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Abstract. iProver-Eq is an implementation of an instantiation-based calculus
Inst-Gen-Eq which is complete for first-order logic with equality. iProver-Eq
extends the iProver system with superposition-based equational reasoning and
maintains the distinctive features of the Inst-Gen method. In particular, first-
order reasoning is combined with efficient ground satisfiability checking where
the latter is delegated in a modular way to any state-of-the-art SMT solver. The
first-order reasoning employs a saturation algorithm making use of redundancy
elimination in form of blocking and simplification inferences. We describe the
equational reasoning as it is implemented in iProver-Eq, the main challenges and
techniques that are essential for efficiency.

1 Introduction

Instantiation-based methods (IMs) are a class of calculi for first-order clausal logic.
The common idea is to instantiate clauses and to employ efficient propositional or more
general ground reasoning methods in order to prove unsatisfiability or to find a model.
Among other important properties, IMs naturally decide the first-order logic fragment
of effectively propositional logic (EPR) which has interesting applications as it has been
shown recently (see, e.g., [2] for an overview). Let us remark that Inst-Gen-Eq decides
the EPR fragment modulo equality.

The basic idea of the Inst-Gen method, introduced in [4], is as follows. The set of
first-order clauses is abstracted to a set of ground clauses by mapping all variables to
the same ground term. If this ground abstraction is unsatisfiable, then the set of first-
order clauses is also unsatisfiable. Otherwise, there is a ground model for the abstraction
that is used to guide an instantiation process. The ground satisfiability check and con-
struction of a ground model is delegated to an industrial-strength satisfiability modulo
theories (SMT) solver in the presence of equations or to a propositional (SAT) solver if
no equational reasoning is required.

The model is represented as a set of abstracted literals and an attempt is made to
extend it to a model of the first-order clauses by reasoning on the first-order literals cor-
responding to the abstracted literals in the model. When this fails, new (not necessarily
ground) instances of clauses are generated in a way that forces the ground reasoner
to refine the model in the next iteration. Inst-Gen is therefore composed of two parts:
ground satisfiability solving on the abstraction of the set of clauses and first-order rea-
soning on literals corresponding to ground literals in the model of the abstraction.
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A characteristic feature of the Inst-Gen method is the delegation of the ground
reasoning to a black-boxed off-the-shelf solver. The iProver-Eq system currently uses
MiniSat [3] as the SAT solver and either CVC3 [1] or Z3 [7] as the SMT solver.

The iProver system [6] has treated equations only axiomatically, the iProver-Eq
system adds equational reasoning based on term rewriting. Following the approach
from [5], it implements a superposition-style calculus that both finds sets of incon-
sistent equational literals and obtains instantiating substitutions from the proof of their
inconsistency.

The implementation addresses the combination of three main components:

1. ground reasoning by an SMT solver
2. superposition-based equational reasoning with literals in a candidate model
3. instantiation by extracting substitutions from proofs generated in 2.

This system description first outlines the structure of the iProver-Eq system. We
continue by defining the unit superposition calculus for equational reasoning and de-
monstrate it by way of an example. We discuss extraction of instantiating substitutions
from proofs, giving an example for one of the non-trivial obstacles encountered which
render the method incomplete if naively addressed. Finally, we highlight some of the
main features of the implementation and conclude with an evaluation and directions for
further research.

2 System Overview

Given a set of first-order clauses S we first form its ground abstraction S⊥ by mapping
all variables to the same ground term, conventionally denoted ⊥. If the ground abstrac-
tion S⊥ is unsatisfiable, the original set S is also unsatisfiable and the procedure can
terminate. Otherwise, there is a model I⊥ of the ground abstraction S⊥ and the first-
order instantiation process is guided by means of a selection function based on I⊥. The
selection function assigns to each first-order clause C in S exactly one literal L from C
such that I⊥ |= L⊥. At least one such literal always exists as the ground abstraction of
the clause is true in the model I⊥.

If the set of selected (not necessarily ground) literals, seen as unit clauses, is con-
sistent in first-order logic modulo equality, a model for the clause set S exists and
it has thus been proved satisfiable. Otherwise, there is a subset of the selected liter-
als which is inconsistent and the clauses these literals are selected in are instantiated
such that the inconsistency can already be witnessed in the ground abstraction and thus
forces the ground solver to refine it. For non-equational literals it suffices to search for
unifiable complementary literal pairs. In the presence of equations, we apply the unit
superposition calculus in order to find inconsistent literals and to obtain instantiating
substitutions.

iProver-Eq generates instances of clauses in a saturation process outlined in Fig-
ure 1(a). Two major components in this process are unit superposition (US) for equa-
tional reasoning on literals and an SMT solver for ground reasoning. Both are non-
trivial processes and while the equational reasoning will be described in the next sec-
tion, the ground solver is regarded as a black box. The saturation process is based on
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Fig. 1. Sketch of the iProver-Eq System

a given clause algorithm which partitions the set of clauses into two disjoint sets, in
the following called the Inst-active and the Inst-passive clauses. The invariant is that
the ground abstractions of the selected literals in the set of Inst-active clauses are con-
sistent and have been passed to the US component. Initially, there are no Inst-active
clauses, all clauses are considered to be new instances, their ground abstractions are
input to the ground solver which is then invoked to return a model of the abstraction
or to prove its unsatisfiability. The new clauses are moved to the Inst-passive set from
where in each step of the process a clause, called the given clause, is chosen and put
into the Inst-active set. Using the current model of the ground abstraction, one of the
literals in the given clause is selected and passed to the unit superposition calculus, see
Figure 1(b). If a subset of the selected literals is found to be inconsistent by the unit su-
perposition calculus, then substitutions are extracted from the proof of the inconsistency
and corresponding instances are added to the set of new clauses. The process continues
by adding the abstractions of the new clauses to the SMT solver, running the solver
on the extended set of ground clauses and moving the new clauses to the Inst-passive
set. iProver-Eq terminates with a result of unsatisfiable if the ground solver reports an
unsatisfiable abstraction. If the passive clause set is empty and the selected literals are
consistent as indicated by the unit superposition component, iProver-Eq terminates with
the result satisfiable.

3 The Unit Superposition Calculus

In this section we describe the inference rules of the unit superposition calculus for
finding inconsistent equational literals and demonstrate it with an example (for a proof
of completeness, see [5]). Subsequently we discuss the US-Loop saturation procedure.

For simplicity, we work with pure equational logic where all atoms are equations.
The unit superposition calculus is similar to the standard superposition calculus, see,
e.g., [8]. Different literals are assumed to be variable-disjoint and as we only work with
literals, i.e. unit clauses, we can reduce the inference rules to the following ones.
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Definition 1 (Unit Superposition).

l ' r s[l′] ' t
(σ)

(s[r] ' t)σ
l ' r s[l′] 6' t

(σ)
(s[r] 6' t)σ

(i) σ = mgu(l, l′), (ii) l′ is not a variable, (iii) lσθ � rσθ
and (iv) s[l′]σθ � tσθ for some grounding substitution θ

l 6' r
(σ)

�

σ = mgu(l, r)

A proof of the contradiction, denoted �, is a tree where the leaves are literals se-
lected in the Inst-active set of clauses, inner nodes are obtained by applying inference
rules to the parent nodes and the root is the contradiction �. In order to extract instan-
tiating substitutions we annotate each inference with the substitution σ applied. The
composition of the substitutions along the path in the proof tree from a selected literal
at a leaf to the contradiction yields a substitution which we call relevant to the selected
literal. In the Inst-Gen-Eq-Loop we take all clauses whose selected literals are leaves in
the proof and instantiate each clause with the substitution relevant to its selected literal.

Example 1. Consider the clauses (1)-(4) below and let the ground abstractions of their
selected literals (the first literal in each clause) be as shown to their right.
(1) f(f(u)) ' f(u) f(f(⊥)) ' f(⊥)
(2) g(f(f(x)), f(y)) ' h(z) ∨ g(f(x), y) 6' h(c) g(f(f(⊥)), f(⊥)) ' h(⊥)
(3) g(f(a), f(b)) 6' h(w) g(f(a), f(b)) 6' h(⊥)
(4) g(f(a), b) ' h(c) g(f(a), b) ' h(c)

The clause set is unsatisfiable, but its ground abstraction is satisfiable with a model
containing the literals shown. Accordingly, the literals can indeed be selected and we
derive the contradiction using the US calculus.

(1)

f(f(u)) ' f(u)

(2)

g(f(f(x)), f(y)) ' h(z)
{x/u}

g(f(x), f(y)) ' h(z)

(3)

g(f(a), f(b)) 6' h(w)
{a/x, b/y}

h(z) 6' h(w)
{w/z}

�

(?)

By tracing the branches in the proof tree, we extract a relevant substitution for each
of the three literals: {a/u}, {a/x, b/y, w/z} and {}, respectively. We instantiate the
clauses with the relevant substitutions of their selected literals. Clause (3) is instantiated
to itself, the instances of the first two clauses are:
(5) f(f(a)) ' f(a)
(6) g(f(f(a)), f(b)) ' h(w) ∨ g(f(a), b) 6' h(c)

The ground abstraction is now unsatisfiable due to the following four clauses.
(3⊥) g(f(a), f(b)) 6' h(⊥)
(4⊥) g(f(a), b) ' h(c)

(5⊥) f(f(a)) ' f(a)
(6⊥) g(f(f(a)), f(b)) ' h(⊥) ∨ g(f(a), b) 6' h(c)

Implementation of Unit Superposition. Figure 1(b) on page 3 is a sketch of the sat-
uration procedure in the unit superposition component in the Inst-Gen-Eq-Loop. The
saturation algorithm is a given literal algorithm, a variant of the given clause algorithm
described above. Literals are either US-active or US-passive and the invariant is that
all inferences between two US-active literals have been drawn. The US-passive set is
populated with selected literals from the Inst-Gen-Eq-Loop in Figure 1(a). In every
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step a given literal is chosen from the US-passive set, put into the US-active set and all
conclusions from inferences between the given literal and US-active literals are drawn.
The given literal is considered to be US-active in order to enable inferences with it-
self. If a conclusion is contradictory, substitutions are extracted from its proof as shown
above and passed to the Inst-Gen-Eq-Loop. Otherwise, the conclusion is added to the
US-passive set and the US-Loop continues choosing another given literal.

The US-Loop is a sub-procedure inside the Inst-Gen-Eq-Loop and interleaved with
it in a fair way such that neither process has to wait for termination of the other process.
All clauses from inconsistent subsets of their selected literals have to be instantiated,
therefore the US-Loop continues after having found a contradiction. If the US-passive
set in the US-Loop is empty, the Inst-Gen-Eq-Loop continues and only if in both pro-
cesses the sets of US-passive literals and Inst-passive clauses, respectively, are empty,
iProver-Eq is in a saturated state and returns satisfiability.

4 Instances from Unit Superposition Proofs

In this section we discuss one of the problems related to the extraction of substitutions
from proofs. We keep all clauses variable disjoint and thus the selected literals are also
variable disjoint.

It is well-known from standard implementations of paramodulation that for every
literal all its variants should be considered to be identical in order to avoid duplicating
inferences. However, in the Inst-Gen framework, variants of a literal can have different
proofs, in turn resulting in different substitutions which may all be required by the Inst-
Gen-Eq-Loop. Moreover, variants of a literal can occur in the same proof, potentially
leading to cycles as the following example shows.

Example 2. We modify the clause set from Example 1 by replacing clause (2) with
(2’) g(f(x), f(y)) ' h(z) ∨ g(x, y) 6' h(c)

The clause set remains unsatisfiable with a satisfiable ground abstraction and again
the first literals in each clause are selected. To prove unsatisfiability, instances have to
be generated in a way which might seem not immediately obvious.

(1)

f(f(u)) ' f(u)

(2’)

g(f(x), f(y)) ' h(z)
{f(u)/x}

g(f(u), f(y)) ' h(z)

(3)

g(f(a), f(b)) 6' h(w)
{a/u, b/y}

h(z) 6' h(w)
{w/z}

�

(�)

The literal g(f(x), f(y)) ' h(z) is inferred to its variant which may seem redun-
dant as the contradiction could already be derived from clauses (2’) and (3). However,
due to the substitution {f(u)/x} in the inference, different substitutions are extracted
from the proof. Indeed, only upon adding the instances of clauses (1) and (2’) with the
respective substitutions {a/u} and {f(a)/x, b/y, w/z} which are identical to clauses
(5) and (6) from Example 1 the ground abstraction becomes unsatisfiable as shown
there.

If we identify the literal variants of g(f(x), f(y)) ' h(z) with each other, the
proof tree in the example would collapse to a tree with the addition of a cycle on the
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literal. Bookkeeping information about cycles considerably complicates extraction of
substitutions from proofs and approaches are needed that eliminate cycles.

Our main approach is to extract substitutions after each inference step and to use
them to label the inferred literal. In order to combine all literal variants we introduce a
new inference rule which merges different labels of the same literal. We also modify the
inference rules from Definition 1 to accommodate labels which are merely annotations
and do not influence the applicability of inferences. The conditions on the inference
rules remain as in Definition 1.

Definition 2 (Labelled Unit Superposition).

`1 : L `2 : L

`1 ∪ `2 : L
`1 : l ' r `2 : L[l

′]
(σ)

`1σ ∪ `2σ : L[r]σ
` : l 6' r

(σ)
`σ : �

In proof (�) above, the inferred variant of the literal g(f(x), f(y)) ' h(z) has a
different label from the variant used as a premise. By first merging the labels of both
variants and subsequently deriving the contradiction, we obtain the instances of (1), (2’)
and (3) from proof (�) as well as the instances from (2’) and (3) alone. We now do not
need to trace a proof tree that potentially contains cycles, the necessary substitutions to
generate instances can be read from the label of the contradiction.

For Example 2, we can choose a second approach orthogonal to labelling to tackle
cycles by generating instances. We instantiate clause (2’) with the substitution {f(u)/x}
from the cycle to clause (2) from Example 1 and can prove unsatisfiability as shown
there. The cyclic proof (�) becomes redundant and the relevant substitution for clause
(2) leading to its instance (6) can instead be extracted from the proof (?). Although this
method of unfolding cycles by eagerly instantiating clauses seems simple and yet pow-
erful, it becomes much more involved when the substitution in the cycle is not proper,
i.e. no variable is instantiated to a term, e.g., {y/x, y/z}. For such non-proper cycles the
labelled approach is advantageous and we are investigating the benefits of combining
both approaches.

5 Features of the Implementation

iProver-Eq is implemented in the functional language OCaml and uses MiniSat, CVC3
and Z3 as ground (SAT/SMT) solvers via their C/C++ APIs. It processes input in TPTP
format and uses the E prover1 for clausification of non-CNF problems. We briefly men-
tion the most significant features of the implementation, some of which have already
been present in the iProver system and were adapted or extended.

Passive Clauses/Literals Both the Inst-passive set of clauses and the US-passive set of
literals are maintained in the form of priority queues that allow user-configurable
heuristics to prefer promising clauses and literals.

Dismatching Constraints All clauses are annotated with dismatching constraints that
make redundancy due to common ground instances between a clause and its in-
stances explicit. Thus we can block redundant instantiations in the Inst-Gen-Eq-
Loop and most crucially redundant proofs in the US-Loop.

1 http://www.eprover.org
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Demodulation In addition to superposition inferences, the US-Loop simplifies literals
with demodulation inferences with orientable equations obtained from unit clauses.

Indexing Several unification indexes, implemented as non-perfect discrimination trees,
make the forward and backward search for unifiable subterms for unit superposition
and for matching subterms for demodulation efficient.

Global subsumption iProver-Eq makes use of a global subsumption algorithm for
simplifying both ground and non-ground clauses using the ground solver similar
to the way it is done in iProver. It also integrates the resolution prover from iProver
to obtain short clauses which are propagated to the ground solver and in turn en-
hance global subsumption.

6 Evaluation

iProver-Eq2 is still in an early stage of development which has not been focused on effi-
ciency issues yet. We have evaluated the current version of iProver-Eq which integrates
CVC3 as its ground solver, on the standard TPTP v4.0.1 benchmark library. Running
on Intel Xeon Quad Core machines with 2.33GHz and 3GB of memory, 5004 out of the
13783 problems are solved within 60 seconds. These include three problems that are
not known to be solved by any other theorem prover. The success in 1621 problems is
due to the equational reasoning and iProver did not succeed on them with the previous
axiomatic handling of equations using CVC3 as a SAT solver. 3

At the moment the core US component taken as a stand-alone reasoner for unit
equations is not as efficient as dedicated superposition-based provers. As an obvious
next step we are working on strengthening the US component, however, as we have
demonstrated in Section 4, not all techniques from state-of-the-art reasoners can be
straightforwardly adapted due to the requirement to generate all relevant instances.
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