost subterm of s;. But
then the terms si,...,s, are pairwise different, since they have different leftmost subterms of
the depth d. O
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LEMMA 4.7 Let the signature X contain no unary function symbol of the weight 0 and contain
either a function symbol of an arity greater than or equal to 2 or contain at least two different
unary function symbols. Then the function tnt(N, M) is computable in time polynomial of
M+ N.

PROOF. It is not hard to argue that for every contents (n,...,ng) such that some of the n;’s
is greater than M, any term with these contents has the weight greater than M. The number
of different contents in which each of the n;’s is less or equal than M is M, i.e. it is polynomial
in M, moreover, all these contents can be obtained by an algorithm working in time polynomial
in M.

Therefore it is sufficient to describe a polynomial-time algorithm which for all contents
(n1,...ng), where 1 < n; < M, returns the minimum of N and the number of terms with these
contents.

Let us fix contents Con = (ny,... ng) where 1 < n; < M. Using equations (10) and (11),
one can check in polynomial time is there exists a term with the contents Con, so we assume
that at least one such term exists.

Our algorithm constructs, step by step, sets 1g, 11, .. ., of different terms with contents which
can be extended to the contents Con. Each set T; will consist only of terms of the depth 3.

1. Step 0. Define Ty = 0.

2. Step i + 1. Define

Tit1 :{g(tl,...,tm) | geX t,...,t;m €T U...UTy,
Con extends the content of g(¢y,...,%,), and
the depth of g(t1,...,%y) is i+ 1}.

If T;11 has N or more terms, then by Lemma 4.6 there exists at least N different terms of
the content Con, so we terminate and return N. If T;4; is empty, we return as the result
the minimum of N and the number of terms with the content Con in T7 U ... U Tj41.

Let us prove some obvious properties of this algorithm.

1. If some T; contains N or more terms, then there exists at least N terms with the content
Con. As we noted, this follows from Lemma 4.6.

2. At the end of step i + 1 the set Ty U... T+ contains all the terms with the contents Con
of the depth <1+ 1. This property obviously holds by our construction.

This property ensure that the algorithm is correct. To prove that it works in time polynomial
in M + N it is enough to note that each step can be made in time polynomial in N and the
total number of steps is at most M + 1. O

Now we are ready to prove the main lemma of this section.

LEMMA 4.8 There exists a polynomial time of N algorithm, which constructs an existential
formula at_least y(x) valid on a natural number = if and only if there exists at least N different
terms of the weight x.
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5 Main result

Proor. If the signature ¥ contains a unary function symbol of the weight 0 then the number
of different terms in any weight is either 0 or w. Therefore we can define at_leasty(z) as
Iny ... 3Ingexists(z,n,...,ng).

Let us consider the case when X signature consists of a unary function symbol g of a positive
weight. For every constant ¢ in ¥ consider the formula G.(z) = Jk(w(g)k +w(c) = z). It is not
hard to argue that G.(z) holds if and only if there exists a term of the form g¥(c). Let P be the
set of all sets of constants of X of cardinality N (the cardinality of P is obviously polynomial
in N). It is easy to see that

at_leasty(x) < \/ /\ Ge().

QeEP QeS

It remains to consider the case when our signature contains a function symbol of an arity
greater than or equal to 2, or contain at least two different unary function symbols. By Lemma
4.4, there exist constants N1 and N such that for any natural number z such that > N-Nj+No
the number of terms of the weight = is either 0 or greater than /N. Let us denote N - N; + Ny
as M and the set {M'|M' < M A tnt(N,M') > N} as W. By Lemmas 4.4, 4.7 we have

at_least y(z) <> (Ing, ..., ngexists(x,n1,...,ng) /\a;>M)\/( \/ z =M.
M'eW

5 Main result

Now we can prove the decidability of the ordering constraint solving:

THEOREM 5.1 Knuth-Bendiz ordering constraint solving is NP-complete.

Proor. By Proposition 2.1 it is enough to prove decidability of the constraint satisfaction
problem. Take a constraint. By Lemma 3.5 it can be effectively transformed into an equivalent
disjunction of isolated forms, so it remains to show how to check satisfiability of constraints in
isolated form.

Suppose that C' is in isolated form. Recall that C is of the form

Carith A Ctriang A Csimp- (12)
Let Cgimp contain a chain @1 =je; ... >jep T such that xq, ..., z, does not occur in the rest
of Cyimp. Denote by C;imp the constraint obtained from Cl;,,, by removing this chain. It is not

hard to argue that C' is equivalent to the constraint

Carith A Ciriang N Climy A\ (|1l = |21]) A at Teast, (|21 ).
1=2...n
In this way we can replace Cyipyp by an arithmetical constraint, so we assume that Clpy is

empty. Let Cipigng have the form

Y1 =t N... Nyp = tn.
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Let Z be the set of all variables occurring in Cypign A Ciriang- It is not hard to argue that
Clarith N\ Ciriang 1s satisfiable if and only if the following constraint is satisfiable too:

Cuarith Ny1| = [t Ao ANyn| = [tol AN,z at-least1(|2]).

So we reduced the decidability of the existential theory of term algebras with a Knuth-Bendix
ordering to the problem of solvability of systems of linear Diophantine equations. Our proof
can be represented as a nondeterministic polynomial-time algorithm. O

This theorem implies the main result of this paper.

THEOREM 5.2 The existential first-order theory of any term algebra with the Knuth-Bendiz
ordering s NP-complete.

6 Related work and open problems

In this section we overview previous work on Knuth-Bendix orderings, recursive path orderings,
and extensions of term algebras with various relations.

6.1 Knuth-Bendix ordering constraints and the systems of linear Diophan-
tine equations

The Knuth-Bendix ordering was introduced in [Knuth and Bendix 1970]. Later, [Dershowitz
1982] introduced recursive path orderings (RPOs). A number of results on recursive path
orderings and solving RPO constraints are known.

However, except for the very general result of [Nieuwenhuis 1993] the techniques used for
RPO counstraints are not directly applicable to Knuth-Bendix orderings. We used systems of
linear Diophantine equations in our decidability proofs. Let us show that the use of linear
Diophantine equations is not coincidental: they are definable in the Knuth-Bendix ordering.

EXAMPLE 6.1 Consider the signature ¥ = {s, g, h,c}, where h is binary, s, ¢ are unary, and ¢

is a constant. Define the weight of all symbols as 1, and use any ordering > on 3 such that

g > s. Our aim is to represent any linear Diophantine equation by Knuth-Bendix constraints.

To this end, we will consider any ground term ¢ as representing the natural number |¢| — 1.
Define the formula

equal _weight (z,y) <
9(z) = s(y) Agly) > s(x).
It is not hard to argue that, for any ground terms r,t equal_weight(r,t) holds if and only if
| = [2].
It is enough to consider systems of linear Diophantine equations of the form

1+ ...+ z, + k =z, (13)
where g, ..., x, are pairwise different variables, and £k € N. Consider the constraint
equal _weight (s**2(h(yy, h(ya, . . ., (14)
h(Yn-1,Yn)))),
%™ (y0))-
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20 6.2 The case of single inequation

It is not hard to argue that

(15) Formula (14) holds if and only if

lytl = 1+...+ |yl = 1+ k = |yo| — 1.

Using (15), we can transform any system D(zq,...,x,) of linear Diophantine equations of the
form (13) into a constraint C(yi,...,yy) such that for every tuple of ground terms ti,...,¢,,
C(ti,...,t,) holds if and only if so does D(|t1| — 1,...,|t,] — 1).

Since it is well-known that solving linear Diophantine equations is NP-hard, we have.

LEMMA 6.2 Knuth-Bendiz ordering constraint solving s NP-hard.

6.2 The case of single inequation

Comon and Treinen [1994] proved that LPO constraint solving is NP-hard already for constraints
consisting of a single inequation. Let us comment on the single inequation case for the Knuth-
Bendix ordering here.

The Knuth-Bendix ordering is defined in [Knuth and Bendix 1970] also for the nonground
case. If s > t for nonground terms, then so > to also holds for every substitution o. Let
us show that the Knuth-Bendix ordering for nonground terms is incomplete, i.e. there exists
a Knuth-Bendix ordering > and nonground terms s,t of a signature ¥ such that for every
substitution o grounding for s,t we have so > to, but s ¥ t.

EXAMPLE 6.3 We do not define the original Knuth-Bendix ordering with variables here, the
exact definitions can be found in [Knuth and Bendix 1970] or [Baader and Nipkow 1998].
Consider the following formula of one variable x:

9(z,a,b) > g(b,b,a). (16)

For any choice of the weight function and ordering >, g(x,a,b) = g(b,b,a) does not hold for

the original Knuth-Bendix ordering with variables. However, formula 16 is valid in any term
algebra with the Knuth-Bendix ordering where w(a) = w(b) and a > b.

This example shows that the (original) Knuth-Bendix ordering with variables cannot be used

for solving constraints consisting of a single inequation. In contrast to [Comon and Treinen 1994]
we note

THEOREM 6.4 There exists a polynomial-time algorithm for solving Knuth-Bendiz ordering con-
straints consisting of a single inequation.

The proof will be appear in [Korovin and Voronkov 2000b)].
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6.3 Other results on ordering constraints

[Martin 1987, Dick, Kalmus and Martin 1990] consider Knuth-Bendix orderings with real-valued
functions and prove sufficient and necessary conditions for a system of rewrite rules to be
oriented by such an ordering. They also define an algorithm for finding orderings orienting a
system of rewrite rules.

Nieuwenhuis [1993] proved NP-completeness of LPO constraint solving, Narendran et al.
[1999] proved NP-completeness of RPO constraint solving. Recently, Nieuwenhuis and Rivero
[1999] proposed a new efficient method for solving RPO constraints. NP-completeness of satis-
fiability of LPO constraints consisting of a single inequation was proved by Comon and Treinen
[1994].

[Lepper 2000] studies derivation length and order types of Knuth-Bendix orderings, both
for integer-valued and real-valued weight functions.

6.4 First-order theory term algebras with binary relations

Term algebras are rather well-studied structures. Malcev [1961] was the first to prove the
decidability of the first-order theory of term algebras. Other methods of proving decidability
were developed by Comon and Lescanne [1989], Kunen [1987], Belegradek [1988], Maher [1988].

If we introduce a binary predicate into a term algebra, then one can obtain a richer theory.
Term algebras with the subterm predicate have an undecidable first order theory and a decidable
existential theory [Venkataraman 1987]. Term algebras with lexicographic path orderings have
an undecidable first-order theory [Comon and Treinen 1997].
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