
iProver – An instantiation-based theorem prover for
first-order logic

Konstantin Korovin⋆

The University of Manchester
School of Computer Science
korovin@cs.man.ac.uk

Abstract. iProver is an instantiation-based theorem prover for first-order logic
which is based on Inst-Gen calculus, complete for first-order logic. One of the dis-
tinctive features of iProver is a modular combination of instantiation and propo-
sitional reasoning. In particular, any state-of-the art SAT solver can be integrated
into our framework. iProver incorporates state-of-the-art implementation tech-
niques such as indexing, redundancy elimination, semanticselection and satu-
ration algorithms. Redundancy elimination implemented iniProver include: dis-
matching constraints, blocking non-proper instantiations and propositional-based
simplifications. In addition to instantiation, iProver implements ordered resolu-
tion calculus and a combination of instantiation and ordered resolution. In this
paper we discuss the design of iProver and related implementation issues.

1 Introduction

iProver is based on an instantiation framework for first-order logic Inst-Gen, developed
in [3–5, 7]. We are working with clause logic and the main problem we are investi-
gating is proving (un)satisfiability of sets of first-order clauses. The basic idea behind
Inst-Gen is as follows. Given a set of first-order clausesS, we first produce a ground
abstraction ofS by mapping all variables into a distinguished constant, say⊥, obtain-
ing a set of ground clausesS⊥. If S⊥ is unsatisfiable thenS is also unsatisfiable and
we are done. Otherwise, we need to refine the abstraction by adding new instances of
clauses, witnessing unsatisfiability at the ground level. Instances are generated by an
inference system called DSInst-Gen, which incorporates dismatching constraints (D)
and semantic selection (S). We repeat this process until we obtain either (i) an unsat-
isfiable ground abstraction (this can be checked by any off-the-shelf SAT solver), or
(ii) a saturated set of clauses, that is no non-redundant inference is applicable, and in
this case completeness of the calculus [3, 7] implies thatS is satisfiable. Moreover, if
S is unsatisfiable and the inference process is fair, i.e., allpersistent eligible inferences
eventually become redundant, then completeness of the calculus guarantees that after
a finite number of steps we obtain an unsatisfiable ground abstraction ofS. The main
ingredients which make this general scheme a basis for a useful implementation are the
following.

1. The Instantiation calculus DSInst-Gen.
⋆ Supported by The Royal Society

2. Redundancy elimination techniques.
3. Flexible saturation strategies.
4. Combination with other calculi, such as resolution.
5. State-of-the-art implementation techniques.

In the following sections we describe these components in more detail.

2 Instantiation Calculus

In order to define our main calculus DSInst-Gen we first need todefine selection func-
tions and dismatching constraints.

Semantic Selection.Selection functions allow to restrict applicability of inferences
to selected literals in clauses. Our selection functions are based on models of the propo-
sitional abstraction of the current set of clauses. In practice, such models are generated
by the SAT solver, used for the ground reasoning. Aselection functionsel for a set of
clausesS is a mapping from clauses inS to literals such thatsel(C) ∈ C for each clause
C ∈ S. We say thatsel is based on a modelI⊥ of S⊥, if I⊥ |= sel(C)⊥ for all C ∈ S.
Thus, DSInst-Gen inferences are restricted to literals, whose propositional abstraction
is true in a model for the propositional abstraction of the current set of clauses.

Dismatching constraints.In order to restrict instance generation further, we consider
dismatching constraints. Dismatching constraints are used to discard redundant closures
during instantiation. Among different types of constraints used in automated reasoning,
dismatching constraints are particularly attractive. On the one hand they provide pow-
erful restrictions for the instantiation calculus, and on the other, checking dismatching
constraints can be efficiently implemented.

A simple dismatching constraintis a formulads(s̄, t̄), also denoted as̄s⊳ds t̄, where
s̄, t̄ are two variable disjoint tuples of terms, with the following semantics. A solution to
a constraintds(s̄, t̄) is a substitutionσ such that for every substitutionγ, s̄σ 6≡ t̄γ. We
will use conjunctions of simple dismatching constraints, calleddismatching constraints,
∧n

i=1
ds(s̄i, t̄i), wherēti is variable disjoint from all̄sj , andt̄k, for i 6= k. A substitution

σ is a solution of a dismatching constraint∧n
i=1

ds(s̄i, t̄i) if σ is a solution of each
ds(s̄i, t̄i), for 1 ≤ i ≤ n.

A constrained clauseC | [ϕ] is a clauseC together with a dismatching constraint
ϕ. We will assume that for a constrained clauseC | [∧n

i=1
ds(s̄i, t̄i)], the clauseC

is variable disjoint from allti, 1 ≤ i ≤ n. An unconstrained clauseC can be seen as
a constrained clause with an empty constraintC | []. Let S be a set of constrained
clauses, theñS denotes the set of allunconstrained clausesobtained fromS by drop-
ping all constraints. We say that a set of constrained clauses S is well-constrainedif
S |= S̃. In the following we consider only well-constrained sets ofclauses.

Proper instantiators.Another restriction on the instantiation calculus is that only
proper instantiations are needed to be considered. A substitution θ is called aproper
instantiatorfor an expression (literal, clause, etc.) if it maps a variable in this expression
into a non-variable term.

DSInst-Gen Calculus.Now we are ready to formulate an DSInst-Gen calculus. Let
S be a set of constrained clauses such thatS̃⊥ is consistent andsel be a selection

function based on a modelI⊥ of S̃⊥. Then, DSInst-Gen inference system is defined as
follows.

DSInst-Gen

L ∨ C | [ϕ] L′ ∨D | [ψ]

L ∨ C | [ϕ ∧ x̄ ⊳ds x̄θ] (L ∨ C)θ

where (i)θ is the most general unifier ofL andL′, wlog. we assume that
variables in the range ofθ do not occur inL ∨ C | [ϕ], and

(ii) sel(L ∨ C) = L andsel(L′ ∨D) = L′, and
(iii) θ is a proper instantiator forL, and
(iv) x̄ is a tuple of all variables inL, and
(v) ϕθ andψθ are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, which is replacing the clause in the left premise by
clauses in the conclusion. The clause in the right premise can be seen as a side condition.
In [7] it is shown that DSInst-Gen calculus is sound and complete. DSInst-Gen is the
main inference system implemented in iProver.

3 Redundancy Elimination

In [3] an abstract redundancy criterion is given which can beused to justify concrete
redundancy elimination methods [7], implemented in iProver. In order to introduce re-
dundancy notions we need some definitions. Aground closure, denoted asC · σ, is a
pair consisting of a clauseC and a substitutionσ grounding forC. Ground closures
play a similar role in our instantiation framework as groundclauses in resolution. LetS
be a set of clauses andC be a clause inS, then a ground closureC ·σ is called aground
instanceof S and we also say that the closureC ·σ is arepresentationof the clauseCσ
in S. A closure orderingis any ordering≻ on closures that is total, well-founded and
satisfies the following condition. IfC ·σ andD ·τ are such thatCσ = Dτ andCθ = D

for some proper instantiatorθ, thenC · σ ≻ D · τ .
Let S be a set of clauses. A ground closureC · σ is calledredundantin S if there

exist ground closuresC1 · σ1, . . . , Ck · σk that are ground instances ofS such that,
(1) C1 · σ1, . . . , Ck · σk |= C · σ and (2)C · σ ≻ Ci · σi for each1 ≤ i ≤ k. A
clauseC (possibly non-ground) is called redundant inS if each ground closureC · σ is
redundant inS. This abstract redundancy criterion can be used to justify many standard
redundancy eliminations. In particular, tautology elimination and strict subsumption,
where the subsuming clause has strictly less literals than the subsumed, for subsumption
compatible closure orderings.

Global Subsumption.One of the novel simplifications implemented in iProver are
based on utilising propositional reasoning [7]. First let us consider simplifications of
ground clauses and later we show how to extend this to the general case. Consider a
set of clausesS. LetC be a ground clause we would like to simplify wrt.S. If we can
show that a strict subclauseD ⊂ C is entailed byS, then we can simplifyC by D.
Since our ground abstractionS⊥ is implied byS we can useS⊥ to approximate the

entailment above. In particular, if we can show thatS⊥ |= D, this can be checked by
the SAT solver, thenC can be simplified byD. We call this simplification asglobal
propositional subsumptionwrt. S⊥.

Global propositional subsumption

D ∨D′

D

whereS⊥ |= D andD′ is not empty.

Global propositional subsumption is a simplification rule,which allows to remove the
clause in the premise after adding the conclusion. Let us note that although the number
of possible subclauses is exponential wrt. the number of literals, in a linear number of
implication checks we can find a minimal wrt. inclusion subclauseD ⊂ C such that
S⊥ |= D or show that such a subclause does not exist. In [7] it is shownthat global
propositional subsumption generalises many known simplifications, such as strict sub-
sumption and subsumption resolution.

Now we describe an extension of this idea to the general non-ground case (see [7]
for details). First, we note that in the place ofS⊥ we can use any ground setSgr ,
implied byS. LetΣC be a signature consisting of an infinite number of constants not
occurring in the signature of the initial set of clausesΣ. Let Ω be a set of injective
substitutions mapping variables to constants inΣC . We callC′ an Ω-instance of a
clauseC if C′ = Cγ whereγ ∈ Ω. Let us assume that for any clauseC ∈ S there
are someΩ-instances ofC in Sgr . In [7] it is shown that if someΩ-instance of a given
clauseD is implied bySgr , thenS impliesD. Now we can formulate extension of
global subsumption to the non-ground case:

Global subsumption (non-ground)

(D ∨D′)θ

D

whereSgr |= Dγ for someγ ∈ Ω, andD′ is not empty.

Global subsumption is one of the main simplifications implemented in iProver.

4 Saturation Algorithm: Inst-Gen Loop

Now we are ready to put inferences and simplifications together into a saturation al-
gorithm called Inst-Gen Loop implemented in iProver. As shown in Fig 1, Inst-Gen
Loop is a modification of the standard given clause algorithm, implemented in most
state-of-the-art resolution-based provers, which accommodates propositional reason-
ing. Let us overview key components of Inst-Gen Loop and how they are implemented
in iProver. One of the main ideas of the given clause algorithm is to separate clauses
into two sets, called Active and Passive with the following properties. The set of Ac-
tive clauses is such that all non-redundant inferences between clauses in Active are
performed (upon selected literals). The set of Passive clauses are the clauses waiting

Passive (Queues) Given Clause
Simpl. II

Active (Unif. Index)

Model Changed

Instantiation Inferences

Preprocessing
Simpl. I

SAT Solver Call
Input

SAT Solver

Grounding

Fig. 1. Inst-Gen Loop

to participate in inferences. Initially, the Passive set consists of the input clauses and
the Active set is empty. The given clause algorithm consistsof a loop and at each loop
iteration the following actions are executed. First, a clause is taken from the Passive set,
called Given Clause. Then, all inferences between Given Clause and clauses in Active
are performed. Finally, all newly derived clauses are preprocessed and moved to Passive
and Given Clause is moved to Active. Preprocessing currently consists of optional split-
ting without backtracking on variable disjoint subclauses[8]. In addition, groundings
of the preprocessed clauses are added to the SAT solver.

Passive.The Passive set are the clauses waiting to participate in inferences. From
the experience with resolution-based systems it is known that the order in which clauses
are selected for inferences from Passive is an important parameter. Usually, preference
is given to clauses which are heuristically more promising to derive the contradiction,
or to the clauses on which basic operations are easier to perform. In iProver, Passive
clauses are represented by two priority queues. In order to define priorities we consider
numerical/boolean parameters of clauses such as: number ofsymbols, number of vari-
ables, age of the clause, number of literals, whether the clause is ground, conjecture
distance, whether the clause contains a symbol from the conjecture (other than equality
or a theory symbol). Then, each queue is ordered by a lexicographic combination of
orders defined on parameters. For example, if a user specifiesan iProver option

--inst_pass_queue1 [+age;-num_symb;+ground]

then priority in the first queue is given to clauses generatedat the earlier iterations of
Inst Loop (older clauses), then to clauses with a fewer number of symbols and finally
to ground clauses. The user can also specify the ratio between the number of clauses
taken from the first queue and the second queue.

Selection functions.Selection functions are based on the current modelI⊥ of the
propositional abstraction of the current set of clauses. A clause can have several lit-
erals true inI⊥, and the selection function can be restricted to choose one of them.
Selection functions are defined by priorities based on a lexicographic combination of
the literal parameters. The following parameters currently can be selected by the user:

sign, ground, numvar, numsymb, and split. For example if a user specifies an iProver
option:

--inst_lit_sel [+sign;+ground;-num_symb]

Then priority (among the literals in the clause true inI⊥) is given to the positive literals,
then to the ground literals and then to literals with a fewer number of symbols.

Active.After Given Clause is selected from Passive all eligible inferences between
Given Clause and clauses in Active should be performed. A unification index is used
for efficient selection of clauses eligible for inferences.In particular, Active clauses
are indexed by selected literals. The unification index implemented in iProver is based
on non-perfect discrimination trees [6]. Let us note that since the literal selection is
based on a propositional model (of a ground abstraction of the current set of clauses),
selection can change during the Inst-Gen Loop iterations. This can result in moves of
clauses from Active to Passive, as shown in Fig 1.

Instantiation Inferences.iProver implements DSInst-Gen calculus. In particular,
constrained clauses, dismatching constraint checking andsemantic-based literal selec-
tions are implemented.

Redundancy elimination.In addition to dismatching constraints, global subsump-
tion for clauses with variables and tautology elimination are implemented.

Grounding and SAT Solver.Newly derived clauses are grounded and added to the
propositional solver. Although, in our exposition we used the designated constant⊥
for grounding, all our arguments remain valid if we use any ground term in place of
⊥. In particular, for grounding, iProver selects a constant with the greatest number
of occurrences in the input set of clauses. After grounding,clauses are added to the
propositional solver. Currently, iProver integrates MiniSat [2] solver for propositional
reasoning.

Learning Restarts.It can happen that Inst-Gen Loop fails to find the solution due
to a poor choice of the literal selection on the initial set ofclauses. Indeed, initially
the propositional solver contains only few instances of theinput clauses, and therefore
selection based on the corresponding propositional model can be inadequate. Although
the model and selection can be changed at the later iterations, by that time, the prover
can consume most of the available resources. In order to overcome this, iProver imple-
ments restarts of the saturation process, keeping generated propositional clauses. After
each restart, the propositional solver will contain more instances of clauses, this can
help to find a better literal selection. In addition, after each restart, global subsumption
becomes more powerful.

Combination with Resolution.In addition to Inst-Gen Loop, iProver implements a
complete saturation algorithm for ordered resolution. In this paper, we will not discuss
our implementation of resolution in detail. Let us only mention that the saturation al-
gorithm is based on the same data structures as Inst-Gen Loopand implements a num-
ber of simplifications such as forward and backward subsumption (based on a vector
index [11]), subsumption resolution, tautology deletion and global subsumption. Reso-
lution is combined with instantiation by sharing the propositional solver. In particular,
groundings of clauses generated by resolution are added to the propositional solver and
propositional solver is used for global subsumption in bothresolution and instantiation
saturation loops.

5 Implementation details and Evaluation

iProver is implemented in a function language OCaml and integrates MiniSat solver [2]
for propositional reasoning, which is implemented in C/C++. iProver v0.3.1 was evalu-
ated on the standard benchmark for first-order theorem provers – TPTP library version
v3.2.01. Currently, iProver does not have a built-in clausifier and we used E prover2 for
clausification. Experiments were run on a cluster of PC’s with CPU: 1.8GHz, Mem-
ory: 512 Mb, Time Limit: 300s, OS: Linux v2.6.22. Out of 8984 problems in the TPTP
library, iProver (single strategy) solved 4843 problems: 4000 unsatisfiable and 843 sat-
isfiable. Among them, iProver solved 7 problems with the rating 1, and 27 with rating
greater than 0.9. We compare iProver v0.2 with other systems, based on the results
of the CASC-21 competition, held in 2007 [12]. In the major FOF devision, iProver
is in the top three provers along with established leaders Vampire [9] and E [10]. In
the effectively propositional division (EPR), iProver is on a par with the leading system
Darwin [1]. We are currently working on integration of equational and theory reasoning
into iProver.

References

1. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the model evolution calculus.Inter-
national Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

2. N. Eén and N. Sörensson. An extensible SAT-solver. InProc. of the 6th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2003, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

3. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proc. 18th IEEE Symposium on LICS, pages 55–64. IEEE, 2003.

4. H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based the-
orem proving. InCSL’04, volume 3210 ofLNCS, pages 71–84, 2004.

5. H. Ganzinger and K. Korovin. Theory Instantiation. InProceedings of the 13 Conference
on Logic for Programming Artificial Intelligence Reasoning(LPAR’06), volume 4246 of
Lecture Notes in Computer Science, pages 497–511. Springer, 2006.

6. P. Graf.Term Indexing, volume 1053 ofLNCS. Springer, 1996.
7. K. Korovin. An invitation to instantiation-based reasoning: From theory to practice.

In A. Podelski, A. Voronkov, and R. Wilhelm, editors,Volume in memoriam of Harald
Ganzinger, volume ?? ofLNCS. Springer, to appear. Invited paper.

8. A. Riazanov and A. Voronkov. Splitting without backtracking. In Proc. of the 17 Inter-
national Joint Conference on Artificial Intelligence, (IJCAI’01), pages 611–617. Morgan
Kaufmann, 2001.

9. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communi-
cations, 15(2-3):91–110, 2002.

10. S. Schulz. E - a brainiac theorem prover.AI Commun., 15(2-3):111–126, 2002.
11. S. Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In G. Sut-

cliffe, S. Schulz, and T. Tammet, editors,Proc. of the IJCAR-2004 Workshop on Empirically
Successful First-Order Theorem Proving, Cork, Ireland, ENTCS. Elsevier Science, 2004.

12. G. Sutcliffe. CASC-21 proceedings of the CADE-21 ATP system competition, 2007.

1 http://www.cs.miami.edu/˜tptp/
2 www.eprover.org/

