
A decision procedure for the existential theory of term algebras with

the Knuth-Bendix ordering

Konstantin Korovin� Andrei Voronkovy

Department of Computer Science

University of Manchester

fkorovinjvoronkovg@cs.man.ac.uk

Abstract

We show the decidability of the existential theory of term

algebras with any Knuth-Bendix ordering by giving a pro-

cedure for solving Knuth-Bendix ordering constraints.

1 Introduction

Solving ordering constraints in term algebras with var-

ious reduction orderings is used in automated deduc-

tion [Comon 1990, Kirchner 1995, Nieuwenhuis 1999].

Nieuwenhuis [1999] connects further progress in auto-

mated deduction with constraint-based deduction.

Two kinds of orderings are used in automated deduc-

tion: Knuth-Bendix ordering [Knuth and Bendix 1970] and

various versions of recursive path orderings [Dershowitz

1982]. Knuth-Bendix orderings are used in the state-of-

the-art theorem provers, for example Vampire [Ryazanov

and Voronkov 1999] and SPASS [Weidenbach 1999] (the

winners of the last CASC competition [Sutcliffe 2000] in

the mixed and first-order categories, respectively). There

exists extensive literature on solving recursive path or-

dering constraints [e.g. Comon 1990, Nieuwenhuis 1993],

but no algorithms for solving Knuth-Bendix ordering con-

straints are known.

In this paper we prove that the problem of solvability of

Knuth-Bendix ordering constraints is decidable. In fact, we

prove a slight generalization of this result: the existential

first-order theory of any term algebra with a Knuth-Bendix

ordering is decidable.

As for complexity, NP-hardness of the set of satisfiable

quantifier-free formulas can be shown in the same way as

in [Nieuwenhuis 1993]. The algorithm presented here does

not give an NP upper bound, we point out parts of our al-

gorithm that may cause nonpolynomial behavior.

�Partially supported by grants from EPSRC and the Faculty of Science

and Technology.
yPartially supported by grants from EPSRC and the Faculty of Science

and Engineering.

This paper is structured as follows. In Section 2 we de-

fine all the main notions of this paper, including that of

constraint, and formulate the main result. In Section 3 we

introduce the notion of solved form of constraints and show

that every constraint can be effectively transformed into an

equivalent disjunction of solved forms. To decide solved

forms, one has to be able to encode statements of the form:

given a fixed number N and a variable number x, does

there exists at least N terms of the weight x. In Section 4

we show how to encode such statements using linear Dio-

phantine equations. Finally, in Section 5 we complete the

proof of the main result. Section 6 discusses related word

and open problems.

2 Preliminaries
We assume knowledge of term algebras (aka absolutely

free algebras), the definition can be found in standard text-

books, e.g., [Hodges 1993]. We consider term algebras

in a finite signature � with at least one constant, denoted

TA(�). When it is convenient for us, we will regard con-

stants as function symbols of arity 0. The elements of

TA(�) are the ground terms of �, and every ground term

t of the language is interpreted by t.

Let us now define Knuth-Bendix orderings on TA(�)

[Knuth and Bendix 1970]. Denote the set of natural num-

bers by N. The definition of Knuth-Bendix ordering is

parametrized by a weight function on �, i.e., a function

w : � ! N, and a linear ordering � on �. We require

of a weight function the following: if w(f) = 0 and f

is unary, then f must be the greatest w.r.t. � in �, and

weights of constants are positive. These conditions on the

weight function ensure that the Knuth-Bendix ordering is a

simplification ordering [see e.g. Baader and Nipkow 1998]

total on ground terms. In this paper, f will always denote

a unary function symbol of weight 0.

Given a weight function w on �, we define the weight

jtj of any ground term t as follows: j
j = w(
) for any

constant
 and jg(t
1

; : : : ; t

n

)j = w(g) +

P

n

i=1

jt

i

j.

Given a weight function w and a linear ordering

� on �, the Knuth-Bendix ordering on TA(�) is

the binary relation >

KB

defined as follows. For any

ground terms g(t

1

; : : : ; t

n

) and h(s

1

; : : : ; s

k

) we have

g(t

1

; : : : ; t

n

) >

KB

h(s

1

; : : : ; s

k

) if

1. jg(t
1

; : : : ; t

n

)j > jh(s

1

; : : : ; s

k

)j

or

2. jg(t
1

; : : : ; t

n

)j = jh(s

1

; : : : ; s

k

)j and one of the fol-

lowing holds:

(a) g � h or

(b) g = h and for some 1 � i � n we have t
1

=

s

1

; : : : ; t

i�1

= s

i�1

and t
i

>

KB

s

i

.

Some authors [Martin 1987, Baader and Nipkow 1998]

define a modification of Knuth-Bendix orderings in which

weight function are real-valued. Knuth-Bendix orderings

with real-valued weight functions are still reduction order-

ings. We do not consider real-valued weight functions in

this paper, because for such functions even comparison of

ground terms can be undecidable.

The main result of this paper is the following.

THEOREM 2.1 The existential first-order theory of any

term algebra with Knuth-Bendix ordering is decidable.

The proof will be given after a series of lemmas. The idea

of the proof is as follows. First, we will extend the lan-

guage by the function defining the weight of terms and

natural numbers with addition. Given an existential for-

mula of the first-order theory of any term algebra with a

Knuth-Bendix ordering, we will rewrite it step by step into

an equivalent disjunction of existential formulas of the ex-

tended language. The main aim of these rewrite steps is

to replace all occurrences of >
KB

by linear Diophantine

equations on the weight of variables. At the end we will

obtain existential formulas consisting of linear Diophan-

tine equations on the weight of variables plus statements

expressing that, for some fixed natural numbers N , there

exists at least N terms of weight k. We will then prove

that this statements can also be expressed using linear Dio-

phantine equations and use the decidability of systems of

linear Diophantine equations.

Our proof will not give precise upper bounds on com-

plexity, we will only briefly address complexity-related

questions.

In the sequel we assume a fixed signature � with a

fixed weight function and ordering� on �. We denote by

TA

+

(�) the following structure with two sorts: the term

algebra sort and the arithmetical sort. The domains of the

term algebra sort and the arithmetical sort are the sets of

ground terms of � and natural numbers, respectively. The

signature of TA+(�) consists (i) of all symbols of � in-

terpreted as in TA(�), (ii) symbols 0; 1; >;+ having their

conventional interpretation over natural numbers, (iii) the

relation symbol >
KB

, interpreted as the Knuth-Bendix or-

dering, (iv) the function symbol j : : : j, interpreted as the

weight function. When we need to distinguish the equal-

ity = over the term algebra sort from the equality over the

arithmetical sort, we denote the former by =

TA

, and the

latter by =
N

.

We will prove decidability of the existential theory of

TA

+

(�), from which decidability of term algebras with a

Knuth-Bendix ordering follows immediately.

We consider satisfiability and equivalence of formulas

with respect to the structure TA+(�). We call a constraint

in the language of TA+(�) any conjunction of atomic for-

mulas of this language. First, let us note that decidability

of the existential theory of TA+(�) is equivalent to decid-

ability of constraint satisfaction.

PROPOSITION 2.2 The existential theory of TA+(�) is

decidable if and only if so is the constraint satisfiability

problem.

PROOF. Obviously any instance A of constraint satisfia-

bility problem can be considered as satisfiability of the ex-

istential sentence 9x
1

; : : : ; x

n

A, where x
1

; : : : ; x

n

are all

variables of A, so the “only if” direction is trivial.

To prove the “if” direction take any existential formula

9x

1

; : : : ; x

n

A. This formula is satisfiable if and only if so

is the quantifier-free formula A. By converting A into dis-

junctive normal form we can assume that A is built from

literals using ^;_. Replace in A (i) any formula:s >
KB

t

by s =

TA

t _ t >

KB

s, (ii) any formula :s =

TA

t

by s >

KB

t _ t >

KB

s, (iii) any formula :s > t by

s = t _ t > s; (iv) any formula :s =
N

t by s > t _ t > s,

and convert A into disjunctive normal form. It is easy to

see that we obtain a disjunction of constraints. The trans-

formation gives an equivalent formula since both orderings

>

KB

and > are total. 2

In the sequel we will often replace a constraint C(�x) by

a formulaA(�x; �y) containing extra variables �y and say that

they are “equivalent”. By this we mean that TA+(�) j=

8�x(C(�x) $ 9�yA(�x; �y)). In other terms, the solutions

�x to C in TA

+

(�) are exactly the solutions �x; �y to A in

TA

+

(�) projected to �x.

3 Solved forms

We are interested not only in satisfiability of constraints,

but also in their solutions. Our algorithm will consist of

equivalence-preserving transformation steps. When the

2

signature contains no unary function symbol of weight 0,

the transformation will preserve equivalence in the follow-

ing sense. At each step, given a constraint C(�x), we trans-

form it into constraints C
1

(�x; �y); : : : ; C

n

(�x; �y) such that

for all �t, C(�t) holds if and only if there exists k and �s such

that C
k

(

�

t; �s). When the signature contains a unary func-

tion symbol of weight 0, the transformation will preserve

a weaker form of equivalence: some solutions will be lost,

but solvability will be preserved.

We use x
1

>

KB

x

2

>

KB

: : : >

KB

x

n

to denote the

formula x
1

>

KB

x

2

^ x

2

>

KB

x

3

^ : : : ^ x

n�1

>

KB

x

n

,

and similar for other binary symbols in place of >
KB

.

Let us split Knuth-Bendix ordering into two parts forced

by the arithmetical condition on the weight of terms. Let

t

1

>

w

t

2

denote the formula jt
1

j > jt

2

j and t
1

� t

2

denote

the formula t
1

>

KB

t

2

^jt

1

j = jt

2

j. Obviously, t
1

>

KB

t

2

if and only if t
1

� t

2

_t

1

>

w

t

2

. So without loss generality

we can replace >
KB

with the new symbols� and >
w

.

We denote byArith any constraint using only arithmeti-

cal relations =
N

and > and function symbols, for example

jf(x)j > jaj+ 3. A term t is called flat if t is either a vari-

able or has the form g(x

1

; : : : ; x

m

), where g 2 �, m � 0

and x
1

; : : : ; x

m

are variables. We call a constraint refined

if (1) it has a form t

1

#t

2

: : :#t

n

, where each # is >
w

,

� or =
TA

, and (ii) each term t

i

is flat.

LEMMA 3.1 Any constraint C is equivalent to a disjunc-

tion of constraints of the form

s

1

#s

2

: : :#s

n

^ Arith; (1)

where s
1

#s

2

: : :#s

n

is refined.

PROOF. First, we can apply flattening to all terms occur-

ring in C as follows. If a nonflat term g(t

1

; : : : ; t

m

) occurs

in C, take any i such that t
i

is not a variable. Then replace

C by v = t

i

^ C

0, where v is a new variable and C

0 is

obtained from C by replacing all occurrences of t
i

by v.

After a finite number of such terms all terms will become

flat.

Therefore, we assume that all terms occurring in C are

flat. Let s; t be terms occurring in C. Using the valid for-

mula s >
w

t _ s � t _ s =

TA

t _ t >

w

s _ t � s we can

replace C by disjunction of the constraints

s >

w

t ^ C; s � t ^ C; s =

TA

t ^ C;

t >

w

s ^ C; t � s ^ C:

By repeatedly doing this transformation with all pairs s; t

occurring in C we obtain a disjunction of constraints of the

required form. 2

Note that the transformation of C into the disjunction of

constraints C
1

_ : : : _ C

n

in the lemma can be done in

nondeterministic polynomial time in the following sense:

there exists a nondeterministic polynomial-time algorithm

that, given C computes at every branch either? or one C
i

,

and every C
i

will be computed at at least one branch.

We say a constraint y
1

=

TA

t

1

^ : : : ^ y

n

=

TA

t

n

is a

triangle form if y
i

does not occur in t
j

for j � i. Denote by

? the logical constant “false”. A constraint is in a solved

form if it is either ? or has the form

x

1

#x

2

: : :#x

n

V

y

1

=

TA

t

1

^ : : : ^ y

k

=

TA

t

k

V

Arith;

where

1. each occurrence of # is either >
w

or �;

2. x
1

; : : : ; x

n

; y

1

; : : : ; y

k

are pairwise different vari-

ables;

3. the constraint y
1

=

TA

t

1

^ : : : ^ y

k

=

TA

t

k

is in

triangle form.

Our next aim is to transform any constraint C into

an equally solvable disjunction of solved forms. By

Lemma 3.1 we can assume that C is a conjunction of a

refined constraint and arithmetical constraint of the form

(1). To make it into a disjunction of solved form, we have

to show how to replace the terms s
i

by variables and elim-

inate =
TA

among #.

Note that any refined constraint is of the form

t

11

#t

12

: : :#t

1m

1

>

w

� � �

>

w

t

k1

#t

k2

: : :#t

km

k

;

(2)

where each # is either =
TA

or �. We call a row in such a

constraint any maximal subsequence t
j1

#t

j2

: : :#t

jm

j

in which >
w

does not occur. So constraint (2) contains k

rows, the first one is t
11

#t

12

: : :#t

1m

1

and the last one

t

k1

#t

k2

: : :#t

km

k

. Note that for any solution of (2) all

terms in a row have the same weight.

LEMMA 3.2 Any refined constraint can be effectively

transformed into an equivalent refined constraint that is

either?, or of the form (2) and has the following property.

Suppose some t
ij

is a variable y. Then either

1. this variable has exactly one occurrence in rows

i; : : : ; k, namely t
ij

itself; or

2. it has two occurrences in rows i; : : : ; k, both in the

same row: some t
im

has the form f(y) for m < j,

and w(f) = 0, moreover in this case there exists at

least one � between t
im

and t
ij

.

3

PROOF. Consider the case when t

ij

has another occur-

rence.

1. Case: this occurrence is in a term t

iw

in the same row

i. Suppose t
ij

occurs in t

iw

for w 6= j. Consider all

possible cases:

(a) Case: the row i contains a chain of equalities

t

ij

=

TA

: : : =

TA

t

iw

. If t
ij

is a proper subterm

of t
iw

, then the constraint has no solutions. Oth-

erwise, t
ij

coincides with t

iw

, then t

iw

can be

deleted from the row, giving an equivalent con-

straint.

(b) Case: the part of row i between t
iw

and t
ij

con-

tains at least one �. Since for any solution t
iw

and t

ij

must have the same weight, but be dis-

tinguished by >
KB

, this is possible in only one

case: when t
iw

= f(t

ij

), and f has weight 0. In

all other cases the constraint has no solution.

2. Case: this occurrence is in a term t

uv

in a different

row u > i. Suppose t

ij

occurs in t

uv

for u > i,

then any solution would imply that the term t

uv

has a

strictly smaller weight than its subterm t

ij

, which is

impossible.

2

Note that the transformation presented in the proof of the

lemma can be made in polynomial time.

We are going to prove that the constraint satisfiability

problem can be reduced to the problem of satisfiability of

solved form. This will be proved in Theorems 3.3 and

3.4 below. Theorem 3.3 deals with the case of the sig-

nature without unary function symbols of weight 0, in this

case we can prove a stronger statement about equivalence-

preserving reduction of an arbitrary constraint to a disjunc-

tion of solved forms. The presence of a unary function

symbol of weight 0 introduces some complications and is

treated separately in Theorem 3.4. In this case our trans-

formation preserves a weaker form of equivalence, called

the weight equivalence below.

THEOREM 3.3 Let the signature � contain no unary func-

tion symbol of weight 0. Then any constraint C can be

effectively transformed into an equivalent disjunction of

solved forms.

PROOF. We will present a required transformation. At each

transformation step we assume to deal with a constraint

s

1

#s

2

: : :#s

n

^

y

1

= r

1

^ : : : ^ y

k

= r

k

^

Arith ;

(3)

such that (i) y

1

= t

1

^ : : : ^ y

k

= t

k

is in trian-

gle form and variables y
i

do not occur in s

1

; : : : ; s

n

, (ii)

s

1

#s

2

: : :#s

n

is refined and satisfies the conditions of

Lemma 3.2.

In the beginning, using Lemma 3.2, we transform the

constraint C into an equivalent constraint of the form (3),

in which the triangle part is empty.

Suppose s
1

#s

2

: : :#s

n

has the form

t

11

#t

12

: : :#t

1m

1

>

w

� � �

>

w

t

k1

#t

k2

: : :#t

km

k

:

(4)

where each # is either =
TA

or �. If all t
ij

’s are variables

and each # is �, then we are done. So to obtain a solved

form, we have to show how to change all t
ij

’s into vari-

ables. Take the topmost row i in (4) which contains at least

one nonvariable. Let this row be p
l

#p

l�1

: : :#p

1

(for

technical reasons it is convenient for us to use indices in

the decreasing order, so that p
1

is the last element of the

row).

Consider two possible cases. In both cases we will turn

C into an equivalent disjunction of constraints of the form

(3), but each constraint in the disjunction will have less

occurrences of function symbols in its refined part than C.

1. All terms p

1

; : : : ; p

l

in the row are nonvariables.

We will eliminate all terms from the row one by

one, except for the last one. Consider the pair

p

l

; p

l�1

. Since all p
i

’s are flat, p
l

= g(x

1

; : : : ; x

u

)

and p

l�1

= h(y

1

; : : : ; y

v

) for some variables

x

1

; : : : ; x

u

; y

1

; : : : ; y

v

and g; h 2 �. Consider two

cases. In each case we give a formula F
1

equivalent

to the constraint p
l

#p

l�1

and consisting only of arith-

metical literals and formulas in which g; h do not oc-

cur. We will describe later what we do with this for-

mula F
1

.

(a) p

l

#p

l�1

is the equation g(x

1

; : : : ; x

u

) =

h(y

1

; : : : ; y

v

). If g 6= h, then g(x

1

; : : : ; x

u

) =

h(y

1

; : : : ; y

v

)$?. If g = h (and hence u = v)

then g(x

1

; : : : ; x

u

) = h(y

1

; : : : ; y

v

) $ x

1

=

y

1

^ : : : ^ x

u

= y

u

.

(b) p

l

#p

l�1

is g(x
1

; : : : ; x

u

) � h(y

1

; : : : ; y

v

). If

h � g, then g(x

1

; : : : ; x

u

) � h(y

1

; : : : ; y

v

) is

equivalent to?. If g � h, then g(x
1

; : : : ; x

u

) �

h(y

1

; : : : ; y

v

) is equivalent to jg(x
1

; : : : ; x

u

)j =

jh(y

1

; : : : ; y

v

)j. If g = h (and hence u = v),

then

4

f(x

1

; : : : ; x

u

) � g(y

1

; : : : ; y

v

)$

jg(x

1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j ^

_

i=1:::u

(x

1

= y

1

^ : : : ^ x

i�1

= y

i�1

^

x

i

>

KB

y

i

):

So in all cases we have p
l

#p

l�1

� F

1

. It is easy to

see that the constraint C is equivalent to the formula

C

1

^ F

1

, where C
1

is obtained from C by replacing

the row p

l

#p

l�1

: : :#p

1

by p

l�1

: : :#p

1

. We

perform the same transformation on C
1

, obtaining an

equivalent formula C

2

^ F

2

where C

2

is obtained

from C

1

by replacing the row p

l�1

#p

l�2

: : :#p

1

by p

l�2

: : :#p

1

etc. This results in a constraint

C

l�1

obtained from C by replacing p
l

#p

l�1

: : :#p

1

by p
1

and such thatC $ C

l�1

^F

1

^: : :^F

l�1

. Con-

sider C
l�1

, its refined part contains s0 >
w

p

1

>

w

s

00.

Replace in C

l�1

this formula by s

0

>

w

s

00, obtain-

ing a constraint C
l

and define a formula F

l

to be

js

0

j > jp

1

j ^ jp

1

j > js

00

j. Evidently, C
l�1

and C
l

^ F

l

are equivalent.

Denote the formula C
l

^ F

1

^ : : : ^ F

l

by C 0 and let

us summarize what we have obtained so far. First,

C $ C

0. Second, C
l

is obtained from C by dropping

the row p

l

#p

l�1

: : :#p

1

. Third, all atoms in F

i

’s

are either arithmetical or contain no function symbols.

Therefore, the formulaC 0 contains less function sym-

bols than C in its refined part.

The formula C

0 is not a constraint of the form (3),

but it can be turned into an equivalent disjunction

C

0

1

_ : : : _ C

0

w

of such constraints as in the proof of

Lemma 3.1. Then we transform each constraint C 0

i

as

in the proof of Lemma 3.2, to guarantee that the con-

ditions of this lemma are satisfied after this step. It is

easy to see that this transformation does not increase

the number of occurrences of function symbols.

2. At least one term p

1

; : : : ; p

l

is a variable x. Note that

x has exactly one occurrence in the refined part of C.

Indeed, for the row p

l

#p

l�1

: : :#p

1

and any row

below this holds since we assume the constraint to sat-

isfy Lemma 3.2. But all rows above this one consist

of variables only, so x cannot occur in any row above.

In this case we will make transformations similar to

the previous case, but we will sometimes introduce

new occurrences of function symbols in the current

row. However, when we complete the transformation

on the row, all newly introduced occurrences of func-

tion symbols will disappear from the refined part, as

well as all function symbols that previously occurred

in p
l

#p

l�1

: : :#p

1

.

Take any i such that p
i

is a variable x. By our assump-

tion, it has exactly one occurrence in the refined part.

Consider the following valid formula G

_

g2�

9�y(x = g(�y)): (5)

Since C is equivalent to C ^ G, we can turn C into

an equivalent disjunction of formulas x = g(�y) ^ C.

Replace x by g(�y) in the refined part of C, obtaining

a constraint C 0, then x = g(�y) can be considered as

belonging to the triangle part of C 0. Since x had only

one occurrence in C, the only difference between the

refined parts of C and C 0 is that x is replaced by g(�y)

in the row p

l

#p

l�1

: : :#p

1

.

We do this transformation for all p
i

in the row that

are variables. After this, the row will only contain

nonvariable terms, and we do the same as in case 1.

In this case we temporarily introduced new occur-

rences of function symbols in the row, but then elim-

inated all of them, and in addition at least one occur-

rence of a function symbol that was in the row ini-

tially. Thus, the number of occurrences of function

symbols in the refined part decreases.

Since every transformation step decreases the number

of occurrences of function symbols in the refined part, we

will eventually obtain a disjunction of constraints with the

refined part of the form (4), but without function symbols.

Suppose we have a constraint x
i

=

TA

x

j

in the refined

part. Then we substitute x
i

instead of all occurrences of x
j

in the constraint and add x

j

=

TA

x

i

in the triangle part,

obtaining an equivalent constraint. Thus we can get rid of

=

TA

in the refined part and obtain a solved form. 2

Note that the transformation presented in this theorem can-

not be presented as a nondeterministic polynomial-time al-

gorithm, since there is no obvious polynomial bound on

the number of new variables introduced by the transforma-

tion. However, there is an obvious exponential bound, so

the transformation can be presented as a nondeterministic

exponential-time algorithm. This is also true for the algo-

rithm presented in the next theorem.

Let now the signature � contain a unary function sym-

bol f of weight 0. Let us introduce several definitions. We

call an f -term any term of the form f(t). By the f -height

of a term t we mean the number n such that t = f

n

(s)

and s is not an f -term. Note that f -terms have positive

f -height, while non f -terms have f -height 0. We call the

f -distance between two terms s and t the difference be-

tween the f -height of s and f -height of t. For example,

the f -distance between the terms f(a) and f(f(g(a; b)) is

�1.

5

A substitution � is called grounding for a set or se-

quence of variables X is for every x in X the term �(x)

is ground. Two substitutions �
1

and �

2

are called weight-

equivalent with respect to a set of variables X if they are

grounding for X , and for every x 2 X the weight of x�
1

coincides with the weight of x�
2

. In the proof of The-

orem 3.4 below we will replace a constraint C(�x) by a

formula A(�x; �y) containing extra variables �y and say that

C(�x) and A(�x; �y) are weight-equivalent. By this we mean

the following.

1. For every substitution � grounding for �x such that

TA

+

(�) j= C(�x)� there exists a substitution �

0

grounding for �x; �y such that TA+(�) j= A(�x; �y)�

0,

and �0 is weight-equivalent to �.

2. For every substitution �0 such that �0 is grounding for

�x; �y and TA+(�) j= A(�x; �y)�

0 there exists a substitu-

tion � such that TA+(�) j= C(�x)� and � is weight-

equivalent to �0.

So if C(�x) has a solution, then A(�x; �y) has a solution of

the same weight on �x, and vice versa.

THEOREM 3.4 Let the signature � contain a unary func-

tion symbol f of weight 0. Then any constraintC can be ef-

fectively transformed into a weight-equivalent disjunction

of solved forms.

PROOF. We present a transformation very similar to that

of Theorem 3.3. At each transformation step we assume

to deal with a constraint (3). As in Theorem 3.3, we use

Lemma 3.2 to transform the constraint C into an equiva-

lent constraint of the form (3), in which the triangle part

is empty. We will turn C into a weight-equivalent disjunc-

tion C
1

_ : : :_C

n

of constraints of the form (3), so that the

refined part of each C

i

contains less occurrences of func-

tion symbols than C. As in Theorem 3.3, at each step we

take the topmost row in constraint (4) which contains at

least one nonvariable. Let this row be p
l

#p

l�1

: : :#p

1

.

We will call it the current row. Unlike Theorem 3.3, it is

not enough for us to consider flat terms, temporarily we

can change the current row so that it contains a more gen-

eral kind of terms, called almost flat, and then eliminate all

function symbols in the row. We call a term t almost flat if

it has the form f

n

(t), where (i) n � 0, (ii) t is a flat term,

(iii) t is not a variable, and (iv) t is not an f -term.

We recall that each term p

i

in p
l

#p

l�1

: : :#p

1

is flat.

Our first aim is to make them into almost flat terms. So

suppose that there are terms p
1

; : : : ; p

l

in the row that are

not almost flat.

By our construction, we assume that Lemma 3.2 holds

for our constraint. This means that, if some p
i

is a variable

x, then either x has one occurrence in the refined part of

C, or it has two occurrences, both in p

l

#p

l�1

: : :#p

1

,

the first occurrence is f(x) and the second is x. Indeed,

for the row p

1

#p

2

: : :#p

l

and any row below this holds

since we assume the constraint to satisfy Lemma 3.2. But

all rows above this one consist of variables only, so again

by this assumption x cannot occur in any row above.

Due to the complication introduced by the presence of

f , we cannot continue exactly as in Theorem 3.3. In-

stead, we prove an auxiliary statement about solutions of

p

l

#p

l�1

: : :#p

1

.

(6) If p
l

#p

l�1

: : :#p

1

has a solution �, then it has a

solution �
1

such that (i) �
1

is weight-equivalent to

�, (ii) for every 1 < k � l the f -distance between

p

k

�

1

and p
k�1

�

1

is at most 1.

Suppose that for some k the f -distance between p

k

� and

p

k�1

� is d > 1. Evidently, to prove (6) it is enough to

show the following.

(7) There exists a solution �0 such that (i) �0 is weight-

equivalent to �, (ii) the f -distance between p

k

�

0

and p
k�1

�

0 is d�1, and (iii) for every k0 6= k the f -

distance between p
k

0

�

0 and p
k

0

�1

�

0 coincides with

the f -distance between p
k

0

� and p
k

0

�1

�.

Let us show (7), and hence (6). Since � is a solution to

the row, that the f -distance between any p
k

000

� and p
k

� for

k

000

� k is nonnegative. Likewise, the f -distance between

any p
k�1

� and p
k

00

� for k�1 � k

00 is nonnegative. There-

fore, for all k000 � k > k

00, the f -distance between p

k

000

�

and p
k

00

� is � d, and hence is at least 2. Let us prove the

following.

(8) Every variable x occurring in p

l

#p

l�1

: : :#p

k

does not occur in p
k�1

: : :#p

1

.

Let x occur in some p
i

for i � k. Then the f -height of p
i

�

is at least 2. Since p
i

is flat, then p

i

= f(x) or p
i

= x.

If x also occurs in p

j

for j < k, since we assume that

the constraint satisfies Lemma 3.2, then p

i

= f(x) and

p

j

= x. But then the f -distance between p
i

� and p
j

� is 1,

so we obtain a contradiction. So (8) is proved.

Now note the following.

(9) If a variable x occurs in p

k

000 such that k000 � k,

then x� is a f -term.

Suppose, by contradiction, that x� is not an f -term. Note

that by our assumption p

k

000 is either x of f(x). Then the

f -height of p
k

000

� is at most 1. But we proved before that

the f -distance between p

k

000 and p

k�1

is at least 2, so we

obtain a contradiction.

Define the substitution �0 as follows:

6

�

0

(x) =

8

<

:

�(x);
if x does not occur in p

l

; : : : ; p

k

;

t; if x occurs in p
l

; : : : ; p

k

and �(x) = f(t):

By (8) and (9), �0 is defined correctly. We claim that �0

satisfies (7). The properties (i)-(iii) are straightforward by

our construction, it only remains to prove that �0 is a so-

lution of the row, i.e. for every k0 we have p
k

0

�

0

#p

k

0

�1

�

0.

Well, for k0 > k we have p
k

0

� = f(p

k

0

�

0

) and p

k

0

�1

� =

f(p

k

0

�1

�

0

), and for k0 < k we have p

k

0

� = p

k

0

�

0 and

p

k

0

�1

� = p

k

0

�1

�

0, in both cases p
k

0

�

0

#p

k

0

�1

�

0 follows

from p

k

0

�#p

k

0

�1

�. The only difficult case is k = k

0.

So assume k = k

0. Since the f -distance between p

k

�

and p

k�1

� is d > 1, p
k

� 6= p

k�1

�, and hence p
k

#p

k�1

must be p
k

� p

k�1

. Since � is a solution of p
k

� p

k�1

and

since �0 is weight-equivalent to �, the weights of p
k

�

0 and

p

k�1

�

0 coincide. But then p
k

�

0

� p

k�1

�

0 follows from the

fact that the f -distance between p
k

�

0 and p
k�1

�

0 is d�1 �

1.

Now the proof of (7), and hence of (6), is completed. In

the same way as (6), we can also prove

(10) If p
l

#p

l�1

: : :#p

1

has a solution �, then it has a

solution �

2

such that (i) �
2

is weight-equivalent to

�, (ii) for every 1 < k � l the f -distance between

p

k

�

1

and p
k�1

�

2

is at most 1. (iii) the f -height of

p

1

�

2

is at most 1.

From this we can derive the following statement that

gives an upper bound for the (minimal) f -height of solu-

tions.

(11) If p
l

#p

l�1

: : :#p

1

has a solution �, then it has

a solution �

2

such that (i) �
2

is weight-equivalent

to �, (ii) for all k, if p
k

is a variable x, then the

f -height of x�0 is at most k, and (iii) for all k, if

p

k

has the form f(x), then the f -height of x�0 is at

most k � 1.

Now, suppose that � is a solution of the whole constraint

C (not just the current row). Then � also solves the current

row. Change � on the variables of the current row into a

substitution �
2

satisfying (11). It is not hard to argue that

�

2

is also a solution of the whole constraint. So we obtain

(12) If the whole constraint C has a solution �, then

it has a solution �

2

such that (i) �

2

is weight-

equivalent to �, (ii) for all k, if p
k

is a variable x,

then the f -height of x�0 is at most k, and (iii) for

all k, if p
k

has the form f(x), then the f -height of

x�

0 is at most k � 1.

Using (12), we can eliminate from the current row all

terms that are not almost flat in the following way. Take

any term p

k

in the row that is not almost flat. Then p

k

is

either a variable x or a term f(x). Consider the formula G

defined as

_

g2��ffg

_

m=0:::k

9�y(x = f

m

(g(�y))): (13)

By (12), if the constraint C has any solution, formula

C ^G has a weight-equivalent solution. Using (13), C ^G

can be turned into an equivalent disjunction of formulas

x = f

m

(g(�y)) ^ C. Replace x by fm(g(�y)) in the refined

part of C, obtaining a constraint C 0, then x = f

m

(g(�y))

can be considered as belonging to the triangle part of C 0.

Since x had at most two occurrences in C, both in the cur-

rent row, the only difference between the refined parts of

C and C

0 is that x is replaced by f

m

(g(�y)) in the row

p

l

#p

l�1

: : :#p

1

. We do this transformation for all terms

in the row that are not almost flat.

Now, the current row only contains almost flat terms.

We will eliminate all terms from the row one by one,

except for the last one as in Theorem 3.3, but using al-

most flat terms instead of flat nonvariable terms. Con-

sider the pair p
l

; p

l�1

. Since all p
i

’s are almost flat, p
l

=

f

n

(g(x

1

; : : : ; x

u

)) and p

l�1

= f

m

(h(y

1

; : : : ; y

v

)) for

some variables x
1

; : : : ; x

u

; y

1

; : : : ; y

v

and function sym-

bols g; h 2 � � ffg. Consider two cases. As in The-

orem 3.3, we give a formula equivalent to the constraint

p

l

#p

l�1

and consisting only of arithmetical literals and

formulas in which f; g; h do not occur.

1. p
l

#p

l�1

is the equation f

n

(g(x

1

; : : : ; x

u

)) =

f

m

(h(y

1

; : : : ; y

v

)). If m 6= n or g 6= h, then

(f

n

(g(x

1

; : : : ; x

u

)) = f

m

(h(y

1

; : : : ; y

v

))) $?.

If m = n and g = h (and hence u = v) then

f

n

(g(x

1

; : : : ; x

u

)) = f

m

(h(y

1

; : : : ; y

v

)) $ x

1

=

y

1

^ : : : ^ x

u

= y

u

.

2. p
l

#p

l�1

is fn(g(x
1

; : : : ; x

u

)) � f

m

(h(y

1

; : : : ; y

v

)).

If m < n or (m = n and h � g), then

f

n

(g(x

1

; : : : ; x

u

)) � f

m

(h(y

1

; : : : ; y

v

)) is equiva-

lent to ?. If m > n or (m = n and g � h), then

f

n

(g(x

1

; : : : ; x

u

)) � f

m

(h(y

1

; : : : ; y

v

)) is equiva-

lent to jg(x
1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j. If m = n

and g = h (and hence u = v), then

f

n

(g(x

1

; : : : ; x

u

)) � f

m

(h(y

1

; : : : ; y

v

)) $

jg(x

1

; : : : ; x

u

)j = jh(y

1

; : : : ; y

v

)j ^

_

i=1:::u

(x

1

= y

1

^ : : : ^ x

i�1

= y

i�1

^

x

i

>

KB

y

i

):

The rest of the proof is as in Theorem 3.3. 2

7

4 From solved forms to linear Diophantine

Equations
Our next aim is to show how to check satisfiability of

solved forms

x

1

#x

2

: : :#x

n

^

y

1

= t

1

^ : : : ^ y

k

= t

k

^

Arith:

To obtain a solution of the whole solved form, we have

to estimate for any weight x the number of terms of this

weight. Moreover, for each row in the solved form

y

1

� : : : � y

N

we have to ensure that at least N different terms of the

same weight as y
1

exist.

In this section we will show that for each N the state-

ment “there exists at least N different terms of a weightw”

can be expressed as an existential formula of Presburger’s

Arithmetic.

We say that a relation R(�x) on natural numbers is 9-

definable, if there exists an existential formula of Pres-

burger’s ArithmeticC(�x; �y) such thatR(�x) is equivalent to

9�yC(�x; �y). We call a function r(�x) 9-definable if so is the

relation r(�x) = y. Note that composition of 9-definable

function is 9-definable.

Let us fix an enumeration g
1

; : : : ; g

S

of the signature �.

We assume that the first B symbols g
1

; : : : ; g

B

have arity

� 2, and the first F symbols g
1

; : : : ; g

F

are nonconstants.

The arity of each g

i

is denoted as arity

i

. In this section

we assume B, F , and S fixed, we also assume that N is a

fixed positive integer.

We call the contents of a ground term t the tuple of nat-

ural numbers (n
1

; : : : ; n

S

) such that n
i

is the number of

occurrences of g
i

in t. For example, if the sequence of ele-

ments of � is g; h; a; b, and t = g(h(g(g(a)); h(b; b))), the

contents of t is (3; 2; 1; 2).

LEMMA 4.1 The following relation exists(x; n

1

; : : : ; n

S

)

is 9-definable: there exists at least one ground term of �

with the weight x and contents (n
1

; : : : ; n

S

).

PROOF. We will define exists(x; n

1

; : : : ; n

S

) by a con-

junction of two linear Diophantine equations.

The first equation is

x =

X

1�i�S

w(g

i

) � n

i

:

It is not hard to argue that this equation says: every term

with the contents (n
1

; : : : ; n

S

) has weight x.

The second formula says that the number of constant

and nonconstant function symbols in (n

1

; : : : ; n

S

) is ap-

propriately balanced for constructing a term:

1 +

X

1�i�S

(arity

i

� 1) � n

i

= 0:

2

We leave the following two lemmas to the reader. The

first one implies that, if there exists any term t of weight x

with at least N occurrences of function symbols, including

at least one occurrence of a function symbol of arity � 2,

then there exists at least N different terms of weight x.

LEMMA 4.2 Let x; n
1

; : : : ; n

S

be natural numbers such

that exists(x; n
1

; : : : ; n

S

) holds, n
1

+ : : : + n

B

� 1 and

n

1

+ : : :+ n

F

� N . Then there exists at least N different

ground terms with the contents (n
1

; : : : ; n

S

). 2

The second lemma implies that, if there exists any term

t of weight x with at least N occurrences of function sym-

bols, including at least two different function symbols of

arity 1, then there exists at leastN different terms of weight

x.

LEMMA 4.3 Let x; n
1

; : : : ; n

s

be natural numbers such

that exists(x; n

1

; : : : ; n

S

) holds, n
1

+ : : : + n

B

= 0,

n

1

+ : : : + n

F

� N and at least two numbers among

n

1

; : : : ; n

F

are positive. Then there exists at least N dif-

ferent ground terms with the contents (n
1

; : : : ; n

S

). 2

The following lemma is obvious but helpful.

LEMMA 4.4 Let g be a unary function symbol, w(g) > 0,

and
 be a constant. The following function only

g;

(x) is

9-definable: only
g;

(x) is the number of terms of weight x

having the form g

m

(
) for some m � N .

PROOF. Evidently, we have

only

g;

(x) = n$

(n = 1 ^ 9m(m � N ^ w(g) �m+ w(
) = x)) _

(n = 0 ^ 9m(m < N ^ w(g) �m+ w(
) > x)) _

(n = 0 ^ 9m(w(g) �m+ w(
) < x ^

w(g) � (m+ 1) + w(
) > x)):

2

The previous three lemmas characterize the number of

terms of a given weight with at least N occurrences of

function symbols, the next lemma characterizes this num-

ber for terms with less than N occurrences of function

symbols.

LEMMA 4.5 Suppose � is a signature with no unary

function symbols of weight 0. The following function

8

small terms(x) is 9-definable: small terms(x) is the

number of terms of weight x having less than N occur-

rences of function symbols.

PROOF. Note that the set T of terms with less then N oc-

currences of function symbols is finite and can be effec-

tively constructed. Let W be the maximal weight of terms

in T and m
k

is the number of terms of the weight k in this

set. Then

small terms(x) = y $

(x = 0 ^ y = m

0

) _ (x = 1 ^ y = m

1

) _ : : :

(x =W ^ y = m

W

) _ x > W ^ y = 0:

2

THEOREM 4.6 The following relation at least

N

(x) is 9-

definable: there exists at least N terms of weight x.

PROOF. First, we consider the case when our signature

� contains a unary function symbol of weight 0. In this

case it is easy to see that for every weight x, if � contains

a term of weight x, then it contains an infinite number of

such terms, therefore the formula at least

N

(x) will be

at least

N

(x) = 9n

1

; : : : ; n

S

exists(x; n

1

; : : : ; n

S

):

So we assume that � contains no unary functions

of weight 0. We introduce three auxiliary relations

A

1

(x); A

2

(x); A

3

(x) and write an explicit definition of

at least

N

(x) as follows.

A

1

(x)$ 9n

1

; : : : ; n

S

(exists(x; n

1

; : : : ; n

S

) ^

n

1

+ : : :+ n

B

� 1 ^

n

1

+ : : :+ n

F

� N);

A

2

(x)$ 9n

1

; : : : ; n

S

(exists(x; n

1

; : : : ; n

S

) ^

n

1

+ : : :+ n

B

= 0 ^

n

1

+ : : :+ n

F

� N ^

_

B<i<j�F

(n

i

> 0 ^ n

j

> 0));

A

3

(x)$ small terms(x)+

X

B<i�F<j�S

only

g

i

;g

j

(x) � N ;

at least

N

(x)$ A

1

(x) _ A

2

(x) _ A

3

(x):

Indeed, take a positive integer x and suppose A
1

(x) holds.

Then by Lemma 4.2, we have at least

N

(x). Likewise, if

A

2

(x) holds, then by Lemma 4.3, we have at least

N

(x)

too. If neither A
1

(x) nor A
2

(x) take place, then all terms

of the weight x are either those having less than N oc-

currences of function symbols, plus those having the form

g

m

(
) for some g;
 and m � N . By Lemmas 4.4 and 4.5,

the number of such terms is

small terms(x) +

X

B<i�F<j�S

only

g

i

;g

j

(x);

so in this case at least(x) is equivalent to A
3

(x). 2

We think the formula at least

N

(x) can be built in polyno-

mial time of N , but the proof would require more involved

arguments.

5 Main result

We are ready to prove Theorem 2.1: the existential first-

order theory of any term algebra with a Knuth-Bendix or-

dering is decidable.

PROOF (of Theorem 2.1). By Proposition 2.2 it is enough

to prove decidability of the constraint satisfaction problem.

Take a constraint. By Theorem 3.3 it can be effectively

transformed into an equivalent disjunction of solved forms,

so it remains to show how to check satisfiability of a solved

form.

Suppose that C is any solved form. Recall that C is of

the form

re�ned ^ triangle ^Arith ; (14)

such that

1. re�ned has the form

x

11

� x

12

� x

13

� : : : � x

1m

1

>

w

� � �

>

w

x

i1

� x

i2

� x

i3

� : : : � x

im

i

>

w

� � �

>

w

x

v1

� x

v2

� x

v3

� : : : � x

vm

v

(15)

such that all variables x
11

; : : : ; x

vm

v

are pairwise dif-

ferent;

2. triangle is a triangle form

y

1

= t

1

^ : : : ^ y

k

= t

k

;

and no x
ij

occurs in any y
w

;

3. Arith is an arithmetical constraint.

Let (z
1

; : : : ; z

n

) be the tuple of all variables occurring

in C. Denote by re�ned

0 the following formula

9

^

i=1:::v

^

j=1:::m

i

(jx

i1

j = jx

ij

j) ^

^

1�i<j�v

(jx

i1

j > jx

j1

j) ^

^

i=1:::v

at least

m

i

(jx

i1

j):

(16)

Likewise, denote by triangle

0 the following arithmetical

constraint

jy

1

j = jt

1

j ^ : : : ^ jy

k

j = jt

k

j: (17)

Consider the formula

re�ned

0

^ triangle

0

^ Arith ^

^

i=1:::n

at least

1

(jz

i

j):

(18)

First, we prove

(19) Any solution to C is also a solution to (18).

Indeed, it is not hard to argue that re�ned implies re�ned 0,

since x

i1

� x

ij

implies jx
i1

j = jx

ij

j and x

i1

>

w

x

j1

implies jx
i1

j > jx

j1

j and x

i1

� x

i2

� x

i3

� : : : �

x

im

i

implies at least

m

i

(jx

i1

j): Likewise, triangle implies

triangle

0, since y
i

= t

i

implies jy
i

j = jt

i

j. Evidently, for

any solution we have at least

1

(jz

i

j).

Recall that (z
1

; : : : ; z

n

) is the tuple of all variables of

(18), then we can speak of solutions to (18) as tuples of

terms (s
1

; : : : ; s

n

). Furthermore, we can assume that (18)

contains no function symbols by repeatedly replacing each

jg(t

1

; : : : ; t

n

)j by w(g) + jt

1

j+ : : :+ jt

n

j.

Introduce new arithmetical variables z0
1

; : : : ; z

0

n

. De-

note by Diophantine the existential arithmetical formula

obtained by replacing each jz
i

j by z0
i

in (18). We can speak

of solutions to Diophantine as tuples of natural numbers

(w

1

; : : : ; w

n

). Then (19) yields

(20) If (h

1

; : : : ; h

n

) is a solution to C, then

(jh

1

j; : : : ; jh

n

j) is a solution to Diophantine .

We leave it to the reader to check that the reverse also

holds:

(21) Any solution (w
1

; : : : ; w

n

) to Diophantine can be

made into a solution (h

1

; : : : ; h

n

) to C such that

jh

i

j = w

i

for all i = 1 : : : n.

Let us summarize what we have obtained so far. We

reduced the decidability of the existential theory of term

algebras with a Knuth-Bendix ordering to the problem

of solvability of constraints of the form (14). For each

such a constraint C we have effectively built an existen-

tial formula of Presburger’s arithmetic Diophantine . (19)

and (21) show that C is solvable if and only if so is

Diophantine . It remains to use the well-known result on

decidability of systems of linear Diophantine equations. 2

6 Related work and open problems

In this section we overview previous work on Knuth-

Bendix orderigs, recursive path orderings, and extensions

of term algebras with various relations.

6.1 Knuth-Bendix ordering constraints and lin-
ear Diophantine equations

The Knuth-Bedix ordering was introduced in [Knuth

and Bendix 1970]. Later, [Dershowitz 1982] introduced

recursive path orderings (RPOs). A number of results on

recursive path orderings and solving RPO constraints are

known.

However, except for the very general result of

[Nieuwenhuis 1993] the techniques used for RPO con-

straints are not directly applicable to Knuth-Bendix order-

ings. We used linear Diophantine equations in our decid-

ability proofs. Let us show that the use of linear Diophan-

tine equations is not coincidential: they are definable in the

Knuth-Bendix ordering.

EXAMPLE 6.1 Consider the signature � = fs; g; h;
g,

where h is binary, s; g are unary, and
 is a constant. De-

fine the weight of all symbols as 1, and use any ordering�

on � such that g � s. Our aim is to represent linear Dio-

phantine equations by Knuth-Bendix constraints. To this

end, we will consider any ground term t as representing

the natural number jtj � 1.

Define the formula

equal weight(x; y)$

g(x) >

KB

s(y) ^ g(y) >

KB

s(x):

It is not hard to argue that, for any ground terms r; t

equal weight(r; t) holds if and only if jrj = jtj.

It is enough to consider systems of linear Diophantine

equations of the form

x

1

+ : : :+ x

n

+ k = x

0

; (22)

where x
0

; : : : ; x

n

are pairwise different variables, and k 2

N. Consider the constraint

equal weight(s

k+2

(h(y

1

; h(y

2

; : : : ;

h(y

n�1

; y

n

))));

s

2n

(y

0

)):

(23)

It is not hard to argue that

10

(24) Formula (23) holds if and only if

jy

1

j � 1 + : : :+ jy

n

j � 1 + k = jy

0

j � 1:

Using (24), we can transform any systemD(x

1

; : : : ; x

n

) of

linear Diophantine equations of the form (22) into a con-

straint C(y
1

; : : : ; y

n

) such that for every tuple of ground

terms t
1

; : : : ; t

n

, C(t
1

; : : : ; t

n

) holds if and only if so does

D(jt

1

j � 1; : : : ; jt

n

j � 1).

6.2 The case of single inequation

Comon and Treinen [1994] proved that LPO constraint

solving is NP-hard already for constraints consisting of a

single inequation. Let us comment on the single inequation

case for the Knuth-Bendix ordering here.

The Knuth-Bendix ordering is defined in [Knuth and

Bendix 1970] also for the nonground case. If s >

KB

t

for nonground terms, then s� >

KB

t� also holds for every

substitution �. Let us show that the Knuth-Bendix order-

ing for nonground terms is incomplete, i.e. there exists a

Knuth-Bendix ordering >
KB

and nonground terms s; t of

a signature � such that for every substitution � grounding

for s; t we have s� >

KB

t�, but s 6>
KB

t.

EXAMPLE 6.2 We do not define the original Knuth-

Bendix ordering with variables here, the exact definitions

can be found in [Knuth and Bendix 1970] or [Baader and

Nipkow 1998]. Consider the following formula of one

variable x:

g(x; a; b) >

KB

g(b; b; a): (25)

For any choice of the weight function and ordering �,

g(x; a; b) >

KB

g(b; b; a) does not hold for the original

Knuth-Bendix ordering with variables. However, formula

25 is valid in any term algebra with the Knuth-Bendix or-

dering where w(a) = w(b) and a� b.

This example shows that the (original) Knuth-Bendix

ordering with variables cannot be used for solving con-

straints consisting of a single inequation. In contrast to

[Comon and Treinen 1994] we note

THEOREM 6.3 There exists a polynomial-time algorithm

for solving Knuth-Bendix ordering constraints consisting

of a single inequation.

The proof will be appear in [Korovin and Voronkov

2000].

6.3 Other results on ordering constraints

[Martin 1987, Dick, Kalmus and Martin 1990] con-

sider Knuth-Bendix orderings with real-valued functions

and prove sufficient and necessary conditions for a system

of rewrite rules to be oriented by such an ordering. They

also define an algoritm for finding orderings orienting a

system of rewrite rules.

Nieuwenhuis [1993] proved NP-completeness of LPO

constraint solving, Narendran, Rusinowitch and Verma

[1998] proved NP-completness of RPO constraint solv-

ing. Recently, Nieuwenhuis and Rivero [1999] proposed

a new effcient method for solving RPO constraints. NP-

completeness of satisfiability of LPO constraints consisting

of a single inequation was proved by Comon and Treinen

[1994].

[Lepper 2000] studies derivation length and order types

of Knuth-Bendix orderings, both for integer-valued and

real-valued weight functions.

6.4 First-order theory term algebras with binary
relations

Term algebras are rather well-studied structures.

Maĺcev [1961] was the first to prove the decidability of the

first-order theory of term algebras. Other methods of prov-

ing decidability were developed by Comon and Lescanne

[1989], Kunen [1987], Belegradek [1988], Maher [1988].

If we introduce a binary predicate into a term algebra,

then one can obtain a richer theory. Term algebras with the

subterm predicate have an undecidable first order theory

and a decidable existentional theory [Venkataraman 1987].

Term algebras with lexicographic path orderings have an

undecidable first-order theory [Comon and Treinen 1997].

6.5 Future work

Let us point out some directions for further work.

1. It is interesting whether there exists a nondeterminis-

tic polynomial-time algorithm for the constraint satis-

fiability problem.

2. It is also interesting whether the full first-order the-

ory of term algebras with Knuth-Bendix orderings is

decidable.

References
BAADER F. AND NIPKOW T. [1998], Term Rewriting and and

All That, Cambridge University press, Cambridge.

BELEGRADEK O. [1988], Model theory of locally free alge-

bras (in Russian), in ‘Model Theory and its Applications’,

Vol. 8 of Trudy Instituta Matematiki, Nauka, Novosibirsk,

pp. 3–24. English translation in Translations of the Ameri-

can Mathematical Society.

COMON H. [1990], ‘Solving symbolic ordering constraints’,

International Journal of Foundations of Computer Science

1(4), 387–411.

11

COMON H. AND LESCANNE P. [1989], ‘Equational prob-

lems and disunification’, Journal of Symbolic Computations

7(3,4), 371–425.

COMON H. AND TREINEN R. [1994], Ordering constraints on

trees, in S. Tison, ed., ‘Trees in Algebra and Programming:

CAAP’94’, Vol. 787 of Lecture Notes in Computer Science,

Springer Verlag, pp. 1–14.

COMON H. AND TREINEN R. [1997], ‘The first-order theory

of lexicographic path orderings is undecidable’, Theoretical

Computer Science 176(1-2), 67–87.

DERSHOWITZ N. [1982], ‘Orderings for term rewriting sys-

tems’, Theoretical Computer Science 17, 279–301.

DICK J., KALMUS J. AND MARTIN U. [1990], ‘Automating the

Knuth-Bendix ordering’, Acta Informatica 28(2), 95–119.

HODGES W. [1993], Model theory, Cambridge University

Press.

KIRCHNER H. [1995], On the use of constraints in automated

deduction, in A. Podelski, ed., ‘Constraint Programming:

Basics and Tools’, Vol. 910 of Lecture Notes in Computer

Science, Springer Verlag, pp. 128–146.

KNUTH D. AND BENDIX P. [1970], Simple word problems

in universal algebras, in J. Leech, ed., ‘Computational

Problems in Abstract Algebra’, Pergamon Press, Oxford,

pp. 263–297.

KOROVIN K. AND VORONKOV A. [2000], On the use of

the knuth-bendix orderings for orienting systems of rewrite

rules, Preprint, Department of Computer Science, University

of Manchester. To appear.

KUNEN K. [1987], ‘Negation in logic programming’, Journal

of Logic Programming 4, 289–308.

LEPPER I. [2000], ‘Derivations lengths and order types of

Knuth-Bendix orders’, Theoretical Computer Science . Sub-

mitted.

MAHER M. [1988], Complete axiomatizations of the algebras

of finite, rational and infinite trees, in ‘Proc. IEEE Confer-

ence on Logic in Computer Science (LICS)’, pp. 348–357.

MAĹCEV A. [1961], ‘On the elementary theories of locally free

universal algebras’, Soviet Mathematical Doklady 2(3), 768–

771.

MARTIN U. [1987], How to choose weights in the Knuth-

Bendix ordering, in ‘Rewriting Technics and Applications’,

Vol. 256 of Lecture Notes in Computer Science, pp. 42–53.

NARENDRAN P., RUSINOWITCH M. AND VERMA R. [1998],

RPO constraint solving is in NP, in G. Gottlob, E. Grand-

jean and K. Seyr, eds, ‘Computer Science Logic, 12th Inter-

national Workshop, CSL’98’, Vol. 1584 of Lecture Notes in

Computer Science, Springer Verlag, pp. 385–398.

NIEUWENHUIS R. [1993], ‘Simple LPO constraint solving

methods’, Information Processing Letters 47, 65–69.

NIEUWENHUIS R. [1999], Rewrite-based deduction and

symbolic constraints, in H. Ganzinger, ed., ‘Automated

Deduction—CADE-16. 16th International Conference on

Automated Deduction’, Lecture Notes in Artificial Intelli-

gence, Trento, Italy, pp. 302–313.

NIEUWENHUIS R. AND RIVERO J. [1999], Solved forms

for path ordering constraints, in ‘In Proc. 10th Interna-

tional Conference on Rewriting Techniques and Applications

(RTA)’, Vol. 1631 of Lecture Notes in Computer Science,

Trento, Italy, pp. 1–15.

RYAZANOV A. AND VORONKOV A. [1999], Vampire, in

H. Ganzinger, ed., ‘Automated Deduction—CADE-16. 16th

International Conference on Automated Deduction’, Lecture

Notes in Artificial Intelligence, Trento, Italy, pp. 292–296.

SUTCLIFFE G. [2000], ‘The CADE-16 ATP system competi-

tion’, Journal of Automated Reasoning . to appear.

VENKATARAMAN K. [1987], ‘Decidability of the purely exis-

tential fragment of the theory of term algebras’, Journal of

the Association for Computing Machinery 34(2), 492–510.

WEIDENBACH C. [1999], Combining superposition, sorts and

splitting, in A. Robinson and A. Voronkov, eds, ‘Handbook

of Automated Reasoning’, Elsevier Science and MIT Press.

To appear.

12

