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1 Introdu
tion

Solving ordering 
onstraints in term algebras with various redu
tion orderings is used in rewrit-

ing to prove termination of re
ursive de�nitions and in automated dedu
tion to prune the

sear
h spa
e [Comon 1990, Kir
hner 1995, Nieuwenhuis 1999℄. Nieuwenhuis [1999℄ 
onne
ts

further progress in automated dedu
tion with 
onstraint-based dedu
tion.

Two kinds of orderings are used in automated dedu
tion: the Knuth-Bendix ordering [Knuth

and Bendix 1970℄ and various versions of re
ursive path orderings [Dershowitz 1982℄. Knuth-

Bendix orderings are used in the state-of-the-art theorem provers, for example, E [S
hulz 1999℄,

Vampire [Ryazanov and Voronkov 1999℄, and SPASS [Weidenba
h 1999℄. There is extensive

literature on solving re
ursive path ordering 
onstraints [e.g. Comon 1990, Jouannaud and

Okada 1991, Nieuwenhuis 1993, Narendran, Rusinowit
h and Verma 1999℄. The de
idability of

Knuth-Bendix ordering 
onstraints was proved only re
ently in [Korovin and Voronkov 2000a℄.

The algorithm des
ribed in [Korovin and Voronkov 2000a℄ shows that the problem belongs

to 2-NEXPTIME. In this paper we present a nondeterministi
 polynomial-time algorithm for

solving Knuth-Bendix ordering 
onstraints, and hen
e show that the problem is NP-
omplete.

As a 
onsequen
e, we obtain that the existential �rst-order theory of any term algebra with a

Knuth-Bendix ordering is NP-
omplete too.

This paper is stru
tured as follows. In Se
tion 2 we de�ne the main notions of this paper. In

Se
tion 3 we introdu
e the notion of isolated form of 
onstraints and show that every 
onstraint


an be e�e
tively transformed into an equivalent disjun
tion of 
onstraints in isolated form.

This transformation is represented as a nondeterministi
 polynomial-time algorithm 
omputing

members of this disjun
tion. After this, it remains to show that solvability of 
onstraints in

isolated form 
an be de
ided by a nondeterministi
 polynomial-time algorithm. In Se
tion 4

we present su
h an algorithm using transformation to systems of linear Diophantine equations
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2 2 Preliminaries

over the weights of variables. Finally, in Se
tion 5 we 
omplete the proof of the main result.

Se
tion 6 dis
usses related work and open problems.

2 Preliminaries

A signature is a �nite set of fun
tion symbols with asso
iated arities. In this paper we assume

an arbitrary but �xed signature �. Constants are fun
tion symbols of the arity 0. We assume

that � 
ontains at least one 
onstant. We denote variables by x; y; z and terms by r; s; t. The set

of all ground terms of the signature � 
an be 
onsidered as the term algebra of this signature,

TA(�), by de�ning the interpretation g

TA(�)

of any fun
tion symbol g by g

TA(�)

(t

1

; : : : ; t

n

) =

g(t

1

; : : : ; t

n

). For details see e.g. [Hodges 1993℄ or [Maher 1988℄. It is easy to see that in term

algebras any ground term is interpreted by itself.

Denote the set of natural numbers by N. We 
all a weight fun
tion on � any fun
tion

w : �! N. A pre
eden
e relation on � is any linear ordering � on �.

The de�nition of a Knuth-Bendix ordering on TA(�) is parametrized by (i) a weight fun
tion

w on �; and (ii) a pre
eden
e relation � on � su
h that (a) w(a) > 0 for every 
onstant a and

(b) if f is a unary fun
tion symbol and w(f) = 0, then f must be the greatest element of �

w.r.t. �. These 
onditions on the weight fun
tion ensure that the Knuth-Bendix ordering is a

simpli�
ation ordering total on ground terms [see e.g. Baader and Nipkow 1998℄. In this paper,

f will always denote a unary fun
tion symbol of the weight 0.

In the sequel we assume a �xed weight fun
tion w on � and a �xed pre
eden
e relation �

on �. We 
all w(g) the weight of g. The weight of any ground term t, denoted jtj, is de�ned as

follows: for any 
onstant 
 we have j
j = w(
) and for any fun
tion symbol g of a positive arity

jg(t

1

; : : : ; t

n

)j = w(g) + jt

1

j+ : : :+ jt

n

j.

The Knuth-Bendix ordering on TA(�) is the binary relation � de�ned as follows. For any

ground terms t = g(t

1

; : : : ; t

n

) and s = h(s

1

; : : : ; s

k

) we have t � s if one of the following


onditions holds:

1. jtj > jsj;

2. jtj = jsj and g � h;

3. jtj = jsj, g = h and for some 1 � i � n we have t

1

= s

1

; : : : ; t

i�1

= s

i�1

and t

i

� s

i

.

Some authors [Martin 1987, Baader and Nipkow 1998℄ de�ne Knuth-Bendix orderings with

real-valued weight fun
tions. We do not 
onsider su
h orderings here, be
ause for real-valued

fun
tions even the 
omparison of ground terms 
an be unde
idable.

The main result of this paper is the following

Theorem 5.2: The existential �rst-order theory of any term alge-

bra with the Knuth-Bendix ordering is NP-
omplete.

To prove this result, we will introdu
e a notion of Knuth-Bendix ordering 
onstraint and

prove

Theorem 5.1: The problem of solving Knuth-Bendix ordering 
on-

straints is NP-
omplete.
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The proof will be given after a series of lemmas. The idea of the proof is as follows. First,

we will make TA(�) into a two-sorted stru
ture by adding the sort of natural numbers, and

extend its signature by (i) the weight fun
tion on ground terms; (ii) the addition fun
tion on

natural numbers; (iii) the Knuth-Bendix ordering relation on ground terms.

Given an existential formula of the �rst-order theory of the term algebra with the Knuth-

Bendix ordering, we will transform it step by step into an equivalent disjun
tion of existential

formulas of the extended signature. The main aim of these steps is to repla
e all o

urren
es

of � by linear Diophantine equations on the weights of variables. After su
h a transformation

we will obtain existential formulas 
onsisting of linear Diophantine equations on the weight of

variables plus statements expressing that, for some �xed natural number N , there exists at

least N terms of the same weight as jxj, where x is a variable. We will then show how this

statements 
an be expressed using systems of linear Diophantine equations on the weights of

variables and use the de
idability of systems of linear Diophantine equations.

We denote by TA

+

(�) the following stru
ture with two sorts: the term algebra sort and the

arithmeti
al sort . The domains of the term algebra sort and the arithmeti
al sort are the sets

of ground terms of � and natural numbers, respe
tively. The signature of TA

+

(�) 
onsists (i)

of all symbols of � interpreted as in TA(�), (ii) symbols 0; 1; >;+ having their 
onventional

interpretation over natural numbers, (iii) the binary relation symbol � on the term algebra sort,

interpreted as the Knuth-Bendix ordering, (iv) the unary fun
tion symbol j : : : j, interpreted as

the weight fun
tion. When we need to distinguish the equality = on the term algebra sort from

the equality on the arithmeti
al sort, we denote the former by =

TA

, and the latter by =

N

.

We will prove de
idability of the existential theory of TA

+

(�), from whi
h de
idability of

the existential theory of any term algebra with the Knuth-Bendix ordering follows immediately.

We 
onsider satis�ability and equivalen
e of formulas with respe
t to the stru
ture TA

+

(�).

We 
all a 
onstraint in the language of TA

+

(�) any 
onjun
tion of atomi
 formulas of this

language.

Proposition 2.1 The existential theory of TA

+

(�) is de
idable if and only if so is the 
on-

straint satis�ability problem.

Proof. Obviously any instan
e A of the 
onstraint satis�ability problem 
an be 
onsidered as

validity of the existential senten
e 9x

1

: : : x

n

A, where x

1

; : : : ; x

n

are all variables of A, so the

\only if" dire
tion is trivial.

To prove the \if" dire
tion, take any existential formula 9x

1

; : : : ; x

n

A. This formula is

satis�able if and only if so is the quanti�er-free formula A. By 
onverting A into disjun
tive

normal form we 
an assume that A is built from literals using ^;_. Repla
e in A (i) any formula

:s � t by s =

TA

t_ t � s, (ii) any formula :s =

TA

t by s � t_ t � s, (iii) any formula :s > t by

s = t _ t > s; (iv) any formula :s =

N

t by s > t _ t > s, and 
onvert A into disjun
tive normal

form again. It is easy to see that we obtain a disjun
tion of 
onstraints. The transformation

gives an equivalent formula sin
e both orderings � and > are total. 2

It follows from this proof that there exists a nondeterministi
 polynomial-time algorithm whi
h,

given an existential senten
e A, 
omputes on every bran
h a 
onstraint C

i

su
h that A is valid

if and only if one of the 
onstraints C

i

is satis�able.

A substitution is a mapping from a set of variables to the set of terms. A substitution � is


alled grounding for an expression C (i.e., term or 
onstraint) if for every variable x o

urring

in C the term �(x) is ground. Let � be a substitution grounding for an expression C. We
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4 3 Isolated forms

denote by C� the expression obtained from C by repla
ing in it every variable x by �(x). A

substitution � is 
alled a solution to a 
onstraint C if � is grounding for C and C� is valid.

In the sequel we will often repla
e a 
onstraint C(�x) by a formula A(�x; �y) 
ontaining extra

variables �y and say that they are \equivalent". By this we mean that TA

+

(�) j= 8�x(C(�x) $

9�yA(�x; �y)). In other words, the solutions to C are exa
tly the solutions to A proje
ted on �x.

3 Isolated forms

We are interested not only in satis�ability of 
onstraints, but also in their solutions. Our algo-

rithm will 
onsist of equivalen
e-preserving transformation steps. When the signature 
ontains

no unary fun
tion symbol of the weight 0, the transformation will preserve equivalen
e in the

following strong sense. At ea
h step, given a 
onstraint C(�x), we transform it into 
onstraints

C

1

(�x; �y); : : : ; C

n

(�x; �y) su
h that for every sequen
e of ground terms

�

t, the 
onstraint C(

�

t) holds

if and only if there exist k and a sequen
e of ground terms �s su
h that C

k

(

�

t; �s) holds. When the

signature 
ontains a unary fun
tion symbol of the weight 0, the transformation will preserve a

weaker form of equivalen
e: some solutions will be lost, but solvability will be preserved.

In our proof, we will redu
e solvability of Knuth-Bendix ordering 
onstraints to the problem

of solvability of systems of linear Diophantine equations on the weights of variables. Condition

1 of the de�nition of the Knuth-Bendix ordering jtj > jsj has a simple translation into a linear

Diophantine equation, but 
onditions 2 and 3 do not have. So we will split the Knuth-Bendix

ordering in two partial orderings: �

w


orresponding to 
ondition 1 and �

lex


orresponding to


onditions 3 and 3. Formally, we denote by t �

w

s the formula jtj > jsj and by t �

lex

s the

formula jtj = jsj ^ t � s. Obviously, t

1

� t

2

if and only if t

1

�

lex

t

2

_ t

1

�

w

t

2

. So in the sequel

we will assume that � is repla
ed by the new symbols �

lex

and �

w

.

We use x

1

� x

2

� : : : � x

n

to denote the formula x

1

� x

2

^ x

2

� x

3

^ : : : ^ x

n�1

� x

n

, and

similar for other binary symbols in pla
e of �.

A term t is 
alled 
at if t is either a variable or has the form g(x

1

; : : : ; x

m

), where g 2 �,m �

0, and x

1

; : : : ; x

m

are variables. We 
all a 
onstraint 
hained if (1) it has a form t

1

#t

2

# : : :#t

n

,

where ea
h o

urren
e of # is �

w

, �

lex

or =

TA

, (ii) ea
h term t

i

is 
at, (iii) if some of the t

i

's

has the form g(x

1

; : : : ; x

n

), then x

1

; : : : ; x

n

are some of the t

j

's.

Lemma 3.1 Any 
onstraint C is equivalent to a disjun
tion of 
hained 
onstraints.

Proof. First, we 
an apply 
attening to all terms o

urring in C as follows. If a non
at term

g(t

1

; : : : ; t

m

) o

urs in C, take any i su
h that t

i

is not a variable. Then repla
e C by v = t

i

^C

0

,

where v is a new variable and C

0

is obtained from C by repla
ing all o

urren
es of t

i

by v.

After a �nite number of su
h repla
ements all terms will be
ome 
at.

Let s; t be 
at terms o

urring in C su
h that no 
omparison s#t o

urs in C. Using the

valid formula s �

w

t_ s �

lex

t_ s =

TA

t_ t �

w

s_ t �

lex

s we 
an repla
e C by the disjun
tion

of the 
onstraints

s �

w

t ^ C; s �

lex

t ^ C; s =

TA

t ^ C;

t �

w

s ^ C; t �

lex

s ^ C:

By repeatedly doing this transformation we obtain a disjun
tion of 
onstraints C

1

_ : : : _C

k

in

whi
h for every terms s; t and every i 2 f1; : : : ; kg some 
omparison 
onstraint s#t o

urs in

C

i

.
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To 
omplete the proof we show how to turn ea
h C

i

into a 
hained 
onstraint. Let us 
all a


y
le any 
onstraint s

1

#s

2

# : : :#s

n

#s

1

, where n � 1. We 
an remove all 
y
les from C

i

using

the following observation: (i) if all # in the 
y
le are =

TA

, then s

n

#s

1


an be removed from the


onstraint, (ii) if some # in the 
y
le is �

w

or �

lex

, then the 
onstraint C

i

is unsatis�able. After

removal of all 
y
les the 
onstraint C

i


an still be not 
hained be
ause it 
an 
ontain transitive

sub
onstraints of the form s

1

#s

2

# : : :#s

n

^ s

1

#s

n

, n � 2. Then either C

i

is unsatis�able or

s

1

#s

n


an be removed using the following observations:

1. Case: s

1

#s

n

is s

1

�

w

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then s

1

�

w

s

n

follows from

s

1

#s

2

# : : :#s

n

, otherwise s

1

#s

2

# : : :#s

n

implies js

1

j = js

n

j and hen
e C

i

is unsatis�-

able.

2. Case: s

1

#s

n

is s

1

�

lex

s

n

. If some # in s

1

#s

2

# : : :#s

n

is �

w

, then C

i

is unsatis�able.

If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then C

i

is unsatis�able too. Otherwise, all # in

s

1

#s

2

# : : :#s

n

are either �

lex

or =

TA

, and at least one of them is �

lex

, and s

1

�

lex

s

n

follows from s

1

#s

2

# : : :#s

n

.

3. Case: s

1

#s

n

is s

1

=

TA

s

n

. If all # in s

1

#s

2

# : : :#s

n

are =

TA

, then s

1

=

TA

s

n

follows

from s

1

#s

2

# : : :#s

n

, otherwise C

i

is unsatis�able.

It is easy to see that after the removal of all 
y
les and transitive sub
onstraints the 
onstraint

C

i

be
omes 
hained. 2

Denote by ? the logi
al 
onstant \false". Note that the transformation of C into the disjun
tion

of 
onstraints C

1

_ : : : _ C

k

in the lemma 
an be done in nondeterministi
 polynomial time in

the following sense: there exists a nondeterministi
 polynomial-time algorithm whi
h, given

C 
omputes on every bran
h either ? or some C

i

, and every C

i

is 
omputed on at least one

bran
h.

We will now introdu
e several spe
ial kinds of 
onstraints whi
h will be used in our proofs

below, namely arithmeti
al, triangle, and isolated.

A 
onstraint is 
alled arithmeti
al if it uses only arithmeti
al relations =

N

and>, for example

jf(x)j > jaj+ 3.

A 
onstraint y

1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

is said to be in triangle form if (i) y

1

; : : : ; y

n

are

pairwise di�erent variables, and (ii) for all j � i the variable y

i

does not o

ur in t

j

. The

variables y

1

; : : : ; y

n

are said to be dependent in this 
onstraint.

A 
onstraint is said to be simple if it has the form

x

11

�

lex

x

12

�

lex

: : : �

lex

x

1n

1

^ : : : ^ x

k1

�

lex

x

k2

�

lex

: : : �

lex

x

kn

k

;

where x

11

; : : : ; x

kn

k

are pairwise di�erent variables.

A 
onstraint is said to be in isolated form if either it is ? or it has the form

C

arith

^C

triang

^C

simp

;

where C

arith

is an arithmeti
al 
onstraint, C

triang

is in triangle form, and C

simp

is a simple


onstraint su
h that no variable of C

simp

is dependent in C

triang

.

Our de
ision pro
edure for Knuth-Bendix ordering 
onstraints is designed as follows. By

Lemma 3.1 we 
an transform any 
onstraint into an equivalent disjun
tion of 
hained 
on-

straints. Our next step is to give a transformation of any 
hained 
onstraint into an equivalent
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6 3 Isolated forms

disjun
tion of 
onstraints in isolated form. Then in Se
tion 4 we show how to transform any


onstraint in isolated form into an equivalent disjun
tion of systems of linear Diophantine equa-

tions on the weights of variables. Then we 
an use the result on the de
idability of systems of

linear Diophantine equations.

Let us show how to transform any 
hained 
onstraint into an equivalent disjun
tion of

isolated forms. The transformation will work on the 
onstraints of the form

C


hain

^ C

arith

^ C

triang

^ C

simp

; (1)

su
h that (i) C

arith

; C

triang

; C

simp

are as in the de�nition of isolated form; (ii) C


hain

is a 
hained


onstraint; (iii) ea
h variable of C


hain

neither o

urs in C

simp

nor is dependent in C

triang

. We

will 
all su
h 
onstraints (1) working . Let us 
all the size of a 
hained 
onstraint C the total

number of o

urren
es of fun
tion symbols and variables in C. Likewise, the essential size of a

working 
onstraint is the size of its 
hained part C


hain

.

At ea
h transformation step we will repla
e working 
onstraint (1) by a disjun
tion of

working 
onstraints but of smaller essential sizes. Evidently, when the essential size is 0, we

obtain a 
onstraint in isolated form.

Let us prove some lemmas about solutions to 
onstraints of the form (1). Note that any


hained 
onstraint is of the form

t

11

#t

12

# : : :#t

1m

1

�

w

� � �

�

w

t

k1

#t

k2

# : : :#t

km

k

;

(2)

where ea
h # is either =

TA

or �

lex

. We 
all a row in su
h a 
onstraint any maximal subsequen
e

t

i1

#t

i2

# : : :#t

im

i

in whi
h �

w

does not o

ur. So 
onstraint (2) 
ontains k rows, the �rst one

is t

11

#t

12

# : : :#t

1m

1

and the last one t

k1

#t

k2

# : : :#t

km

k

. Note that for any solution to (2) all

terms in a row have the same weight.

Lemma 3.2 Any 
hained 
onstraint C 
an be e�e
tively transformed into an equivalent 
hained


onstraint that is either ?, or of the form (2) and has the following property. Suppose some

term of the �rst row t

1j

is a variable y. Then either

1. y has exa
tly one o

urren
e in C, namely t

1j

itself; or

2. y has exa
tly two o

urren
es in C, both in the �rst row: some t

1n

has the form f(y) for

n < j, and w(f) = 0, moreover in this 
ase there exists at least one �

lex

between t

1n

and

t

1j

.

Proof. Note that if y o

urs in any term t(y) whi
h is not in the �rst row, then C is unsatis-

�able, sin
e for any solution � to C we have jy�j > jt(y)�j, whi
h is impossible. Suppose that y

has another o

urren
e in a term t

1n

of the �rst row. Consider two 
ases.

1. t

1n


oin
ides with y. Then either C has no solution, or part of the �rst row between t

1n

and t

1j

has the form y =

TA

: : : =

TA

y. In the latter 
ase part y =

TA


an be removed from

the �rst row, so we 
an assume that no term in the �rst row ex
ept t

1j

is y.
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2. t

1n

is a nonvariable term 
ontaining y. Sin
e t

1n

and y are in the same row, for every

solution � to C we have jy�j = jt

1n

�j. Sin
e t

1n

is a 
at term, the equality jy�j = jt

1n

�j

is possible only if t

1n

is f(y) and n < j. Finally, if f(y) has more than one o

urren
e

in the �rst row, we 
an get rid of all of them but one in the same way as we got rid of

multiple o

urren
es of y.

2

Note that the transformation presented in the proof of the lemma 
an be made in polynomial

time. It is not hard to argue that the transformation of Lemma 3.2 does not in
rease the size

of the 
onstraint.

We will now take a working 
onstraint C


hain

^C

arith

^C

triang

^C

simp

, whose 
hained part

satis�es Lemma 3.2 and show how to transform it into an equivalent disjun
tion of working


onstraints of smaller essential sizes. More pre
isely, these 
onstraints will be equivalent when

the signature 
ontains no unary fun
tion symbol of the weight 0. When the signature 
ontains

su
h a symbol f , a weaker notion of equivalen
e will hold.

A term s is 
alled an f -variant of a term t if s 
an be obtained from t by a sequen
e of

operations of the following forms: repla
ement of a subterm f(r) by r or repla
ement of a

subterm r by f(r). Evidently, f -variant is a symmetri
 relation. Two substitutions �

1

and �

2

are said to be f -variants if for every variable x the term x�

1

is an f -variant of x�

2

. In the

proof of several lemmas below we will repla
e a 
onstraint C(�x) by a formula A(�x; �y) 
ontaining

extra variables �y and say that C(�x) and A(�x; �y) are equivalent up to f . By this we mean the

following.

1. For every substitution �

1

grounding for �x su
h that TA

+

(�) j= C(�x)�

1

there exists a

substitution �

2

grounding for �x; �y su
h that TA

+

(�) j= A(�x; �y)�

2

, and the restri
tion of

�

2

to �x is an f -variant of �

1

.

2. For every substitution �

2

su
h that �

2

is grounding for �x; �y and TA

+

(�) j= A(�x; �y)�

2

there exists a substitution �

1

su
h that TA

+

(�) j= C(�x)� and �

1

is an f -variant of the

restri
tion of �

2

on �x.

Note that when the signature 
ontains no unary fun
tion symbol of the weight 0, equivalen
e

up to f is the same as ordinary equivalen
e.

Lemma 3.3 Let C = C


hain

^C

arith

^C

triang

^C

simp

be a working 
onstraint and �

1

be a solution

to C. Let �

2

be an f -variant of �

1

su
h that (i) �

2

is a solution to C


hain

and (ii) �

2


oin
ides

with �

1

on all variables not o

urring in C


hain

. Then there exists an f -variant �

3

of �

2

su
h that

(i) �

3

is a solution to C and (ii) �

3


oin
ides with �

2

on all variables ex
ept for the dependent

variables of C

triang

.

Proof. It is enough to prove that �

2

is a solution to both C

arith

and C

simp

. Sin
e C

simp

and

C


hain

have no 
ommon variables, it follows that �

1

and �

2

agree on all variables of C

simp

, and

so �

2

is a solution to C

simp

. Sin
e �

1

and �

2

are f -variants and the weight of f is 0, for every

term t we have jt�

1

j = jt�

2

j, whenever t�

1

is ground. Therefore, �

2

is a solution to C

arith

if and

only if so is �

1

. So �

2

is a solution to C

arith

.

It is fairly easy to see that �

2


an be 
hanged on the dependent variables of C

triang

obtaining

a solution �

3

to C whi
h satis�es the 
onditions of the lemma. 2
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This lemma will be used below in the following way. Instead of 
onsidering the set �

1

of all

solutions to C


hain

we 
an restri
t ourselves to a subset �

2

of �

1

as soon as for every solution

�

1

2 �

1

there exists a solution �

2

2 �

2

su
h that �

2

is an f -variant of �

1

.

Let us 
all an f -term any term of the form f(t). By the f -height of a term t we mean

the number n su
h that t = f

n

(s) and s is not an f -term. Note that f -terms have positive

f -height, while non f -terms have f -height 0. We 
all the f -distan
e between two terms s and t

the di�eren
e between the f -height of s and f -height of t. For example, the f -distan
e between

the terms f(a) and f(f(g(a; b)) is �1.

Let us now prove a lemma that restri
ts f -height of solutions.

Lemma 3.4 Let C be a 
hain 
onstraint of the form

p

l

#p

l�1

# : : :#p

1

�

w

: : : ;

where ea
h # is either =

TA

or �

lex

. Further, let C satisfy the 
onditions of Lemma 3.2 and �

be a solution to C. Then there exists an f -variant �

0

of � su
h that (i) �

0

is a solution to C and

(ii) for every k 2 f1; : : : ; lg, the f -height of p

k

�

0

is at most k.

Proof. Let us �rst prove the following statement

(3) The row p

l

#p

l�1

# : : :#p

1

has a solution �

1

, su
h that (i) �

1

is an f -variant of �, (ii)

for every 1 < k � l the f -distan
e between p

k

�

1

and p

k�1

�

1

is at most 1.

Suppose that for some k the f -distan
e between p

k

� and p

k�1

� is d > 1. Evidently, to prove

(3) it is enough to show the following.

(4) There exists a solution �

2

su
h that (i) �

2

is an f -variant of �, (ii) the f -distan
e between

p

k

�

2

and p

k�1

�

2

is d � 1, and (iii) for every k

0

6= k the f -distan
e between p

k

0

�

2

and

p

k

0

�1

�

2


oin
ides with the f -distan
e between p

k

0

� and p

k

0

�1

�.

Let us show (4), and hen
e (3). Sin
e � is a solution to the row, then for every k

000

� k the f -

distan
e between any p

k

000

� and p

k

� is nonnegative. Likewise, for every k

00

< k�1 the f -distan
e

between any p

k�1

� and p

k

00

� is nonnegative. Therefore, for all k

000

� k > k

00

, the f -distan
e

between p

k

000

� and p

k

00

� is � d, and hen
e is at least 2. Let us prove the following.

(5) Every variable x o

urring in p

l

#p

l�1

# : : :#p

k

does not o

ur in p

k�1

# : : :#p

1

.

Let x o

ur in both p

l

#p

l�1

# : : :#p

k

and p

k�1

# : : :#p

1

. Sin
e the 
onstraint satis�es Lemma 3.2,

then p

i

= f(x) and p

j

= x. Then the f -distan
e between p

i

� and p

j

� is 1, but by our assumption

it is at least 2, so we obtain a 
ontradi
tion. Hen
e (5) is proved.

Now note the following.

(6) If for some k

000

� k a variable x o

urs in p

k

000

then x� is an f -term.

Suppose, by 
ontradi
tion, that x� is not an f -term. Note that p

k

000

has a positive f -height, so

p

k

000

is either x of f(x). But we proved before that the f -distan
e between p

k

000

and p

k�1

is at

least 2, so x must be an f -term.

Now, to satisfy (4), de�ne the substitution �

2

as follows:
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�

2

(x) =

�

�(x); if x does not o

ur in p

l

; : : : ; p

k

;

t; if x o

urs in p

l

; : : : ; p

k

and �(x) = f(t):

By (5) and (6), �

2

is de�ned 
orre
tly. We 
laim that �

2

satis�es (4). The properties (i)-(iii)

are straightforward by our 
onstru
tion, it only remains to prove that �

2

is a solution to the

row, i.e. for every k

0

we have p

k

0

�

2

#p

k

0

�1

�

2

. Well, for k

0

> k we have p

k

0

� = f(p

k

0

�

2

) and

p

k

0

�1

� = f(p

k

0

�1

�

2

), and for k

0

< k we have p

k

0

� = p

k

0

�

2

and p

k

0

�1

� = p

k

0

�1

�

2

, in both 
ases

p

k

0

�

2

#p

k

0

�1

�

2

follows from p

k

0

�#p

k

0

�1

�. The only diÆ
ult 
ase is k = k

0

.

Assume k = k

0

. Sin
e the f -distan
e between p

k

� and p

k�1

� is d > 1, we have p

k

� 6= p

k�1

�,

and hen
e p

k

#p

k�1

must be p

k

�

lex

p

k�1

. Sin
e � is a solution to p

k

�

lex

p

k�1

and sin
e �

2

is

an f -variant of �, the weights of p

k

�

2

and p

k�1

�

2


oin
ide. But then p

k

�

2

�

lex

p

k�1

�

2

follows

from the fa
t that the f -distan
e between p

k

�

2

and p

k�1

�

2

is d� 1 � 1.

Now the proof of (4), and hen
e of (3), is 
ompleted. In the same way as (3), we 
an also

prove

(7) The 
onstraint C has a solution �

0

su
h that (i) �

0

is an f -variant of �, (ii) for every

1 < k � l the f -distan
e between p

k

�

1

and p

k�1

�

0

is at most 1. (iii) the f -height of p

1

�

0

is at most 1; (iv) �

0

and � 
oin
ide on all variables o

urring in the rows below the �rst

one .

It is not hard to derive Lemma 3.4 from (7). 2

The following lemma is the main (and the last) lemma of this se
tion.

Lemma 3.5 Let C = C


hain

^ C

arith

^ C

triang

^ C

simp

be a working 
onstraint in whi
h C


hain

is nonempty. Then C 
an be e�e
tively transformed into a disjun
tion of working 
onstraints

having C


hain

of smaller sizes and equivalent to C up to f .

Proof. The proof is rather 
omplex, so we will give a plan of it. The proof is presented as

a series of transformations on the �rst row of C. These transformations may result in new


onstraints added to C

arith

, C

triang

, and C

simp

. First, we will get rid of equations s =

TA

t in

the �rst row, by introdu
ing quasi-
at terms, i.e. terms f

k

(t), where t is 
at. If the �rst row


ontained no fun
tion symbols, then we simply eliminate the �rst row, thus de
reasing the size

of the 
hained part. If there were fun
tion symbols in the �rst row, we 
ontinue as follows.

Se
ond, we will \guess" the values of some variables x of the �rst row, i.e. repla
e them by

some quasi-
at term f

m

(g(�y)), where �y is a sequen
e of new variables. After these two steps,

the size of the �rst row 
an, in general, in
rease. Third, we show how to repla
e the �rst row

by new 
onstraints involving only variables o

urring in the row, but not fun
tion symbols.

Fourth, we prove that the number of variables from the new 
onstraints that we leave in the


hained part is not greater than the original number of variables in the �rst row, and therefore

the size of the 
hained part de
reases.

Consider the �rst row of C


hain

. Let this row be p

l

#p

l�1

# : : :#p

1

. Then C


hain

has the

form p

l

#p

l�1

# : : :#p

1

�

w

t

1

# : : :#t

n

. If l = 1, i.e., the �rst row 
onsists of one term, we 
an

remove this row and add jp

1

j > jt

1

j to C

arith

obtaining an equivalent 
onstraint with smaller

essential size. So we assume that the �rst row 
ontains at least two terms.

As before, we assume that f is a unary fun
tion symbol of the weight 0. By Lemma 3.4, if

some p

i

is either a variable x or a term f(x), it is enough to sear
h for solutions � su
h that

the height of x� is at most l.
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A term is 
alled quasi-
at if it has the form f

k

(t) where t is 
at. We will now get rid of

equalities in the �rst row, but by introdu
ing quasi-
at terms instead of the 
at ones. When

we use notation f

k

(t) below, we assume k � 0, and f

0

(t) will stand for t. Let us �rst get rid of

equalities of the form f

k

(x) = f

m

(y) and then of all other equalities.

If the �rst row 
ontains an equality f

k

(x) =

TA

f

m

(y), we do the following. If x 
oin
ides

with y and k 6= m, then the 
onstraint is unsatis�able. If x 
oin
ides with y and k = m, we

repla
e f

k

(x) =

TA

f

m

(y) by f

k

(x). Assume now that x is di�erent from y. Without loss of

generality assume k � m. We add y = f

k�m

(x) to C

triang

, and repla
e other o

urren
es of y

in C


hain

(if any) by f

k�m

(x). Note that other o

urren
es of y in C


hain


an only be in the

�rst row, and only in the terms f

r

(y).

After all these transformations we 
an assume that equalities f

k

(x) =

TA

f

m

(y) do not o

ur

in the �rst row.

If the �rst row 
ontains an equality x = t between a variable and a term, we repla
e this

equality by t, repla
e all o

urren
es of x by t in the �rst row, and add x = t to C

triang

obtaining

an equivalent working 
onstraint.

If the �rst row 
ontains an equality g(x

1

; : : : ; x

m

) =

TA

h(t

1

; : : : ; t

n

) where g and h are

di�erent fun
tion symbols, the 
onstraint is unsatis�able.

If the �rst row 
ontains an equality g(x

1

; : : : ; x

n

) =

TA

g(y

1

; : : : ; y

n

) we do the following.

If the term g(x

1

; : : : ; x

n

) 
oin
ides with g(y

1

; : : : ; y

n

), repla
e this equality by g(x

1

; : : : ; x

n

).

Otherwise, �nd the smallest number i su
h that x

i

is di�erent from y

i

and (i) add y

i

=

TA

x

i

to

C

triang

; (ii) repla
e all o

urren
es of y

i

in C


hain

by x

i

.

So we 
an now assume that the �rst row 
ontains no equalities and hen
e it has the form

q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

, where all of the terms q

i

are either 
at or have the form f

m

(y) for

some variable y. Moreover, if some q

i

is a variable y, then it either has no other o

urren
es in

the row or only has other o

urren
es of the form f

m

(y).

If all of the q

i

are variables, we 
an add q

n

�

lex

q

n�1

�

lex

: : : �

lex

q

1

to C

simp

and jq

1

j > jt

1

j

to C

arith

obtaining an equivalent working 
onstraint of smaller essential size. Hen
e, we 
an

assume that at least one of the q

i

is a nonvariable term.

Take any term q

k

in the �rst row su
h that q

k

is either a variable x or a term f

r

(x). Consider

the formula G de�ned as

_

g2��ffg

_

m=0:::l

x = f

m

(g(�y)): (8)

where �y is a sequen
e of pairwise di�erent new variables. Sin
e we proved that it is enough

to restri
t ourselves to solutions � for whi
h the height of x� is at most l, the formulas C and

C ^G are equivalent up to f .

Using distributivity laws, C ^ G 
an be turned into an equivalent disjun
tion of formulas

x = f

m

(g(�y)) ^ C. For every su
h formula, do the following. Repla
e x by f

m

(g(�y)) in the

�rst row, obtaining a 
onstraint C

0

, and add x = f

m

(g(�y)) to the triangle part. We do this

transformation for all terms in the �rst row of the form f

k

(z), where k � 0 and z is a variable.

Consider the pair q

n

; q

n�1

. By our 
onstru
tion, there exist k;m � 0 su
h that q

n

=

f

k

(g(x

1

; : : : ; x

u

)) and q

n�1

= f

m

(h(y

1

; : : : ; y

v

)) for some variables x

1

; : : : ; x

u

; y

1

; : : : ; y

v

and

fun
tion symbols g; h 2 ��ffg. Then q

n

�

lex

q

n�1

is f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)).

If k < n or (k = n and h� g), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is equivalent to ?.

If k > n or (k = n and g � h), then f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) is equivalent to

the arithmeti
al 
onstraint jg(x

1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j whi
h 
an be added C

arith

. If k = m

and g = h (and hen
e u = v), then
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f

k

(g(x

1

; : : : ; x

u

)) �

lex

f

m

(h(y

1

; : : : ; y

v

)) $

jg(x

1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j ^

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

� y

i

):

We 
an now do the following. Add jg(x

1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j to C

arith

and repla
e C with

the equivalent disjun
tion

C _

_

i=1:::u

(x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

� y

i

):

Then using distributivity laws turn this formula into the equivalent disjun
tion of 
onstraints

of the form

C ^ x

1

=

TA

y

1

^ : : : ^ x

i�1

=

TA

y

i�1

^ x

i

� y

i

:

for all i = 1 : : : u. For ea
h of these 
onstraints, we 
an move, as before, the equalities x

1

=

TA

y

1

one by one to the triangle part C

triang

, and make C


hain

^ x

i

� y

i

into a disjun
tion of 
hained


onstraints as in Lemma 3.1. Thus, we have repla
ed q

n

�

lex

q

n�1

by an equivalent disjun
tion

of 
onstraints. Likewise, we get rid of q

n�1

�

lex

q

n�2

; : : : ; q

2

�

lex

q

1

. As in the beginning of the

proof, if the 
onstraint had the se
ond row, we add to C

arith

jq

1

j > jt

1

j, where t

1

is any term of

the se
ond row.

Let us analyze what we have a
hieved. After these transformations, in ea
h member of the

obtained disjun
tion the �rst row will be removed from the 
hained part C


hain

of C. Sin
e we

assumed that the row 
ontained at least one fun
tion symbol, ea
h member of the disjun
tion

will 
ontain at least one o

urren
e of a fun
tion symbol less than the original 
onstraint. This is

enough to prove termination of our algorithm, but not enough to present it as nondeterministi


polynomial-time algorithm. The problem is that, when p

n

is a variable x or a term f(x) one

o

urren
e of x in p

n


an be repla
ed by one or more 
onstraints of the form x

i

� y

i

, where x

i

and y

i

are new variables. To be able to show that the essential sizes of ea
h of the resulting


onstraints is stri
tly less than the essential size of the original 
onstraint, we have to modify

our algorithm slightly.

The modi�
ation will guarantee that the number of new variables introdu
ed in the 
hained

part of the 
onstraint is not more than the number of variables eliminated from the �rst row.

We will a
hieve this by moving some 
onstraints in the simple part C

simp

.

The new variables only appear in the 
hained part when we repla
e a variable in the �rst row

by a term h(u

1

; : : : ; u

m

) or by the term h(v

1

; : : : ; v

m

) obtaining a 
onstraint f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)), whi
h is then repla
ed by

u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

� v

i

: (9)

Let us 
all a variable u

i

(respe
tively, v

i

) new if f

k

(h(u

1

; : : : ; u

m

)) (respe
tively f

k

(h(v

1

; : : : ; v

m

)))

appeared in the �rst row when we repla
ed a variable by a nonvariable term 
ontaining h using

formula (8). In other words, new variables are those that did not o

ur in the �rst row before

our transformation, but appeared in the �rst row during the transformation. All other variables

are 
alled old. After the transformation we obtain a 
onjun
tion E of 
onstraints of the form

x

i

= x

j

or x

i

� x

j

, where x

i

; x

j


an be either new or old. Without loss of generality we 
an

assume that this 
onjun
tion of 
onstraints does not 
ontain 
hains of the form
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12 3 Isolated forms

x

1

# : : :#x

n

#x

1

where n � 2 and at least one of the #'s is �. Indeed, if E 
ontains su
h a 
hain, then it is

unsatis�able.

We will now show that the number of new variables in the 
hained part 
an be restri
ted

by moving 
onstraints on them into the triangle or isolated part. Among the new variables, let

us distinguish the following three kinds of variables. A new variable x is 
alled blue in E if E


ontains a 
hain x = x

1

= : : : = x

n

, where x

n

is an old variable. Evidently, a blue variable x


auses no harm sin
e it 
an be repla
ed by an old variable x

n

. Let us denote by � the inverse

relation to �. A new variable x is 
alled red in E if it is not blue in E and E 
ontains a 
hain

x#x

1

# : : :#x

n

, where x

n

is an old variable, and all of the #'s are among =

TA

, or �, or �. Red

variables are troublesome, sin
e there is no obvious way to get rid of them. However, we will

show that the number of red variables is not greater than the number of repla
ed variables (as

the variable x in (8)). Finally, all variables that are neither blue nor red in E are 
alled green

in E.

Getting rid of green variables. We will now show that the green variables 
an be moved

to the simple part of the 
onstraint C

simp

. To this end, note an obvious property: if E 
ontains

a 
onstraint x#y and x is green, then y is green too. We 
an now do the following with

green variables. As in Lemma 3.1, we 
an turn all green variables into a disjun
tion of 
hained


onstraints of the form v

1

# : : :#v

n

, where # are =

TA

, �

w

, or �

lex

, and use distributivity laws

to obtain 
hained 
onstraints v

1

# : : :#v

n

. Let us 
all this equality the green 
hain. Then, if

there is any equality v

i

=

TA

v

i+1

in the green 
hain, we add this equality to C

triang

and repla
e

this equality by v

i+1

in the 
hain. Further, if the 
hain has the form v

1

�

lex

: : : �

lex

v

k

�

w

v

k+1

# : : :#v

n

, we add v

1

�

lex

: : : �

lex

v

k

to C

simp

and jv

k

j > jv

k+1

j to C

arith

, and repla
e the

green 
hain by v

k+1

# : : :#v

n

. We do this transformation until the green 
hain be
omes of the

form v

1

�

lex

: : : �

lex

v

k

. After this, the green 
hain 
an be removed from E and added to

C

simp

. Evidently, this transformation 
an be presented as a nondeterministi
 polynomial-time

algorithm.

Getting rid of blue variables. If E 
ontains a blue variable x, then it also 
ontains a 
hain

of 
onstraints x = x

1

= : : : = x

n

, where x

n

is an old variable. We repla
e x be x

n

in C and add

x = x

n

to the triangle part C

triang

.

Red variables. Let us show the following: in every term f

k

(h(u

1

; : : : ; u

m

)) in the �rst row

at most one variable among u

1

; : : : ; u

m

is red. It is not hard to argue that it is suÆ
ient to

prove a stronger statement: if for some i the variable u

i

is red, then all variables u

1

; : : : ; u

i�1

are blue. So suppose u

i

is red and u

i

#y

n

# : : :#y

1

is a shortest 
hain in E su
h that y

1

is

blue. We prove that the variables u

1

; : : : ; u

i�1

are blue by indu
tion on n. When n = 1, E


ontains either the 
onstraint u

i

� y

1

or y

1

� u

i

, where y

1

is old. Without loss of generality

assume that E 
ontains u

i

� y

1

. Then (
f. (9)) this equation appeared in E when we repla
ed

f

k

(h(u

1

; : : : ; u

m

)) �

lex

f

k

(h(v

1

; : : : ; v

m

)) by u

1

=

TA

v

1

^ : : : ^ u

i�1

=

TA

v

i�1

^ u

i

� v

i

and

y

1

= v

i

. But then E also 
ontains the equations u

1

=

TA

v

1

; : : : ; u

i�1

=

TA

v

i�1

, where the

variables v

1

; : : : ; v

i�1

are old, and so the variables u

1

; : : : ; u

i�1

are blue. The proof for n > 1 is

similar, but we use the fa
t that v

1

; : : : ; v

i�1

are blue rather than old.
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To 
omplete the transformation, we add all 
onstraints on red variables to C


hain

and make

C


hain

into a disjun
tion of 
hained 
onstraint as in Lemma 3.1.

When we 
ompleted the transformation on the �rst row, the row disappears from the 
hained

part C


hain

of C. If the �rst row 
ontained no fun
tion symbols, the size of C


hain

will be
ome

smaller sin
e several variables will be removed from it. If C


hain


ontained at least one fun
tion

symbol, that after the transformation the number of o

urren
es of fun
tion symbols in C


hain

will de
rease. Some red variables will be introdu
ed, but we proved that their number is not

greater than the number of variables eliminated from the �rst row. Therefore, the size of C


hain

stri
tly de
reases after the transformation. 2

Again, it is not hard to argue that the transformation 
an be presented as a nondeterministi


polynomial-time algorithm 
omputing all members of the resulting disjun
tion of 
onstraints.

Lemmas 3.1 and 3.5 imply the following:

Lemma 3.6 Let C be a 
onstraint. Then there exists a disjun
tion C

1

_ : : : _C

n

of 
onstraints

in isolated form equivalent to C up to f . Moreover, members of su
h a disjun
tion 
an be found

by a nondeterministi
 polynomial-time algorithm.

Our next aim is to present a nondeterministi
 polynomial-time algorithm solving 
onstraints

in isolated form.

4 From 
onstraints in isolated form to systems of linear Dio-

phantine Equations

Let C be a 
onstraint in isolated form

C

simp

^C

arith

^C

triang

:

Our de
ision algorithm will be based on a transformation of the simple 
onstraint C

simp

into

an equivalent disjun
tion D of arithmeti
al 
onstraints. Then we 
an 
he
k the satis�ability of

the resulting formula D^C

arith

by using an algorithm for solving systems of linear Diophantine

equations on the weights of variables.

To transform C

simp

into an arithmeti
al formula, observe the following. The 
onstraint

C

simp

is a 
onjun
tion of the 
onstraints of the form

x

1

�

lex

: : : �

lex

x

N

having no 
ommon variables. To solve su
h a 
onstraint we have to ensure that at least N

di�erent terms of the same weight as x

1

exist.

In this se
tion we will show that for ea
h N the statement \there exists at least N di�erent

terms of a weight w" 
an be expressed as an existential formula of w in Presburger's Arithmeti
.

We say that a relation R(�x) on natural numbers is 9-de�nable, if there exists an existential

formula of Presburger's Arithmeti
 C(�x; �y) su
h that R(�x) is equivalent to 9�yC(�x; �y). We 
all

a fun
tion r(�x) 9-de�nable if so is the relation r(�x) = y. Note that 
omposition of 9-de�nable

fun
tion is 9-de�nable.

Let us �x an enumeration g

1

; : : : ; g

S

of the signature �. We assume that the �rst B symbols

g

1

; : : : ; g

B

have an arity � 2, and the �rst F symbols g

1

; : : : ; g

F

are non
onstants. The arity of
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ea
h g

i

is denoted as arity

i

. In this se
tion we assume that B, F , S, and the weight fun
tion

w are �xed.

We 
all the 
ontents of a ground term t the tuple of natural numbers (n

1

; : : : ; n

S

) su
h that

n

i

is the number of o

urren
es of g

i

in t for all i. For example, if the sequen
e of elements of

� is g; h; a; b, and t = h(g(h(h(a)); g(b; b))), the 
ontents of t is (2; 3; 1; 2).

Lemma 4.1 The following relation exists(x; n

1

; : : : ; n

S

) is 9-de�nable: there exists at least one

ground term of � of the weight x and 
ontents (n

1

; : : : ; n

S

).

Proof. We will de�ne exists(x; n

1

; : : : ; n

S

) by a 
onjun
tion of two linear Diophantine equa-

tions.

The �rst equation is

x =

X

1�i�S

w(g

i

) � n

i

: (10)

It is not hard to argue that this equation says: every term with the 
ontents (n

1

; : : : ; n

S

) has

weight x.

The se
ond formula says that the number of 
onstant and non
onstant fun
tion symbols in

(n

1

; : : : ; n

S

) is appropriately balan
ed for 
onstru
ting a term:

1 +

X

1�i�S

(arity

i

� 1) � n

i

= 0: (11)

2

Let us prove some bounds on the number of terms of a �xed weight.

We leave the following two lemmas to the reader. The �rst one implies that, if there exists

any ground term t of a weight x with at least N o

urren
es of non
onstant symbols, in
luding

at least one o

urren
e of a fun
tion symbol of an arity � 2, then there exists at least N di�erent

ground terms of the weight x.

Lemma 4.2 Let x; n

1

; : : : ; n

S

be natural numbers su
h that exists(x; n

1

; : : : ; n

S

) holds, n

1

+: : :+

n

B

� 1 and n

1

+ : : : + n

F

� N . Then there exists at least N di�erent ground terms with the


ontents (n

1

; : : : ; n

S

). 2

The se
ond lemma implies that, if there exists any ground term t of a weight x with at least

N o

urren
es of non
onstant fun
tion symbols, in
luding at least two di�erent unary fun
tion

symbols, then there exists at least N di�erent ground terms of the weight x.

Lemma 4.3 Let x; n

1

; : : : ; n

s

be natural numbers su
h that exists(x; n

1

; : : : ; n

S

) holds, n

1

+ : : :+

n

F

� N and at least two numbers among n

B+1

; : : : ; n

F

are positive. Then there exists at least

N di�erent ground terms with the 
ontents (n

1

; : : : ; n

S

). 2

Let us note that if our signature 
onsists only of a unary fun
tion symbol of a positive weight

and 
onstants, then the number of di�erent terms in any weight is less or equal to the number

of 
onstants in the signature.

The remaining types of signatures are 
overed by the following lemma.
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Lemma 4.4 Let � 
ontain a fun
tion symbol of an arity greater than or equal to 2, or 
ontain

at least two di�erent unary fun
tion symbols. Then there exist two natural numbers N

1

and N

2

su
h that for all natural numbers N and x su
h that x > N �N

1

+N

2

, the number of terms of

the weight x is either 0 or greater than N .

Proof. If � 
ontains a unary fun
tion symbol of the weight 0 then the number of di�erent

terms of any weight is either 0 or ! and the lemma trivially holds.

Therefore we 
an assume that our signature 
ontains no unary fun
tion symbol of the weight

0. De�ne

W = maxfw(g

i

)j1 � i � Sg;

A = maxfarity

i

j1 � i � Sg;

N

1

= W � A;

N

2

= W

2

� (A+ 1) +W:

Take any N and x su
h that x > N �N

1

+N

2

.

Let us prove that if there exists a term of the weight x then the number of o

urren
es of

non
onstant fun
tion symbols in this term is greater than N . Assume the opposite, i.e. there

exists a term t of the weight x su
h that the number of o

urren
es of non
onstant fun
tion

symbols in t is M � N . Let (n

1

; : : : ; n

S

) be the 
ontents of t and L denote the number of

o

urren
es of 
onstants in t. Note that (11) implies L = 1 +

P

1�i�F

(arity

i

� 1) � n

i

. Then

using (10) we obtain

N �N

1

+N

2

< jtj =

P

1�i�S

w(g

i

) � n

i

�W �

P

1�i�S

�n

i

=

W � (M + L) =W � (M + 1 +

P

1�i�F

(arity

i

� 1) � n

i

) �

W � (M + 1 + (A� 1)

P

1�i�F

n

i

) =W � (M + 1 + (A� 1) �M) =

W � (M �A+ 1) �W � (N � A+ 1) < N �N

1

+N

2

:

So we obtain a 
ontradi
tion.

Consider the following possible 
ases.

1. There exists a term of the weight x with an o

urren
e of a fun
tion symbol of an arity

greater than or equal to 2. In this 
ase by Lemma 4.2 the number of di�erent terms of

the weight x is greater than N .

2. There exists a term of the weight x with o

urren
es of at least two di�erent unary fun
tion

symbols. In this 
ase by Lemma 4.3 the number of di�erent terms of the weight x is greater

than N .

3. All terms of the weight x have the form g

k

(
) for some unary fun
tion symbol g and a


onstant 
. We show that this 
ase is impossible. In parti
ular, we show that for any

non
onstant fun
tion symbol h there exists a term of the weight x in whi
h g and h o

ur,

therefore we obtain a 
ontradi
tion with the assumption.

We have x = w(g)�k+w(
). Denote by H the arity of h. Let us de�ne integersM

1

;M

2

;M

3

as follows

M

1

= w(g);

M

2

= k � w(h) � w(
) � (H � 1);

M

3

= w(g)(H � 1) + 1:
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Let us prove that M

1

;M

2

;M

3

> 0 and there exists a term of the weight x withM

1

o

ur-

ren
es of h,M

2

o

urren
es of g andM

3

o

urren
es of 
 and hen
e obtain a 
ontradi
tion.

Sin
e g is unary, w(g) > 0, and so M

1

> 0. Sin
e H � 1, we have M

3

> 0. Let us show

that M

2

> 0, i.e. k > w(h) + w(
) � (H � 1). We have

k = (x� w(
))=w(g) > (N �N

1

+N

2

� w(
))=w(g) �

(N

2

� w(
))=w(g) = (W

2

� (A+ 1) +W � w(
))=w(g) �

(W

2

� (A+ 1))=w(g) �W � (A+ 1) =W +W � A �

w(h) +w(
) � A > w(h) + w(
) � (H � 1):

It remains to show that there exists a term of the weight x withM

1

o

urren
es of h, M

2

o

urren
es of g andM

3

o

urren
es of 
. To this end we have to prove (
f. (10) and (11))

x = w(h) �M

1

+w(g) �M

2

+ w(
) �M

3

;

1 + (H � 1) �M

1

+ (1� 1) �M

2

+ (0� 1)M

3

= 0:

This equalities 
an be veri�ed dire
tly by repla
ing M

1

;M

2

;M

3

by their de�nitions and

x by w(g) � k + w(
).

2

As before, we assume now that our signature 
ontains no unary fun
tion symbol of the

weight 0. De�ne the binary fun
tion tnt (trun
ated number of terms) as follows: tnt(N;M) is

the minimum of N and the number of terms of the weight M and let us show that tnt 
an be


omputed in time polynomial of N +M . To give a polynomial-time algorithm for this fun
tion

we need an auxiliary de�nition and a lemma.

Definition 4.5 Let (n

1

; : : : ; n

s

) and (m

1

; : : : ;m

s

) be two tuples of natural numbers. We say

that (n

1

; : : : ; n

s

) extends (m

1

; : : : ;m

s

) if n

i

� m

i

for 1 � i � s.

The depth of a term is de�ned by indu
tion as usual: the depth of every 
onstant is 1 and

the depth of every non
onstant term g(t

1

; : : : ; t

n

) is equal to the maximum of the depth of the

t

i

's plus 1.

Lemma 4.6 Let t

1

; : : : ; t

n

be a 
olle
tion of di�erent terms of the same depth and Con be the


ontents of a term su
h that Con extends the 
ontents of all terms t

i

, 1 � i � n. Then there

exists at least n di�erent terms with the 
ontents Con.

Proof. Let us de�ne the notion of leftmost subterm of a term t as follows: every 
onstant 


has only one leftmost subterm, namely 
 itself, and leftmost subterms of a non
onstant term

g(r

1

; : : : ; r

n

) are this term itself and all leftmost subterms of r

1

. Evidently, for ea
h positive

integer d and term t, t has at most one leftmost subterm of the depth d.

It is not hard to argue that from the 
ondition of the lemma it follows that for every term

t

i

there exists a term s

i

with the 
ontents Con su
h that t

i

is a leftmost subterm of s

i

. But

then the terms s

1

; : : : ; s

n

are pairwise di�erent, sin
e they have di�erent leftmost subterms of

the depth d. 2
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Lemma 4.7 Let the signature � 
ontain no unary fun
tion symbol of the weight 0 and 
ontain

either a fun
tion symbol of an arity greater than or equal to 2 or 
ontain at least two di�erent

unary fun
tion symbols. Then the fun
tion tnt(N;M) is 
omputable in time polynomial of

M +N .

Proof. It is not hard to argue that for every 
ontents (n

1

; : : : ; n

S

) su
h that some of the n

i

's

is greater than M , any term with these 
ontents has the weight greater than M . The number

of di�erent 
ontents in whi
h ea
h of the n

i

's is less or equal thanM isM

S

, i.e. it is polynomial

inM , moreover, all these 
ontents 
an be obtained by an algorithm working in time polynomial

in M .

Therefore it is suÆ
ient to des
ribe a polynomial-time algorithm whi
h for all 
ontents

(n

1

; : : : n

S

), where 1 � n

i

�M , returns the minimum of N and the number of terms with these


ontents.

Let us �x 
ontents Con = (n

1

; : : : n

S

) where 1 � n

i

� M . Using equations (10) and (11),

one 
an 
he
k in polynomial time is there exists a term with the 
ontents Con , so we assume

that at least one su
h term exists.

Our algorithm 
onstru
ts, step by step, sets T

0

; T

1

; : : :, of di�erent terms with 
ontents whi
h


an be extended to the 
ontents Con. Ea
h set T

i

will 
onsist only of terms of the depth i.

1. Step 0. De�ne T

0

= ;.

2. Step i+ 1. De�ne

T

i+1

= fg(t

1

; : : : ; t

m

) j g 2 �; t

1

; : : : ; t

m

2 T

1

[ : : : [ T

i

;

Con extends the 
ontent of g(t

1

; : : : ; t

m

); and

the depth of g(t

1

; : : : ; t

m

) is i+ 1g:

If T

i+1

has N or more terms, then by Lemma 4.6 there exists at least N di�erent terms of

the 
ontent Con , so we terminate and return N . If T

i+1

is empty, we return as the result

the minimum of N and the number of terms with the 
ontent Con in T

1

[ : : : [ T

i+1

.

Let us prove some obvious properties of this algorithm.

1. If some T

i


ontains N or more terms, then there exists at least N terms with the 
ontent

Con. As we noted, this follows from Lemma 4.6.

2. At the end of step i+ 1 the set T

1

[ : : : T

i+1


ontains all the terms with the 
ontents Con

of the depth � i+ 1. This property obviously holds by our 
onstru
tion.

This property ensure that the algorithm is 
orre
t. To prove that it works in time polynomial

in M + N it is enough to note that ea
h step 
an be made in time polynomial in N and the

total number of steps is at most M + 1. 2

Now we are ready to prove the main lemma of this se
tion.

Lemma 4.8 There exists a polynomial time of N algorithm, whi
h 
onstru
ts an existential

formula at least

N

(x) valid on a natural number x if and only if there exists at least N di�erent

terms of the weight x.
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18 5 Main result

Proof. If the signature � 
ontains a unary fun
tion symbol of the weight 0 then the number

of di�erent terms in any weight is either 0 or !. Therefore we 
an de�ne at least

N

(x) as

9n

1

: : : 9n

S

exists(x; n

1

; : : : ; n

S

).

Let us 
onsider the 
ase when � signature 
onsists of a unary fun
tion symbol g of a positive

weight. For every 
onstant 
 in � 
onsider the formula G




(x) = 9k(w(g)k+w(
) = x). It is not

hard to argue that G




(x) holds if and only if there exists a term of the form g

k

(
). Let P be the

set of all sets of 
onstants of � of 
ardinality N (the 
ardinality of P is obviously polynomial

in N). It is easy to see that

at least

N

(x)$

_

Q2P

^

Q2S

G




(x):

It remains to 
onsider the 
ase when our signature 
ontains a fun
tion symbol of an arity

greater than or equal to 2, or 
ontain at least two di�erent unary fun
tion symbols. By Lemma

4.4, there exist 
onstants N

1

andN

2

su
h that for any natural number x su
h that x > N �N

1

+N

2

the number of terms of the weight x is either 0 or greater than N . Let us denote N �N

1

+N

2

as M and the set fM

0

jM

0

�M ^ tnt(N;M

0

) � Ng as W . By Lemmas 4.4, 4.7 we have

at least

N

(x)$ (9n

1

; : : : ; n

S

exists(x; n

1

; : : : ; n

S

) ^ x > M)

_

(

_

M

0

2W

x =M

0

):

2

5 Main result

Now we 
an prove the de
idability of the ordering 
onstraint solving:

Theorem 5.1 Knuth-Bendix ordering 
onstraint solving is NP-
omplete.

Proof. By Proposition 2.1 it is enough to prove de
idability of the 
onstraint satisfa
tion

problem. Take a 
onstraint. By Lemma 3.5 it 
an be e�e
tively transformed into an equivalent

disjun
tion of isolated forms, so it remains to show how to 
he
k satis�ability of 
onstraints in

isolated form.

Suppose that C is in isolated form. Re
all that C is of the form

C

arith

^C

triang

^C

simp

: (12)

Let C

simp


ontain a 
hain x

1

�

lex

: : : �

lex

x

n

su
h that x

1

; : : : ; x

n

does not o

ur in the rest

of C

simp

. Denote by C

0

simp

the 
onstraint obtained from C

simp

by removing this 
hain. It is not

hard to argue that C is equivalent to the 
onstraint

C

arith

^ C

triang

^ C

0

simp

^

^

i=2:::n

(jx

i

j = jx

1

j) ^ at least

n

(jx

1

j):

In this way we 
an repla
e C

simp

by an arithmeti
al 
onstraint, so we assume that C

simp

is

empty. Let C

triang

have the form

y

1

= t

1

^ : : : ^ y

n

= t

n

:
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Let Z be the set of all variables o

urring in C

arith

^ C

triang

. It is not hard to argue that

C

arith

^ C

triang

is satis�able if and only if the following 
onstraint is satis�able too:

C

arith

^ jy

1

j = jt

1

j ^ : : : ^ jy

n

j = jt

n

j ^

V

z2Z

at least

1

(jzj):

So we redu
ed the de
idability of the existential theory of term algebras with a Knuth-Bendix

ordering to the problem of solvability of systems of linear Diophantine equations. Our proof


an be represented as a nondeterministi
 polynomial-time algorithm. 2

This theorem implies the main result of this paper.

Theorem 5.2 The existential �rst-order theory of any term algebra with the Knuth-Bendix

ordering is NP-
omplete.

6 Related work and open problems

In this se
tion we overview previous work on Knuth-Bendix orderings, re
ursive path orderings,

and extensions of term algebras with various relations.

6.1 Knuth-Bendix ordering 
onstraints and the systems of linear Diophan-

tine equations

The Knuth-Bendix ordering was introdu
ed in [Knuth and Bendix 1970℄. Later, [Dershowitz

1982℄ introdu
ed re
ursive path orderings (RPOs). A number of results on re
ursive path

orderings and solving RPO 
onstraints are known.

However, ex
ept for the very general result of [Nieuwenhuis 1993℄ the te
hniques used for

RPO 
onstraints are not dire
tly appli
able to Knuth-Bendix orderings. We used systems of

linear Diophantine equations in our de
idability proofs. Let us show that the use of linear

Diophantine equations is not 
oin
idental: they are de�nable in the Knuth-Bendix ordering.

Example 6.1 Consider the signature � = fs; g; h; 
g, where h is binary, s; g are unary, and 


is a 
onstant. De�ne the weight of all symbols as 1, and use any ordering � on � su
h that

g � s. Our aim is to represent any linear Diophantine equation by Knuth-Bendix 
onstraints.

To this end, we will 
onsider any ground term t as representing the natural number jtj � 1.

De�ne the formula

equal weight(x; y)$

g(x) � s(y) ^ g(y) � s(x):

It is not hard to argue that, for any ground terms r; t equal weight(r; t) holds if and only if

jrj = jtj.

It is enough to 
onsider systems of linear Diophantine equations of the form

x

1

+ : : :+ x

n

+ k = x

0

; (13)

where x

0

; : : : ; x

n

are pairwise di�erent variables, and k 2 N. Consider the 
onstraint

equal weight(s

k+2

(h(y

1

; h(y

2

; : : : ;

h(y

n�1

; y

n

))));

s

2n

(y

0

)):

(14)
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20 6.2 The 
ase of single inequation

It is not hard to argue that

(15) Formula (14) holds if and only if

jy

1

j � 1 + : : :+ jy

n

j � 1 + k = jy

0

j � 1:

Using (15), we 
an transform any system D(x

1

; : : : ; x

n

) of linear Diophantine equations of the

form (13) into a 
onstraint C(y

1

; : : : ; y

n

) su
h that for every tuple of ground terms t

1

; : : : ; t

n

,

C(t

1

; : : : ; t

n

) holds if and only if so does D(jt

1

j � 1; : : : ; jt

n

j � 1).

Sin
e it is well-known that solving linear Diophantine equations is NP-hard, we have.

Lemma 6.2 Knuth-Bendix ordering 
onstraint solving is NP-hard.

6.2 The 
ase of single inequation

Comon and Treinen [1994℄ proved that LPO 
onstraint solving is NP-hard already for 
onstraints


onsisting of a single inequation. Let us 
omment on the single inequation 
ase for the Knuth-

Bendix ordering here.

The Knuth-Bendix ordering is de�ned in [Knuth and Bendix 1970℄ also for the nonground


ase. If s � t for nonground terms, then s� � t� also holds for every substitution �. Let

us show that the Knuth-Bendix ordering for nonground terms is in
omplete, i.e. there exists

a Knuth-Bendix ordering � and nonground terms s; t of a signature � su
h that for every

substitution � grounding for s; t we have s� � t�, but s 6� t.

Example 6.3 We do not de�ne the original Knuth-Bendix ordering with variables here, the

exa
t de�nitions 
an be found in [Knuth and Bendix 1970℄ or [Baader and Nipkow 1998℄.

Consider the following formula of one variable x:

g(x; a; b) � g(b; b; a): (16)

For any 
hoi
e of the weight fun
tion and ordering �, g(x; a; b) � g(b; b; a) does not hold for

the original Knuth-Bendix ordering with variables. However, formula 16 is valid in any term

algebra with the Knuth-Bendix ordering where w(a) = w(b) and a� b.

This example shows that the (original) Knuth-Bendix ordering with variables 
annot be used

for solving 
onstraints 
onsisting of a single inequation. In 
ontrast to [Comon and Treinen 1994℄

we note

Theorem 6.4 There exists a polynomial-time algorithm for solving Knuth-Bendix ordering 
on-

straints 
onsisting of a single inequation.

The proof will be appear in [Korovin and Voronkov 2000b℄.
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6.3 Other results on ordering 
onstraints

[Martin 1987, Di
k, Kalmus and Martin 1990℄ 
onsider Knuth-Bendix orderings with real-valued

fun
tions and prove suÆ
ient and ne
essary 
onditions for a system of rewrite rules to be

oriented by su
h an ordering. They also de�ne an algorithm for �nding orderings orienting a

system of rewrite rules.

Nieuwenhuis [1993℄ proved NP-
ompleteness of LPO 
onstraint solving, Narendran et al.

[1999℄ proved NP-
ompleteness of RPO 
onstraint solving. Re
ently, Nieuwenhuis and Rivero

[1999℄ proposed a new eÆ
ient method for solving RPO 
onstraints. NP-
ompleteness of satis-

�ability of LPO 
onstraints 
onsisting of a single inequation was proved by Comon and Treinen

[1994℄.

[Lepper 2000℄ studies derivation length and order types of Knuth-Bendix orderings, both

for integer-valued and real-valued weight fun
tions.

6.4 First-order theory term algebras with binary relations

Term algebras are rather well-studied stru
tures. Ma

�

l
ev [1961℄ was the �rst to prove the

de
idability of the �rst-order theory of term algebras. Other methods of proving de
idability

were developed by Comon and Les
anne [1989℄, Kunen [1987℄, Belegradek [1988℄, Maher [1988℄.

If we introdu
e a binary predi
ate into a term algebra, then one 
an obtain a ri
her theory.

Term algebras with the subterm predi
ate have an unde
idable �rst order theory and a de
idable

existential theory [Venkataraman 1987℄. Term algebras with lexi
ographi
 path orderings have

an unde
idable �rst-order theory [Comon and Treinen 1997℄.

Referen
es

Baader F. and Nipkow T. [1998℄, Term Rewriting and and All That, Cambridge University press,

Cambridge.

Belegradek O. [1988℄, Model theory of lo
ally free algebras (in Russian), in `Model Theory and its

Appli
ations', Vol. 8 of Trudy Instituta Matematiki, Nauka, Novosibirsk, pp. 3{24. English translation

in Translations of the Ameri
an Mathemati
al So
iety.

Comon H. [1990℄, `Solving symboli
 ordering 
onstraints', International Journal of Foundations of

Computer S
ien
e 1(4), 387{411.

Comon H. and Les
anne P. [1989℄, `Equational problems and disuni�
ation', Journal of Symboli


Computations 7(3,4), 371{425.

Comon H. and Treinen R. [1994℄, Ordering 
onstraints on trees, in S. Tison, ed., `Trees in Algebra

and Programming: CAAP'94', Vol. 787 of Le
ture Notes in Computer S
ien
e, Springer Verlag,

pp. 1{14.

Comon H. and Treinen R. [1997℄, `The �rst-order theory of lexi
ographi
 path orderings is unde-


idable', Theoreti
al Computer S
ien
e 176(1-2), 67{87.

Dershowitz N. [1982℄, `Orderings for term rewriting systems', Theoreti
al Computer S
ien
e 17, 279{

301.

Di
k J., Kalmus J. and Martin U. [1990℄, `Automating the Knuth-Bendix ordering', A
ta Infor-

mati
a 28(2), 95{119.

Hodges W. [1993℄, Model theory, Cambridge University Press.

Jouannaud J.-P. and Okada M. [1991℄, Satis�ability of systems of ordinal notations with the

subterm property is de
idable, in J. Albert, B. Monien and M. Rodr��guez-Artalejo, eds, `Automata,

Time 14:16 draft November 28, 2000



22

Languages and Programming, 18th International Colloquium, ICALP'91', Vol. 510 of Le
ture Notes

in Computer S
ien
e, Springer Verlag, Madrid, Spain, pp. 455{468.

Kir
hner H. [1995℄, On the use of 
onstraints in automated dedu
tion, in A. Podelski, ed., `Constraint

Programming: Basi
s and Tools', Vol. 910 of Le
ture Notes in Computer S
ien
e, Springer Verlag,

pp. 128{146.

Knuth D. and Bendix P. [1970℄, Simple word problems in universal algebras, in J. Lee
h, ed.,

`Computational Problems in Abstra
t Algebra', Pergamon Press, Oxford, pp. 263{297.

Korovin K. and Voronkov A. [2000a℄, A de
ision pro
edure for the existential theory of term

algebras with the Knuth-Bendix ordering, in `Pro
. 15th Annual IEEE Symp. on Logi
 in Computer

S
ien
e', Santa Barbara, California, pp. 291{302.

Korovin K. and Voronkov A. [2000b℄, On the use of the knuth-bendix orderings for orienting

systems of rewrite rules, Preprint, Department of Computer S
ien
e, University of Man
hester. To

appear.

Kunen K. [1987℄, `Negation in logi
 programming', Journal of Logi
 Programming 4, 289{308.

Lepper I. [2000℄, `Derivations lengths and order types of Knuth-Bendix orders', Theoreti
al Computer

S
ien
e . Submitted.

Maher M. [1988℄, Complete axiomatizations of the algebras of �nite, rational and in�nite trees, in

`Pro
. IEEE Conferen
e on Logi
 in Computer S
ien
e (LICS)', pp. 348{357.

Ma

�

l
ev A. [1961℄, `On the elementary theories of lo
ally free universal algebras', Soviet Mathemati
al

Doklady 2(3), 768{771.

Martin U. [1987℄, How to 
hoose weights in the Knuth-Bendix ordering, in `Rewriting Te
hni
s and

Appli
ations', Vol. 256 of Le
ture Notes in Computer S
ien
e, pp. 42{53.

Narendran P., Rusinowit
h M. and Verma R. [1999℄, RPO 
onstraint solving is in NP, in

G. Gottlob, E. Grandjean and K. Seyr, eds, `Computer S
ien
e Logi
, 12th International Workshop,

CSL'98', Vol. 1584 of Le
ture Notes in Computer S
ien
e, Springer Verlag, pp. 385{398.

Nieuwenhuis R. [1993℄, `Simple LPO 
onstraint solving methods', Information Pro
essing Letters

47, 65{69.

Nieuwenhuis R. [1999℄, Rewrite-based dedu
tion and symboli
 
onstraints, in H. Ganzinger, ed., `Au-

tomated Dedu
tion|CADE-16. 16th International Conferen
e on Automated Dedu
tion', Le
ture

Notes in Arti�
ial Intelligen
e, Trento, Italy, pp. 302{313.

Nieuwenhuis R. and Rivero J. [1999℄, Solved forms for path ordering 
onstraints, in `In Pro
. 10th

International Conferen
e on Rewriting Te
hniques and Appli
ations (RTA)', Vol. 1631 of Le
ture

Notes in Computer S
ien
e, Trento, Italy, pp. 1{15.

Ryazanov A. and Voronkov A. [1999℄, Vampire, in H. Ganzinger, ed., `Automated Dedu
tion|

CADE-16. 16th International Conferen
e on Automated Dedu
tion', Le
ture Notes in Arti�
ial In-

telligen
e, Trento, Italy, pp. 292{296.

S
hulz S. [1999℄, System abstra
t: E 0.3, in H. Ganzinger, ed., `Automated Dedu
tion|CADE-16.

16th International Conferen
e on Automated Dedu
tion', Le
ture Notes in Arti�
ial Intelligen
e,

Trento, Italy, pp. 297{301.

Venkataraman K. [1987℄, `De
idability of the purely existential fragment of the theory of term

algebras', Journal of the Asso
iation for Computing Ma
hinery 34(2), 492{510.

Weidenba
h C. [1999℄, Combining superposition, sorts and splitting, in A. Robinson and A. Voronkov,

eds, `Handbook of Automated Reasoning', Elsevier S
ien
e and MIT Press. To appear.

November 28, 2000 draft Time 14:16



Index

Symbols

=

TA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

=

N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

�

lex

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

� | Knuth Bendix ordering . . . . . . 2

�

w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

9-de�nable . . . . . . . . . . . . . . . . . . . . . . .13

? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

j t j | weight of t . . . . . . . . . . . . . . . . . 2

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A

arithmeti
al sort . . . . . . . . . . . . . . . . . . 3

C


hained 
onstraint . . . . . . . . . . . . . . . . 4


onstant . . . . . . . . . . . . . . . . . . . . . . . . . . 2


onstraint . . . . . . . . . . . . . . . . . . . . . . . . .3


ontents . . . . . . . . . . . . . . . . . . . . . . . . . 14

D

dependent . . . . . . . . . . . . . . . . . . . . . . . . 5

depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E

equivalen
e . . . . . . . . . . . . . . . . . . . . . . . 3

equivalent up to f . . . . . . . . . . . . . . . . 7

essential size . . . . . . . . . . . . . . . . . . . . . . 6

extends . . . . . . . . . . . . . . . . . . . . . . . . . . 16

F

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

f-di�eren
e . . . . . . . . . . . . . . . . . . . . . . . 8

f-height . . . . . . . . . . . . . . . . . . . . . . . . . . 8

f-term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

f-variant . . . . . . . . . . . . . . . . . . . . . . . . . .7


at term . . . . . . . . . . . . . . . . . . . . . . . . . . 4

G

grounding substitution . . . . . . . . . . . . 3

I

isolated form . . . . . . . . . . . . . . . . . . . . . .5

K

Knuth-Bendix ordering . . . . . . . . . . . 2

N

N | the set of natural numbers . . . 2

P

pre
eden
e relation . . . . . . . . . . . . . . . 2

Q

quasi-
at term . . . . . . . . . . . . . . . . . . . 10

R

row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

S

satis�ability . . . . . . . . . . . . . . . . . . . . . . .3

signature . . . . . . . . . . . . . . . . . . . . . . . . . 2

simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

substitution . . . . . . . . . . . . . . . . . . . . . . .3

grounding, 3

T

TA(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

TA

+

(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

term algebra . . . . . . . . . . . . . . . . . . . . . . 2

term algebra sort . . . . . . . . . . . . . . . . . 3

tnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

triangle form . . . . . . . . . . . . . . . . . . . . . 5

W

w | weight fun
tion . . . . . . . . . . . . . . 2

weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

of fun
tion symbol, 2

weight fun
tion . . . . . . . . . . . . . . . . . . . 2

working 
onstraint . . . . . . . . . . . . . . . . 6

Time 14:16 draft November 28, 2000


