
Integrating equational reasoning into

instantiation-based theorem proving

Harald Ganzinger and Konstantin Korovin

MPI für Informatik, Saarbrücken

Abstract. In this paper we present a method for integrating equational reason-

ing into instantiation-based theorem proving. The method employs a satisfiability

solver for ground equational clauses together with an instance generation process

based on an ordered paramodulation type calculus for literals. The completeness

of the procedure is proved using the the model generation technique, which al-

lows us to justify redundancy elimination based on appropriate orderings.

1 Introduction

The basic idea of instantiation-based theorem proving is to combine clever gen-

eration of instances of clauses with propositional satisfiability checking. Thus, it

seems to be promising to exploit the impressive performance of modern propo-

sitional SAT technology in the more general context of first-order theorem prov-

ing. Accordingly, we have seen several attempts recently at designing new first-

order prover architectures combining efficient propositional reasoning into in-

stance generation scenarios, cf. [4, 11, 5, 15, 3, 12, 9, 13] among others.

Integration of efficient equational reasoning into such systems has been a

challenging problem, important for many practical applications. In this paper we

show how to integrate equational reasoning into the instantiation framework de-

veloped in [8]. In [8] we presented instance generation inference systems based

on selection from propositional models, together with a notion of redundancy

based on closure orderings, and showed their refutational completeness.

Our approach of integrating equational reasoning into this framework aims

to preserve attractive properties of the instantiation process, in particular:

1. no recombination of clauses,

2. the length of clauses does not grow,

3. optimal efficiency in the ground case,

4. semantic selection,

5. redundancy criteria.

As in our previous work, we will use in a modular fashion a satisfiability

solver for ground clauses. Let us remark that in the presence of equality such

2 Harald Ganzinger and Konstantin Korovin

solvers have received considerable attention and very efficient implementations

are available, see e.g., [7]. We also use selection based on models of ground

clauses to guide the theorem proving process. Another ingredient of our pro-

cedure is a paramodulation-based calculus for reasoning with sets of literals.

As we show, with the help of such a calculus it is possible to generate suitable

instances of clauses, witnessing unsatisfiability of the selected literals on the

ground level. For the completeness proofs we use the model generation tech-

nique (see [1, 2, 14]) which allows us to justify redundancy elimination based

on entailment from smaller clauses, where “smaller” refers to suitable closure

orderings.

Let us briefly compare our method with two other approaches, we aware of,

that deal with equational reasoning in the context of instantiation-based theorem

proving. In [13] and [16] an equational version of the disconnection calculus is

presented, however in their method, literals from different clauses are recom-

bined into a new clause when (superposition-type) equational steps are done.

Our instance generation inference systems entirely avoid that recombination

which, according to [11], can be a major source of inefficiency in resolution-

and superposition-type inference systems. In [15], Plaisted and Zhu consider

an extension of their OSHL calculus with equality. It is based on paramodu-

lation with unit clauses, but for non-unit clauses it requires the generally less

efficient Brand’s transformation method. Our method is applicable for arbitrary

first-order clauses with equality.

2 Preliminaries

We shall use standard terminology for first-order clause logic with equality. The

symbol “≃” is used to denote formal equality. By “|=” we denote entailment in

first-order logic with equality. A clause is a possibly empty multiset of literals

Li, usually written L1 ∨ . . . ∨ Ln; a literal being either an equation s ≃ t or a

disequations u 6≃ v built from terms s, t, u, and v over the given signature. We

consider ≃ (and 6≃) as symmetric syntactically, identifying s ≃ t with t ≃ s.

We say that C is a sub-clause of D, and write C ⊆ D, if C is a sub-multiset of

D. The empty clause, denoted by �, denotes falsum. If L is a literal, L denotes

the complement of L.

A substitution is called a proper instantiator of an expression (a term, literal,

or clause) if at least one variable of the expression is mapped to a non-variable

term. We call D more specific than C if Cτ = D for some proper instantiator

τ of C . Renamings are injective substitutions, sending variables to variables.

Two clauses are variants of each other if one can be obtained from the other by

applying a renaming.

Integrating equational reasoning into instantiation-based theorem proving 3

Instance-based theorem proving requires us to work with a refined notion

of instances of clauses that we call closures. A closure is a pair consisting of a

clause C and a substitution σ written C · σ. We work modulo renaming, that is,

do not distinguish between closures C · σ and D · τ for which C is a variant

of D and Cσ is a variant of Dτ . Note the distinction between the two notations

Cσ and C · σ. The latter is a closure representing the former which is a clause.

A closure is called ground if it represents a ground clause. A (ground) closure

C ·σ is called a (ground) instance of a set of clauses S if C is a clause in S, and

then we say that the closure C · σ is a representation (of the clause Cσ) in S.

Inference systems and completeness proofs will be based on orderings on

ground clauses and closures. Let ≻gr be a total simplification ordering on ground

terms. We can assume that ≻gr is defined on ground clauses by a total, well-

founded and monotone extension of the order from terms to clauses, as defined,

e.g., in [14]. We will extend ≻gr in two ways to orderings on ground closures.

The first ordering is ≻l, defined in Section 4, and will be used in reasoning with

the unit paramodulation calculus UP. The second is ≻cl , defined in Section 5,

and will be used in reasoning about instantiations of clauses.

The (Herbrand) interpretations we deal with are sometimes partial, given by

consistent sets I of ground literals. (As usual, I is called consistent if, and only

if, I 6|= �.) A ground literal L is called undefined in I if neither I |= L nor

I |= L. I is called total if no ground literal is undefined in I . A ground clause

C is called true (or valid) in a partial interpretation I if I |= C . This is the same

as saying that J |= C for each total extension J of I . C is called false in I if

I |= ¬C , or, equivalently, if J 6|= C for each total extension J of I . Truth values

for closures are defined from the truth values of the clauses they represent.

3 An informal description of the procedure

Let us first informally describe our instantiation-based inference process for

equational reasoning. We assume that a satisfiability solver for ground equa-

tional clauses is given.

Let S be a given set of first-order clauses. We start by mapping all vari-

ables in all clauses in S to a distinguished constant ⊥, obtaining a set of ground

clauses S⊥. If S⊥ is unsatisfiable then S is first-order unsatisfiable and we are

done. Otherwise, we non-deterministically select a literal from each clause in S,

obtaining a set of literals Lit .

The next natural step, similar to the case without equality, would be to con-

sider applicable ordered paramodulation inferences, but instead of generating

paramodulants to generate corresponding instances of clauses. Unfortunately,

adding these instances is not sufficient for a solver on ground clauses to detect

4 Harald Ganzinger and Konstantin Korovin

unsatisfiability, as the following example shows. Consider the unsatisfiable set

of literals S = {f(h(x)) ≃ c, h(y) ≃ y, f(a) 6≃ c}. The only applicable or-

dered paramodulation inference is between the first and the second equation, but

the resulting instances are the given equations themselves. On the other hand,

the set of ground literals S⊥ is satisfiable, so a solver for ground literals can not

detect the unsatisfiability of S.

Our approach to this problem is to apply separate first-order reasoning with

the selected literals Lit . If Lit is first-order satisfiable, then S is satisfiable

and we are done. Otherwise, we generate relevant instances of clauses from

S witnessing unsatisfiability of Lit at the ground level. This is done using a

paramodulation-based system on literals. In particular, relevant instances can be

generated by propagating substitutions from proofs of the empty clause in such

a system. Finally, we add obtained instances to S, and repeat the procedure.

Let us now modify the previous example and assume that the literals above

are among the selected ones in some clauses, e.g.,

S = {f(h(x)) ≃ c ∨ h(h(x)) 6≃ a, h(y) ≃ y, f(a) 6≃ c}

Lit = {f(h(x)) ≃ c, h(y) ≃ y, f(a) 6≃ c}.

We can derive the empty clause from Lit by first paramodulating the second lit-

eral into the first literal, followed by paramodulation of the result into the third

literal. Now, from this paramodulation proof we can extract a relevant substitu-

tion σ, which maps x and y to a. Then, the new set of clauses is obtained by

applying σ to the old clauses: S′ = S∪{f(h(a)) ≃ c∨h(h(a)) 6≃ a, h(a) ≃ a}.

Now, the set S′⊥ can be shown to be unsatisfiable by a solver for ground clauses,

so we conclude that the original set S is first-order unsatisfiable. In the case if

S′⊥ is satisfiable we would continue the procedure with this new set of clauses.

Let us note that usually the search for the proof of the empty clause from the set

of literals is done via some kind of saturation process which can generate a lot

of inferences. But the proof itself usually involves only some of them, and as

we have seen, we need to propagate only substitutions used in the proof.

We use a solver for ground clauses not only for testing unsatisfiability of

S⊥. In addition, in the case of satisfiable S⊥, the instantiation process can be

guided by a model I⊥ of S⊥. For this, we restrict the selection of literals to the

literals L, such that L⊥ is true in I⊥.

Now we overview how we are going to prove completeness of such instanti-

ation process. First, in Section 4 we introduce a calculus UP for ground closures

of literals based on ordered paramodulation. We will use this calculus to obtain

relevant instantiations of clauses. Then, in Section 5 we show that if a set of

clauses is saturated enough, then either it is satisfiable, or otherwise its unsatis-

fiability can be detected by a ground solver. In the subsequent Section 6 we show

Integrating equational reasoning into instantiation-based theorem proving 5

how to obtain a saturated set as a limit of a fair saturation process. The prob-

lem of how to ensure that a saturation process is fair is considered in Section 7.

Up to this point we are working with the UP calculus defined on ground clo-

sures. Ground closures allow us to present completeness proofs and fine grained

notions of redundancy. Nevertheless, from the practical point of view it is infea-

sible to work with each ground closure separately, and therefore in Section 8 we

present the UPL calculus which is a lifted version of UP. Finally, in Section 9

we consider the issue of how to propagate information on redundant closures to

the UPL calculus. This is done via dismatching constraints.

4 Unit paramodulation on literal closures

In this section we introduce an inference system on ground closures of literals,

based on ordered paramodulation. This system (and its lifted versions) will be

used to guide our instantiation process as shown in the following sections.

Unit-Paramodulation calculus (UP)

(l ≃ r) · σ L[l′] · σ′

L[r]θ · ρ
(θ)

(s 6≃ t) · τ

�
(µ)

where (i) lσ ≻gr rσ; (ii) θ = mgu(l, l′);
(iii) lσ = l′σ′ = l′θρ; (iv) l′ is not a variable.

where (i) sτ = tτ ;

(ii) µ = mgu(s, t).

An inference in UP is called proper if the substitution θ, (µ) is a proper

instantiator and non-proper otherwise. Let us note that a set of literal closures

can be contradictory, yet the empty clause is not derivable in UP.

Example 1. Consider a set of literal closures L = {(f(x) ≃ b) · [a/x], a ≃
b, f(b) 6≃ b} and assume that a ≻gr b. Then, L is inconsistent but the empty

clause is not derivable by UP from L.

UP-redundancy. Let R be an arbitrary ground rewrite system and L be a set

of literal closures, we denote irredR(L) the set of closures L · σ ∈ L with

irreducible σ w.r.t. R. In order to introduce the notion of UP-redundancy we

need the following ordering on literal closures. Let ≻l be an arbitrary total well-

founded extension of ≻gr from ground literals to ground closures of literals,

such that if Lσ ≻gr L′σ′ then L · σ ≻l L′ · σ′.

Let L be a set of literal closures. We say that L·σ is UP-redundant in L if for

every ground rewrite system R oriented by ≻gr , and such that σ is irreducible

w.r.t. R we have R ∪ irredR(LL·σ≻l
) |= Lσ. Here, LL·σ≻l

denotes the set of

all closures in L less than L · σ w.r.t. ≻l. We denote the set of all UP-redundant

6 Harald Ganzinger and Konstantin Korovin

closures in L as RUP(L). With the help of this redundancy notion we can justify

the following simplification rule.

Non-proper Demodulation

(l ≃ r) · σ L[l′] · σ′

L[r]θ · σ′

where (i) l′ = lθ, (ii) lσ ≻gr rσ, (iii) θ is a non-proper instantiator,

(iv) lσ = l′σ′, (v) Var(r) ⊆ Var(l), (vi) L[l′]σ′ ≻gr (l ≃ r)σ.

Let us show that non-proper demodulation is a simplification rule, i.e., after

adding the conclusion of this rule the right premise becomes UP-redundant.

Lemma 1. Non-proper demodulation is a simplification rule.

Proof. Indeed, let L[r]θ · σ′ be the conclusion of an application of the non-

proper demodulation rule with the premise (l ≃ r) · σ, L[l′] · σ′. Now let R be a

rewrite system orientable by ≻gr such that σ′ is irreducible w.r.t. R. Since θ is

a non-proper instantiator, l′ = lθ, and Var(r) ⊆ Var(l) we have that σ is also

irreducible. Therefore, L[l′]σ′ follows from the smaller closures (l ≃ r) · σ and

L[r]θ · σ′.

Let us show that demodulation with proper unifiers can not be used as a

simplification rule in general.

Example 2. Consider the following closures.

(1) (g(x) ≃ c) · [f(d)/x] (3) (f(d) ≃ m) · []
(2) (g(f(x)) ≃ c) · [d/x] (4) (g(m) 6≃ c) · []

We can derive the empty clause by UP inferences from (2), (3) and (4). But if

we simplify (2) by demodulation with (1) we obtain a tautological closure and

the empty clause would not be derivable by UP. The reason for this is that the

substitution [f(d)/x] in (1) is reducible (by (3)), whereas the substitution [d/x]
in (2) is not.

An UP-saturation process is a finite or infinite sequence of sets of closures

of literals {Li}
∞
i=1 where each set Li is obtained from Li−1 by either adding

a conclusion of an UP-inference with premises from Li−1 or by removing an

UP-redundant w.r.t. Li−1 closure. Let us denote by L∞ the set of persisting

closures, that is, the lower limit of the sequence Li. An UP-saturation process

{Li}
∞
i=1 is called UP-fair if for every UP-inference with premises in L∞, the

conclusion is UP-redundant w.r.t. Li for some i.
For simplicity, with each set of literal closures L we associate an arbitrary

but fixed UP-fair saturation process {Li}
∞
i=1, where L = L1. Below, Lsat will

always denote the set L∞ \ RUP(L∞), which we call the UP-saturation of L.

Integrating equational reasoning into instantiation-based theorem proving 7

5 Completeness for saturated sets of clauses

In this section we prove that if a set of clauses S is saturated enough, then either

it can be shown to be unsatisfiable by a ground solver, i.e., S⊥ is unsatisfiable,

or otherwise S is first-order satisfiable. In the later sections we show how to

achieve saturated sets.

First we introduce the notion of Inst-redundancy which will be used to ex-

tract relevant closures form clause sets, and also to measure progress in the

instantiation process. For this we extend the order ≻gr from ground clauses to

ground closures as follows. We say that C · τ ≻′
cl D · ρ if either Cτ ≻gr Dρ or

Cτ = Dρ and Cθ = D for a proper instantiator θ. It is straightforward to see

that ≻′
cl is a well-founded order, so we define ≻cl to be any total well-founded

extension of ≻′
cl .

Let S be a set of clauses and C a ground closure. C is called Inst-redundant

in S if there exist closures C1, . . . , Ck that are ground instances of S such that,

(i) for each i, C ≻cl Ci, and (ii) C1, . . . , Ck |= C . A clause C (possibly non-

ground) is called Inst-redundant in S if each ground closure C · σ is Inst-
redundant in S. We denote the set of Inst-redundant closures in S as RInst(S).

Consider a set of clauses S, a model I⊥ of S⊥. A selection function sel

based on I⊥ is a function mapping clauses to literals such that for each C ∈ S,

sel(C) ∈ C and sel(C)⊥ is true in I⊥. Let us consider a selection function sel

based on I . Define a set of S-relevant instances of literals LS as the set of all

literal closures L · σ such that

1. L ∨ C ∈ S,

2. (L ∨ C) · σ is not Inst-redundant in S,

3. L = sel(L ∨ C).

Let Lsat
S denote the UP-saturation of LS (see Section 4). We say that the set

of clauses S is Inst-saturated w.r.t. a selection function sel, if Lsat
S does not

contain the empty clause.

The following auxiliary lemma about UP is obvious.

Lemma 2. Let R be a ground rewrite system and UP is applicable to (l ≃ r)·σ,

L[l′] · σ′ with the conclusion L[r]θ · ρ. Then if σ and σ′ are irreducible w.r.t. R
then ρ is also irreducible.

Now we are ready to prove our main completeness theorem. Let us remark

that in the proof we will use both orderings ≻l and ≻cl . In fact, the model

construction will be done in ≻l, but the counterexample reduction in ≻cl .

Theorem 1. If a set S of clauses is Inst-saturated, and S⊥ is satisfiable, then

S is also satisfiable.

8 Harald Ganzinger and Konstantin Korovin

Proof. Let S be an Inst-saturated set of clauses, such that S⊥ is satisfiable in

a model I⊥, and sel is a selection function based on I⊥. Let LS be S-relevant

instances of literals. We have that Lsat
S does not contain the empty clause.

By induction on ≻l we construct a candidate model to S based on Lsat
S .

Suppose, as an induction hypothesis, that sets of literals ǫM have been defined

for the ground closures M ∈ Lsat
S smaller than L in ≻l, and let IL denote the

set
⋃

L≻lM
ǫM . Let RL denote the ground rewrite system obtained by orienting

all positive equations in IL w.r.t. ≻l. Suppose that L = L′ · σ. Then define

ǫL = {L′σ}, if

1. L′σ is irreducible by RL, and

2. L′σ is undefined in IL (i.e. neither IL |= L′σ nor IL |= L
′
σ).

In this case we say that L is productive. Otherwise, we define ǫL = ∅. Define

IS to be the set
⋃

L∈Lsat

S

ǫL and RS =
⋃

L∈Lsat

S

RL. It is easy to see that IS is

consistent and RS is a convergent interreduced rewrite system and every Lσ ∈
IS is irreducible by RS . Let I be an arbitrary total consistent extension of IS .

Now we show that I is a model to all ground instances of S. Assume otherwise.

Let D = D′ · σ be the minimal w.r.t. ≻cl ground instance of S that is

false in I . Let us show that for every variable x in D′, xσ is irreducible by RS .

Otherwise, let (l → r)τ ∈ RL and xσ = xσ[lτ]p for some variable x in D′.

Then, we can define a substitution σ′ by changing σ on x with xσ′ = xσ[rτ]p.

We have that I 6|= D′σ′ and D ≻cl D′ · σ′, which contradicts to the minimality

of the counterexample.

Now we note that D is not Inst-redundant in S. Otherwise it would follow

from smaller, w.r.t. ≻cl , closures D1, . . . ,Dn. Hence, one of Di is false in I
contradicting to the minimality of the counterexample.

Since D is not Inst-redundant, we have that for some literal L, D′ = L∨D′′

and L · σ ∈ LS . And also Lσ is false in I .

Assume that L · σ is UP-redundant in Lsat
S . Then, since σ is irreducible by

RS we have

RS ∪ irredRS
({L′ · σ′ ∈ Lsat

S |L · σ ≻l L′ · σ′}) |= Lσ.

Therefore, there is L′ ·σ ∈ irredRS
(Lsat

S) false in I , (if L·σ is not UP-redundant

in Lsat
S we take L′ · σ = L · σ). Let M · τ be the minimal w.r.t. ≻l closure in

irredRS
(Lsat

S) which is false in I . Let us show that M · τ is irreducible by

RS . Otherwise, assume that M · τ is reducible by l → r ∈ RS and (l′ →
r′) · ρ ∈ Lsat

S is the closure producing l → r in RS . Since τ is irreducible by

RS , UP-inference is applicable to (l′ → r′) ·ρ and M [l′′] ·τ with the conclusion

M [r′]θ ·µ, where l′ρ = l′′τ = l′′θµ and θ = mgu(l′, l′′). We have that M [r′]θ ·µ

Integrating equational reasoning into instantiation-based theorem proving 9

is false in I . Now we show that M [r′]θ ·µ is not UP-redundant in Lsat
S . Assume

otherwise. From Lemma 2 follows that µ is irreducible by RS . From definition

of UP-redundancy, we have

RS ∪ irredRS
({M ′ · τ ′ ∈ Lsat

S |M [r′]θ · µ ≻l M ′ · τ ′}) |= M [r′]θµ.

Therefore, there is M ′ · τ ′ ∈ irredRS
(Lsat

S) such that M · τ ≻l M [r′]θ · µ ≻l

M ′ · τ ′ and M ′τ ′ false in I . This contradicts to the minimality of M · τ . But,

if M [r′]θ · µ is not UP-redundant we have M [r′]θ · µ ∈ Lsat
S , and since µ is

irreducible by RS , M [r′]θ ·µ ∈ irredRS
(Lsat

S), we again obtain a contradiction

to the minimality of M · τ . We conclude that M · τ is irreducible by RS .

Now we have that M · τ is in Lsat
S , irreducible by RS , and not productive.

Therefore IM ·τ |= Mτ . Consider all possible cases. Let M · τ be an equation

(s ≃ t) · τ . We have that IM ·τ |= (s 6≃ t)τ . Since, all literals in IM ·τ and

sτ, tτ are irreducible by RM ·τ , and RM ·τ is a convergent rewrite system we

have (s 6≃ t)τ ∈ IM ·τ . Therefore (s 6≃ t)τ is produced to IM ·τ by some

(s′ 6≃ t′) · τ ′. But this is impossible since (s′ 6≃ t′)τ ′ ≻gr (s ≃ t)τ = Mτ , and

hence (s′ 6≃ t′) ·τ ′ ≻l M ·τ . Now assume that M ·τ is a disequation (s 6≃ t) ·τ .

We have IM ·τ |= (s ≃ t)τ and since sτ and tτ are irreducible by RM ·τ we have

sτ = tτ . But then equality resolution is applicable to M · τ , contradicting that

Lsat
S does not contain the empty clause.

Finally we conclude that I is an model for S.

6 Effective Saturation Strategies

In this section we shall investigate how saturation of a set of clauses can be

achieved effectively. First we show how saturation is done on closures and later

we show how saturation process can be lifted to general clauses.

An Inst-saturation process is a sequence of triples {〈Si, Ii
⊥
, seli〉}∞i=1, where

Si is a set of clauses, Ii
⊥

a model of Si⊥ and sel
i a selection function based

on that model. Given 〈Si, Ii
⊥
, seli〉, a successor state 〈Si+1, Ii+1

⊥
, seli+1〉 is ob-

tained by one of these steps: (i) Si+1 = Si ∪ N , where N is a set of clauses

such that Si |= N ; or (ii) Si+1 = Si \ {C}, where C is Inst-redundant in Si.

If Si+1⊥ is unsatisfiable, the process terminates with the result “unsatisfiable”.

Let us denote by S∞ the set of persisting clauses, that is, the lower limit of

{Si}∞i=1. In order to ensure that we always reach an Inst-saturated set in the

limit of the saturation process we need the notion of Inst-fair saturation.

Consider a finite set of closures K = {(L1 ∨C1) · σ, . . . , (Ln ∨Cn) · σ} of

clauses from S∞. We denote L = {L1 ·σ, . . . , Ln ·σ}. The pair (K,L) is called

a persistent conflict if Lsat contains the empty clause and for infinitely many i
we have sel

i(Lj ∨ Cj) = Lj for 1 ≤ j ≤ n.

10 Harald Ganzinger and Konstantin Korovin

We call an Inst-saturation process Inst-fair if for every persistent conflict

(K,L), at least one of the closures in K is Inst-redundant in Si for some i.
Now our goal is to show that for the limit S∞ of an Inst-fair saturation

process, such that S∞⊥ is satisfiable, we can build a model I⊥ and a selection

function sel, based on I⊥ such that S∞ is Inst-saturated w.r.t. sel. The main

problem here is that when we use selection functions based on truth in proposi-

tional models, these models change when we add more instances. Note that it is

possible that the limit S∞ of an Inst-fair saturation process is not Inst-saturated

for some model I⊥ of S∞⊥, likewise it is possible that Ii
⊥
∪ Ij

⊥
is inconsistent

for every i 6= j (so, for example, we can not take union of Ii
⊥

for I⊥).

Lemma 3. Let S∞ be a set of persistent clauses of an Inst-fair saturation pro-

cess {〈Si, Ii
⊥
, seli〉}∞i=1, and S∞⊥ is satisfiable. Then, there exists a model I⊥

of S∞⊥ and a selection function sel based on I⊥ such that S∞ is Inst-saturated

w.r.t. sel.

Proof. Let {Ci}
∞
i=1 be an enumeration of clauses in S∞. For each n we con-

struct a model Jn of {Ci⊥}i=n
i=1 and a selection function sel

n
J based on Jn, by

induction on n. For each n the following invariants will be satisfied.

1. Jn is consistent and sel
n
J is a selection function for clauses {Ci}

i=n
i=1 based

on Jn.

2. Jn−1 ⊆ Jn and sel
n
J coincides with sel

n−1

J on clauses {Ci}
i=n−1
i=1

.

3. There are infinitely many k such that Jn ⊆ Ik and for all 1 ≤ l ≤ n,

sel
k(Cl) = sel

n
J(Cl).

If n = 1 then we have that there exists L ∈ C1 such that L ∈ sel
k for

infinitely many k. We take J1 = {L⊥} and sel
1
J(C1) = {L}. Trivially, all

invariants (1–3) are satisfied.

Let n ≥ 1 and assume that we have a model Jn and sel
n
J for {Ci⊥}i=n

i=1 such

that invariants (1–3) are satisfied. Since Cn+1 ∈ S∞ we have that for some

m and every p ≥ m, Cn+1 ∈ Sp. From this and invariant (3) follows that for

some L ∈ Cn+1 there are infinitely many k such that Jn ⊆ Ik, and sel
k(Cl) =

sel
n
J(Cl) for all 1 ≤ l ≤ n, and sel

k(Cn+1) = L. Define Jn+1 = Jn ∪ {L⊥}
and sel

n+1

J (Cl) = sel
n
J(Cl) for 1 ≤ l ≤ n, sel

n+1

J (Cn+1) = L. It is easy to see

that all invariants (1–3) are satisfied for Jn+1, seln+1

J .

We define I⊥ = ∪∞
i=1Ji and sel(Ci) = sel

i
J(Ci) for i ≥ 1. From com-

pactness follows that I⊥ is consistent, and sel is a selection function based on

I⊥.

Now we need to show that S∞ is saturated w.r.t. sel. Assume otherwise.

Then, there is a finite subset L of LS∞ , such that Lsat contains the empty clause.

Let K = {(L1∨C1)·σ, . . . , (Ln∨Cn)·σ} be the set of closures of clauses from

Integrating equational reasoning into instantiation-based theorem proving 11

S∞, producing L to LS∞ . Then, from the construction of I⊥ and in particular

from the invariant (3) follows that there are infinitely many i such that sel
i(Lj ∨

Cj) = Lj for 1 ≤ j ≤ n. Hence, (K,L) is a persistent conflict. Since the

saturation process is Inst-fair we have that at least one of the closures in K is

Inst-redundant in LS∞ . But this is impossible since all closures in L are S∞-

relevant and can not be produced by Inst-redundant closures.

Corollary 1. Let {〈Si, Ii
⊥
, seli〉}∞i=1 be an Inst-fair saturation process. Then,

either (1) for some i we obtain an unsatisfiable Si⊥ and therefore S1 is un-

satisfiable, or (2) for all i, Si⊥ is satisfiable and therefore, (by Lemma 3 and

Theorem 1) S1 is satisfiable, moreover if for some i, Si is Inst-saturated then at

this step we can conclude that S1 is satisfiable.

In the next sections we consider the issue of how to ensure that an Inst-saturation

process is Inst-fair.

7 Relevant instances from proofs

In order to obtain an Inst-fair saturation we need to make closures in persistent

conflicts Inst-redundant. A uniform way to make a closure C ·σ of a clause C ∈
S, Inst-redundant in S, is to add to S a proper (possible nonground) instance of

C , which generalises Cσ. Next we will study how to find instantiations which

are relevant to the persisting conflicts.

Let us consider a persistent conflict (K,L), where K = {(L1 ∨ C1) ·
σ, . . . , (Ln ∨ Cn) · σ} and L = {L1 · σ, . . . , Ln · σ}. Since Lsat contains the

empty clause we have that there is a proof of the empty clause in UP from clo-

sures in L. Our next goal is to show that in any proof at least one inference is a

proper UP-inference. To speak more formally about the proofs we assume that

proofs are represented as binary trees with nodes labelled by closures together

with substitutions from the corresponding inferences. We assume that at each

node of a proof, left subproof is variable disjoint from the right subproof.

Example 3. A proof of the empty clause in UP from literal closures.

f(x) ≃ g(x) · [h(a)/x] f(y) ≃ h(y) · [h(a)/y]

g(x) ≃ h(x) · [h(a)/x]
[x/y]

g(h(u)) 6≃ h(h(u)) · [a/u]

h(h(u)) 6≃ h(h(u)) · [a/u]
[h(u)/x]

�
[]

Let us consider a proof P and a leaf of this proof with a closure L · σ. Let

θ1, . . . , θn be substitutions along the branch from this leaf to the root of the

proof. We call the composition θ = θ1 · · · θn as a P -relevant instantiator and

12 Harald Ganzinger and Konstantin Korovin

the closure Lθ · τ as a P -relevant instance of L · σ, where Lθτ = Lσ. If we

consider the left most leaf of the proof in the example above, then the P -relevant

instance will be (f(h(u)) ≃ g(h(u))) · [a/u] with the P -relevant instantiator

[h(u)/x].

Lemma 4. Let P be a proof of the empty clause, and PI be the set of P -relevant

instances of all leafs of P . Then, PI⊥ is unsatisfiable.

Corollary 2. Let (K,L) be a persistent conflict and P is a proof of the empty

clause from L in UP, then at least one of P -relevant instantiator is proper.

For a persistent conflict (K,L), this corollary allows us to make closures in

K Inst-redundant by adding their P -relevant proper instances. Let us continue

with Example 3. Assume that literal closures at the leafs of P are in L for a

persistent conflict (K,L), so L =
{(

f(x) ≃ g(x)
)

· [h(a)/x], . . .
}

and, e.g.,

K =
{(

f(x) ≃ g(x) ∨ h(g(x)) ≃ c
)

· [h(a)/x], . . .
}

, then we can add a P -

relevant proper instance f(h(u)) ≃ g(h(u))∨h(g(h(u))) ≃ c to the clause set,

making the first closure in K Inst-redundant. Thus, to make an Inst-saturation

process Inst-fair we need to UP-saturate literal closures from the persisting

conflicts and add proper instantiations of clauses with substitutions that can be

obtained from the proofs of the empty clause.

8 From literal closures to literal clauses

So far we have been considering closures as the basic entities for persistent

conflicts and the UP calculus. Of course, working with each ground closure

separately is of little practical use. This motivates our next step of lifting UP
calculus from literal closures to literals.

Unit paramodulation for literals (UPL)

(l ≃ r) L[l′]

L[r]θ
(θ)

s 6≃ t

�
(µ)

where (i) θ = mgu(l, l′); (ii) l′ is not a vari-

able; (iii) lσ ≻gr rσ for some grounding

substitution σ;

µ = mgu(s, t);

Proofs in UPL can be represented in the same way as proofs in UP (see Sec-

tion 7). And in the same way we can define notions of a P -relevant instantiator

and a P -relevant instance.

By a simple lifting argument we can prove the following lemma, connecting

UPL with UP calculus.

Integrating equational reasoning into instantiation-based theorem proving 13

Lemma 5. Let Lit be a set of literals such that Lit⊥ is satisfiable and L be a

set of ground closures of literals from Lit such that the empty clause is derivable

in UP from L. Then, there is a proof P of the empty clause in UPL from Lit

such that for at least one closure L · σ ∈ L, P -relevant instance of L is Lθ
where θ is a proper instantiator and Lσ = Lθτ for some ground substitution τ .

This lemma implies that an Inst-saturation process {〈Si, Ii
⊥
, seli〉}∞i=1 is

Inst-fair if the following holds. Consider a finite set K = {(L1∨C1), . . . , (Ln∨
Cn)} of clauses from S∞, such that for infinitely many i we have sel

i(Lj ∨
Cj) = Lj for 1 ≤ j ≤ n. Let P be an UPL proof of the empty clause from

{L1, . . . , Ln} and Liθ be a proper P -relevant instance. Then, for some step j,

all ground closures (Li ∨ Ci) · θσ are Inst-redundant in Sj .

We can observe that since θ is a proper instantiator, to make all closures

(Li ∨ Ci) · θσ Inst-redundant, we can just add (Li ∨ Ci)θ to the clause set.

9 Representation of closures via dismatching constraints

We have seen that in the process of obtaining a saturated set we make certain

closures Inst-redundant by proper instantiations. It might be desirable to discard

these redundant closures when we consider UPL calculus. In this section we

show how it can be done with the help of dismatching constraints, defined below.

We remark that in the context of resolution and paramodulation various kinds

of constraints have been considered (see e.g. [14, 10, 6]).

A simple dismatching constraint is a formula ds(s̄, t̄), where s̄, t̄ are two

variable disjoint tuples of terms, with the following semantics. A solution to a

constraint ds(s̄, t̄) is a substitution σ such that for every substitution γ, s̄γ 6= t̄σ,

(here = is the syntactic equality). It is easy to see that a constraint ds(s̄, t̄) is

satisfiable if and only if for all substitutions γ, s̄γ 6= t̄. In other words, a dis-

matching constraint ds(s̄, t̄) is not satisfiable if and only if there is a substitution

µ such that s̄µ = t̄, which is a familiar matching problem. We will use con-

junctions of simple dismatching constraints, called just dismatching constraints,

∧n
i=1ds(s̄i, t̄i), where s̄i is variable disjoint from all t̄j , and s̄k, for i 6= k.

Let us note that there is a polynomial time algorithm for testing satisfiability

of the dismatching constraints. To check whether a constraint ∧n
i=1ds(s̄i, t̄i) is

(un)satisfiable, we just need to solve n matching problems.

A constrained clause C | [D] is a clause C together with a dismatching

constraint D. We will assume that in a constrained clause C | [∧n
i=1 ds(s̄i, t̄i)],

the clause C is variable disjoint from all si, 1 ≤ i ≤ n. A constrained clause

C | [D] represents the set of all ground closures C ·σ, denoted as Cl(C | [D]),
such that σ is a solution to D. For a set S of constrained clauses, Cl(S) denotes

the set of all ground closures represented by constrained clauses from S.

14 Harald Ganzinger and Konstantin Korovin

Now if we consider a set of clauses S such that C ∈ S and Cθ ∈ S for some

proper instantiator θ, then we can discard all Inst-redundant ground closures

C · θσ, by adding a dismatching constraint to C , obtaining C | [ds(x̄θ, x̄)].
In the general case, when a constrained clause C | [D] is in S and we add

Cθ to S for some proper instantiator θ, then we can discard all Inst-redundant

ground closures C · θσ, by extending the dismatching constraint D, obtaining

C | [D∧ ds(x̄θ, x̄)]. We can always assume that all variables in x̄θ are disjoint

from variables in C and D.

The notion of Inst-redundancy can be adapted from clauses to constrained

clauses, by saying that a constrained clause C | [D] is Inst-redundant if all

closures in Cl(C | [D]) are Inst-redundant.

Let S be a set of constrained clauses, then Unc(S) denotes the set of all

unconstrained clauses obtained from S by dropping all constraints. We say that

a set of constrained clauses S is well-constrained if Cl(S) \ RInst(Cl(S)) =
Cl(Unc(S)) \ RInst(Cl(Unc(S))). Thus, constraints in well-constrained sets

of clauses is just a tool of discarding Inst-redundant closures.

Next we can replace, UPL calculus with the calculus on constrained literals.

Unit paramodulation with dismatching constraints (UPD)

(l ≃ r) | [D1] L[l′] | [D2]

L[r]θ | [(D1 ∧ D2)θ]
(θ)

s 6≃ t | [D]

�
(µ)

where (i) θ = mgu(l, l′); (ii) l′ is not a vari-

able; (iii) for some grounding substitution σ,

satisfying (D1 ∧ D2)θ, lσ ≻gr rσ;

where (i) µ = mgu(s, t);
(ii) Dµ is satisfiable.

Naturally we can define the notion of UPD-redundancy, saying that a con-

strained literal L | [D] ∈ LD is UPD-redundant in LD if all closures in

Cl(L | [D]) are UP-redundant in Cl(LD). And in the same way as for UP we

can define UPD-saturation process and LDsat .

Now in the place of S-relevant literal closures LS we define the set of S-

relevant constrained literals LDS as the set of all constrained literals L | [D]
such that

1. (L ∨ C) | [D] ∈ S,

2. (L ∨ C) | [D] is not Inst-redundant in S,

3. L = sel(L ∨ C).

We say that the set of constrained clauses is Inst-saturated if LDsat
S does not

contain the empty clause.

The following lemma can be proved by a simple lifting argument.

Integrating equational reasoning into instantiation-based theorem proving 15

Lemma 6. Let LD be a set of constrained literals. If Cl(LD)sat (saturation

w.r.t. UP) contains the empty clause, then LDsat (saturation w.r.t. UPD) also

contains the empty clause.

From Lemma 6 a lifted version of Theorem 1 from Section 5 follows.

Theorem 2. If a well-constrained set of clauses S is Inst-saturated and Unc(S)⊥
is satisfiable, then Unc(S) is also satisfiable.

References

1. L. Bachmair and H. Ganzinger. Equational reasoning in saturation-based theorem proving.

In W. Bibel and P.H. Schmitt, editors, Automated Deduction — A Basis for Applications,

volume I, chapter 11, pages 353–397. Kluwer, 1998.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, pages 19–100. Else-

vier, 2001.

3. P. Baumgartner. FDPLL – a first-order Davis-Putnam-Logeman-Loveland Procedure. In

Proc. CADE, volume 1831 of LNAI, pages 200–219, 2000.

4. P. Baumgartner and C. Tinelli. The model evolution calculus. In F. Baader, editor, Proc.

CADE-19, number 2741 in LNAI, pages 350–364. Springer, 2003.

5. J.-P. Billon. The disconnection method: a confluent integration of unification in the analytic

framework. In Tableaux 1996, volume 1071 of LNAI, pages 110–126, 1996.

6. R. Caferra and N. Zabel. A method for simultaneous search for refutations and models by

equational constraint solving. J. of Symbolic Computation, 13(6):613–641, 1992.

7. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): fast deci-

sion procedures. In 16th Int. Conf. on Computer Aided Verification, LNCS, 2004. to appear.

8. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In

Proc. 18th IEEE Symposium on Logic in Computer Science, pages 55–64. IEEE, 2003.

9. J.N. Hooker, G. Rago, V. Chandru, and A. Shrivastava. Partial instantiation methods for

inference in first order logic. J. of Automated Reasoning, 28:371–396, 2002.

10. C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic constraints. Revue

Francaise d’Intelligence Artificielle, 4(3):9–52, 1990. Special issue on automated deduction.

11. S.J. Lee and D. Plaisted. Eliminating duplication with the Hyper-linking strategy. J. of

Automated Reasoning, 9:25–42, 1992.

12. R. Letz and G. Stenz. Proof and model generation with disconnection tableaux. In Proc.

LPAR 2001, volume 2250 of LNAI, pages 142–156, 2001.

13. Reinhold Letz and Gernot Stenz. Integration of equality reasoning into the disconnection

calculus. In Tableaux 2002, volume 2381 of LNAI, pages 176–190, 2002.

14. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robinson

and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 371–443.

Elsevier, 2001.

15. D. Plaisted and Y. Zhu. Ordered semantic hyper-linking. J. of Automated Reasoning,

25(3):167–217, 2000.

16. G. Stenz. The Disconnection Calculus. Logos, 2002. Dissertation, TU München.

