iIProver — An instantiation-based theorem prover for
first-order logic

Konstantin Korovirf

The University of Manchester
School of Computer Science
korovi n@s. man. ac. uk

Abstract. iProver is an instantiation-based theorem prover for brser logic
which is based on Inst-Gen calculus, complete for first-oimigic. One of the dis-
tinctive features of iProver is a modular combination otéamgiation and propo-
sitional reasoning. In particular, any state-of-the arT SAlver can be integrated
into our framework. iProver incorporates state-of-thietaplementation tech-
niques such as indexing, redundancy elimination, semaetiction and satu-
ration algorithms. Redundancy elimination implemente@Piover include: dis-
matching constraints, blocking non-proper instantiatiand propositional-based
simplifications. In addition to instantiation, iProver itaments ordered resolu-
tion calculus and a combination of instantiation and ordeesolution. In this
paper we discuss the design of iProver and related implextientissues.

1 Introduction

iProver is based on an instantiation framework for firsteoidgic Inst-Gen, developed
in [3-5,7]. We are working with clause logic and the main peotb we are investi-
gating is proving (un)satisfiability of sets of first-ordéawses. The basic idea behind
Inst-Gen is as follows. Given a set of first-order clauSesve first produce a ground
abstraction ofS by mapping all variables into a distinguished constant, sagbtain-
ing a set of ground clausesL . If S_L is unsatisfiable the is also unsatisfiable and
we are done. Otherwise, we need to refine the abstractiondipgadew instances of
clauses, witnessing unsatisfiability at the ground levedtdnces are generated by an
inference system called DSInst-Gen, which incorporatemdiching constraints (D)
and semantic selection (S). We repeat this process untilbtggroeither (i) an unsat-
isfiable ground abstraction (this can be checked by anyheffshelf SAT solver), or
(i) a saturated set of clauses, that is no non-redundagtente is applicable, and in
this case completeness of the calculus [3, 7] implies thist satisfiable. Moreover, if
S is unsatisfiable and the inference process is fair, i.epabistent eligible inferences
eventually become redundant, then completeness of thalealguarantees that after
a finite number of steps we obtain an unsatisfiable groundaattisin of S. The main
ingredients which make this general scheme a basis for alusgflementation are the
following.

1. The Instantiation calculus DSInst-Gen.
* Supported by The Royal Society

2. Redundancy elimination techniques.

3. Flexible saturation strategies.

4. Combination with other calculi, such as resolution.
5. State-of-the-art implementation techniques.

In the following sections we describe these components irerdetail.

2 Instantiation Calculus

In order to define our main calculus DSInst-Gen we first neatkfme selection func-
tions and dismatching constraints.

Semantic Selectioielection functions allow to restrict applicability of erences
to selected literals in clauses. Our selection functioasased on models of the propo-
sitional abstraction of the current set of clauses. In racsuch models are generated
by the SAT solver, used for the ground reasoningefection functiorel for a set of
clausesS is a mapping from clauses fto literals such thatel(C) € C for each clause
C € S. We say thatel is based on a modél, of S_L,if I| =sel(C)LforallC € S.
Thus, DSInst-Gen inferences are restricted to literalgysetpropositional abstraction
is true in a model for the propositional abstraction of therent set of clauses.

Dismatching constraint$n order to restrict instance generation further, we cagrsid
dismatching constraints. Dismatching constraints ard tesdiscard redundant closures
during instantiation. Among different types of constrainsed in automated reasoning,
dismatching constraints are particularly attractive. @mane hand they provide pow-
erful restrictions for the instantiation calculus, and ba bther, checking dismatching
constraints can be efficiently implemented.

A simple dismatching constrairg a formulads(s, t), also denoted a&; ¢, where
5, t are two variable disjoint tuples of terms, with the follogisemantics. A solution to
a constraintls(s, t) is a substitutionr such that for every substitution so # ty. We
will use conjunctions of simple dismatching constraingdlerldismatching constrainis
NP, ds(3;,t;), wheret, is variable disjoint from alk;, andy, for i # k. A substitution
o is asolution of a dismatching constraint!" , ds(s;, ;) if o is a solution of each
ds(Ei,fi), forl1 <i¢<n.

A constrained claus€' | [¢ | is a clause” together with a dismatching constraint
¢. We will assume that for a constrained clause | A, ds(5;,t;)], the clause”
is variable disjoint from alt;, 1 < ¢ < n. An unconstrained clausg can be seen as
a constrained clause with an empty constrdint [|. Let .S be a set of constrained
clauses, thes denotes the set of alinconstrained clausesbtained froms by drop-
ping all constraints. We say that a set of constrained ctatise well-constrainedf
S & S. In the following we consider only well-constrained setglaiuses.

Proper instantiators Another restriction on the instantiation calculus is thalyo
proper instantiations are needed to be considered. A sutiisti 0 is called aproper
instantiatorfor an expression (literal, clause, etc.) if it maps a vdeéaithis expression
into a non-variable term.

DSInst-Gen CalculusNow we are ready to formulate an DSInst-Gen calculus. Let
S be a set of constrained clauses such thatis consistent andel be a selection

function based on a modé| of S1. Then, DSInst-Gen inference system is defined as
follows.

DSinst-Gen

LvC|[e] T'VD|[¥]
LvC|[poANT420] (LVC)

where ()0 is the most general unifier df andL’, wlog. we assume that
variables in the range #fdo not occurinZ v C' | [¢], and
(i) sel(L v C) = L andsel(L’ v D) = L/, and
(iii) 0 is a proper instantiator fak, and
(iv) z is a tuple of all variables i, and
(V) 8 andt0 are both satisfiable dismatching constraints.

DSInst-Gen is a replacement rule, which is replacing thasdan the left premise by
clauses in the conclusion. The clause in the right premiséeaeen as a side condition.
In [7] it is shown that DSInst-Gen calculus is sound and c@t®IDSInst-Gen is the
main inference system implemented in iProver.

3 Redundancy Elimination

In [3] an abstract redundancy criterion is given which carubed to justify concrete
redundancy elimination methods [7], implemented in iProleorder to introduce re-
dundancy notions we need some definitiongyrAund closuredenoted ag’ - o, is a
pair consisting of a claus€ and a substitutiom grounding forC'. Ground closures
play a similar role in our instantiation framework as groefalises in resolution. Lt

be a set of clauses addbe a clause it¥, then a ground closur€ - ¢ is called aground
instanceof S and we also say that the closute o is arepresentatiorof the clause” o

in S. A closure orderings any ordering- on closures that is total, well-founded and
satisfies the following condition. ' - o andD - are such tha'oc = DT andC0 = D
for some proper instantiatét thenC - o > D - 7.

Let S be a set of clauses. A ground closu@re o is calledredundantn S if there
exist ground closure€’; - 01,...,Cy - o that are ground instances 6fsuch that,
@Q)Ci-o01,...,Ck -0 = C-cand (2)C -0 = C;-o; foreachl < i < k. A
clauseC (possibly non-ground) is called redundantdiif each ground closur€’' - o is
redundantinS. This abstract redundancy criterion can be used to justi#gyrstandard
redundancy eliminations. In particular, tautology eliation and strict subsumption,
where the subsuming clause has strictly less literals timaubsumed, for subsumption
compatible closure orderings.

Global SubsumptiorOne of the novel simplifications implemented in iProver are
based on utilising propositional reasoning [7]. First lstaonsider simplifications of
ground clauses and later we show how to extend this to thergleceesse. Consider a
set of clauses. Let C' be a ground clause we would like to simplify wf. If we can
show that a strict subclaude C C' is entailed byS, then we can simplifyfC' by D.
Since our ground abstractighl is implied by .S we can use5_L to approximate the

entailment above. In particular, if we can show that = D, this can be checked by
the SAT solver, ther® can be simplified byD. We call this simplification aglobal
propositional subsumptionrt. S_L.

Global propositional subsumption

DvD
D

whereS L = D andD’ is not empty.

Global propositional subsumption is a simplification rwdich allows to remove the
clause in the premise after adding the conclusion. Let us thatt although the number
of possible subclauses is exponential wrt. the numberaflig, in a linear number of
implication checks we can find a minimal wrt. inclusion s@udeD C C such that
S1 = D or show that such a subclause does not exist. In [7] it is shibanhglobal
propositional subsumption generalises many known simptifins, such as strict sub-
sumption and subsumption resolution.

Now we describe an extension of this idea to the general mourgl case (see [7]
for details). First, we note that in the place $f. we can use any ground sgf,,
implied by S. Let Y'¢ be a signature consisting of an infinite number of constaots n
occurring in the signature of the initial set of clausgslLet {2 be a set of injective
substitutions mapping variables to constantstin. We call C’ an 2-instance of a
clauseC if ¢/ = C~ wherevy € (2. Let us assume that for any clauSee S there
are some2-instances o€’ in S, In [7] it is shown that if some2-instance of a given
clauseD is implied by S, thenS implies D. Now we can formulate extension of
global subsumption to the non-ground case:

Global subsumption (non-ground)

(Dv D6
D

whereS,, |= Dy for somey € 2, andD’ is not empty.

Global subsumption is one of the main simplifications impdated in iProver.

4 Saturation Algorithm: Inst-Gen Loop

Now we are ready to put inferences and simplifications togyeitito a saturation al-
gorithm called Inst-Gen Loop implemented in iProver. Aswghadn Fig 1, Inst-Gen
Loop is a modification of the standard given clause algorjtimplemented in most
state-of-the-art resolution-based provers, which accodates propositional reason-
ing. Let us overview key components of Inst-Gen Loop and Hwy tare implemented
in iProver. One of the main ideas of the given clause algorithto separate clauses
into two sets, called Active and Passive with the followinggerties. The set of Ac-
tive clauses is such that all non-redundant inferencesdeatvelauses in Active are
performed (upon selected literals). The set of Passiveselare the clauses waiting

Model Changed

- l Simpl. 1l - ‘ -
W Active (Unif. Index) ‘
. |

’ Instantiation Inference# fffffffffffff ‘

|

Preprocessing Input

Simpl. |
SAT Solver Call

| Grounding

Fig. 1. Inst-Gen Loop

to participate in inferences. Initially, the Passive satgists of the input clauses and
the Active set is empty. The given clause algorithm consiEtsloop and at each loop
iteration the following actions are executed. First, a staig taken from the Passive set,
called Given Clause. Then, all inferences between Givenggland clauses in Active
are performed. Finally, all newly derived clauses are prepssed and moved to Passive
and Given Clause is moved to Active. Preprocessing cugreatisists of optional split-
ting without backtracking on variable disjoint subclauf#s In addition, groundings
of the preprocessed clauses are added to the SAT solver.

Passive.The Passive set are the clauses waiting to participate @mentes. From
the experience with resolution-based systems it is knoatttte order in which clauses
are selected for inferences from Passive is an importaanpater. Usually, preference
is given to clauses which are heuristically more promismgerive the contradiction,
or to the clauses on which basic operations are easier torperfn iProver, Passive
clauses are represented by two priority queues. In ordezfioalpriorities we consider
numerical/boolean parameters of clauses such as: numbgndifols, number of vari-
ables, age of the clause, number of literals, whether theselégs ground, conjecture
distance, whether the clause contains a symbol from thecting (other than equality
or a theory symbol). Then, each queue is ordered by a lexapbge combination of
orders defined on parameters. For example, if a user spemifi€over option

--inst_pass_queuel [+age; - hum synb; +gr ound]

then priority in the first queue is given to clauses generatatle earlier iterations of
Inst Loop (older clauses), then to clauses with a fewer nurabsymbols and finally

to ground clauses. The user can also specify the ratio battieenumber of clauses
taken from the first queue and the second queue.

Selection functionsSelection functions are based on the current mddedf the
propositional abstraction of the current set of clauseslafise can have several lit-
erals true in/, and the selection function can be restricted to choose btizem.
Selection functions are defined by priorities based on adexaphic combination of
the literal parameters. The following parameters curyecdh be selected by the user:

sign, ground, nunvar, numsymb, and split. For example if a user specifies an iProver
option:

--inst_lit_sel [+sign;+ground;-num synb]

Then priority (among the literals in the clause trud in is given to the positive literals,
then to the ground literals and then to literals with a fewemnber of symbols.

Active.After Given Clause is selected from Passive all eligibleiafices between
Given Clause and clauses in Active should be performed. Acation index is used
for efficient selection of clauses eligible for inferenchs particular, Active clauses
are indexed by selected literals. The unification index em@nted in iProver is based
on non-perfect discrimination trees [6]. Let us note thatsithe literal selection is
based on a propositional model (of a ground abstractioneotthirent set of clauses),
selection can change during the Inst-Gen Loop iteratiohg& @an result in moves of
clauses from Active to Passive, as shown in Fig 1.

Instantiation InferencesProver implements DSInst-Gen calculus. In particular,
constrained clauses, dismatching constraint checkingsantntic-based literal selec-
tions are implemented.

Redundancy eliminatiorin addition to dismatching constraints, global subsump-
tion for clauses with variables and tautology eliminatioa ianplemented.

Grounding and SAT Solveewly derived clauses are grounded and added to the
propositional solver. Although, in our exposition we ushd tlesignated constarit
for grounding, all our arguments remain valid if we use anyugd term in place of
L. In particular, for grounding, iProver selects a constaith ihe greatest number
of occurrences in the input set of clauses. After grounditeyises are added to the
propositional solver. Currently, iProver integrates Miai [2] solver for propositional
reasoning.

Learning Restartslt can happen that Inst-Gen Loop fails to find the solution due
to a poor choice of the literal selection on the initial setctz#fuses. Indeed, initially
the propositional solver contains only few instances ofitipeit clauses, and therefore
selection based on the corresponding propositional maiebe inadequate. Although
the model and selection can be changed at the later itegatigrthat time, the prover
can consume most of the available resources. In order teower this, iProver imple-
ments restarts of the saturation process, keeping gedgraipositional clauses. After
each restart, the propositional solver will contain morgances of clauses, this can
help to find a better literal selection. In addition, aftecleaestart, global subsumption
becomes more powerful.

Combination with Resolutiorin addition to Inst-Gen Loop, iProver implements a
complete saturation algorithm for ordered resolutionhis paper, we will not discuss
our implementation of resolution in detail. Let us only mentthat the saturation al-
gorithm is based on the same data structures as Inst-Gendrabimplements a num-
ber of simplifications such as forward and backward subsiomgbased on a vector
index [11]), subsumption resolution, tautology deletiowl global subsumption. Reso-
lution is combined with instantiation by sharing the prdfiosal solver. In particular,
groundings of clauses generated by resolution are addée faropositional solver and
propositional solver is used for global subsumption in redolution and instantiation
saturation loops.

5 Implementation details and Evaluation

iProver is implemented in a function language OCaml andjiaties MiniSat solver [2]
for propositional reasoning, which is implemented in C/CiProver v0.3.1 was evalu-
ated on the standard benchmark for first-order theorem psev&PTP library version
v3.2.0. Currently, iProver does not have a built-in clausifier aredused E provéifor
clausification. Experiments were run on a cluster of PC'H1v@PU: 1.8GHz, Mem-
ory: 512 Mb, Time Limit: 300s, OS: Linux v2.6.22. Out of 898plems in the TPTP
library, iProver (single strategy) solved 4843 problen@@ unsatisfiable and 843 sat-
isfiable. Among them, iProver solved 7 problems with thengti, and 27 with rating
greater than 0.9. We compare iProver v0.2 with other systéased on the results
of the CASC-21 competition, held in 2007 [12]. In the majorA-@evision, iProver
is in the top three provers along with established leaderspife [9] and E [10]. In
the effectively propositional division (EPR), iProver is a par with the leading system
Darwin [1]. We are currently working on integration of egoagl and theory reasoning
into iProver.

References

1. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementirgyrtiodel evolution calculudnter-
national Journal on Atrtificial Intelligence Toqgl45(1):21-52, 2006.

2. N. Eén and N. Sorensson. An extensible SAT-solver.Pioc. of the 6th International
Conference on Theory and Applications of Satisfiabilitytimgs SAT 2003volume 2919 of
Lecture Notes in Computer Scienpages 502-518. Springer, 2004.

3. H. Ganzinger and K. Korovin. New directions in instantiatbased theorem proving. In
Proc. 18th IEEE Symposium on LIQ$ges 55-64. IEEE, 2003.

4. H. Ganzinger and K. Korovin. Integrating equational ogésg into instantiation-based the-
orem proving. INCSL'04 volume 3210 oLNCS pages 71-84, 2004.

5. H. Ganzinger and K. Korovin. Theory Instantiation. Rroceedings of the 13 Conference
on Logic for Programming Artificial Intelligence ReasonifigPAR’06) volume 4246 of
Lecture Notes in Computer Scienpages 497-511. Springer, 2006.

6. P. Graf.Term Indexingvolume 1053 oL NCS Springer, 1996.

7. K. Korovin. An invitation to instantiation-based reasan From theory to practice.
In A. Podelski, A. Voronkov, and R. Wilhelm, editors¥olume in memoriam of Harald
Ganzingey volume ?? oLNCS Springer, to appear. Invited paper.

8. A. Riazanov and A. Voronkov. Splitting without backtraw In Proc. of the 17 Inter-
national Joint Conference on Atrtificial Intelligence, (18001), pages 611-617. Morgan
Kaufmann, 2001.

9. A. Riazanov and A. Voronkov. The design and implementedioVAMPIRE. Al Communi-
cations 15(2-3):91-110, 2002.

10. S. Schulz. E - a brainiac theorem prow&r.Commun.15(2-3):111-126, 2002.

11. S. Schulz. Simple and Efficient Clause Subsumption wétitlire Vector Indexing. In G. Sut-
cliffe, S. Schulz, and T. Tammet, editoRxoc. of the IJICAR-2004 Workshop on Empirically
Successful First-Order Theorem Proving, Cork, IrelaBMTCS. Elsevier Science, 2004.

12. G. Sutcliffe. CASC-21 proceedings of the CADE-21 ATPtegscompetition, 2007.

! http://www.cs.miami.edu/"tptp/
2 www.eprover.org/

