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Abstract

For wtt-reducibility or an arbitrary reducibility stronger then wtt-
reducibility, there exists a set F' <7 0/ such that the set
{f | f is a permutation of w and the graph of f reduce to F'} is not
closed under composition.

Let A be an arbitrary set such that A <p 0’. There exists a
permutation f such that the graph of f is 2-c.e. computable and the
graph of f? is not wtt-reducible to A.

All necessary definitions can be found in [3, 4]. Algorithmic properties
of permutations on natural numbers are studied in many papers. A lot
of authors studied groups G4 = {f | f is a permutation of w and f <, d}
where d is a Turing degree. It turns out that any group G, characterizes the
degree d, i.e two such groups are isomorphic iff the corresponding degrees
coincide and embedding on such groups is equivalent to Turing reducibility on
degrees (see [2]). In [2] A. S. Morozov has formulated the following problem:
is it possible to extend these results to other reducibilities? In our paper
we demonstrate that for some wide class of algorithmic reducibilities there is
negative answer for this question.

Notation. We fix some effective bijective numbering of pairs of integers
i.e. three computable functions (-,-) : w? — w; (-)1, (*)2 : w — w such that

(@)1, (2)2) = 2, (21, 22))1 = 21, (X1, 32))2 = 22
Let us define function (1, ...,2z,) = (... ((x1,22),23), ..., z,) for n > 2.



Let D, denote a finite set with a canonical index n, i.e. n =3 ,cp. 2.
Let f:w — w; I'f denotes the graph of f, i.e. the set {(z,y) | f(z) = y}.

Definition. A set A is weak truth-table reducible to B (A <, B) if there
exist a natural number z and a computable function ¢ such that

1) xa = {2}"

2) the set Dy, contains all numbers whose membership or nonmembership
in B are used in the computation of {z}?(z).

We say that pair ({z}, g) reduces A to B.

Definition. A finite function f : w — w is a path if

I'y = {(mo,m1), (my,ma),...(my_1, mg)}, where m; # m; for i # j.

Let b(f) = mg denote the first element of the path and e(f) = my denote
the last element of the path.

Definition. Let D C w,

we define field(D) = {(m); | m € D} U {(m), | m € D}. For a function f,
field(f) =field(I'y) =dom(f)Urange(f).

We shall consider reducibility of a function f to a set A as reducibility of
the graph of f to A. In this case the following theorem holds.

Theorem 1. Let < be wtt-reducibility or an arbitrary reducibility stronger
then wtt-reducibility (i.e. A < B implies A <,; B). There exists a set
F <4 0" such that the set

{f | f is a permutation of w and I'y < F'}

is not closed under composition.

Remark. It is well known that the reducibilities <;, <,,, <pu, <y are
stronger then wtt-reducibility. So, the proposition of the theorem holds for
them.

Proof. We shall construct a permutation f with the following properties:
f <p 0 and I'y2 Ly I'y. Obviously, the graph of f will be the required set
F. We construct the permutation f in stages by a finite extension 0'-oracle
construction, so that

Iy, Clp C...C Iy, =1y

1Ew

Every f; will be a path. It suffices to meet, for each stage s, the following
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requirement: the pair of functions ({(s)1}, {(s)2}) does not reduce I'y> to I'y.

Stage s = 0. Define I'y, = {(0,1)}.

Stage s > 0. Define py = un(n ¢ field(fs)), ¢s = pn(n ¢ field(fs) U {ps}),
Ff; = Ffs U {<p57b(fs)> ) <e(fs)JQS>} and s = /1,77,(77, ¢ ﬁeld(f;)) We denote
(s)1 by z and {(s)2} by g. Let us consider all possible cases for g((e(f1), 5s))-

Case 1. g({e(f!), Bs)) is undefined. Then we define f;;; = f; and turn to
the next stage.

Case 2. g({e(fl), Bs)) is defined. Then we define [, = g({e(f!), 5s)) and
D" =D, NIy, D = D, \ D'. We shall extend the path f to the path
f with the following condition: the graph of any extension of f! contains
no element of D, . For any m = (u,v) € D, , we carry out the following
procedure. A number ¢ will be called a new element if ¢ ¢ field(D;) and c
does not belong to the field of the constructed path and ¢ # ;. Let ¢ be a
new element and a be the first element of the constructed path. If u # [,
and u does not belong to the field of the path, then we add the pairs (u, c)
and (c,a) to the path. If u = [, v does not belong to the field of the path
and v # u, then we add the pairs (v,c¢) and (¢, a) to the constructed path.
In other cases we do nothing. We denote the constructed path by f!.

Let us consider the function {z}. If {z}"# ((e(f",,)) is defined and
equal to 1, then we add the pairs (e(f!),c), (c,d),(d, Bs) to the path, where
c and d are sequentially chosen new elements. In other cases we add the pairs
{e(f),c),(c, Bs), where ¢ is a new element. We denote the constructed path

by fs-l—l'
It is clear that 'y = UFfi is the graph of a permutation, and I'y <4 0'.

1EW
The theorem follows from the lemmas below.

Lemma 1. If at Stage s Case 2 holds, then for all m, m € D, implies
m € Ff.
Proof. Let m € D;,. and m = (u,v). Let us consider all possible cases.

By the construction, the permutation f is an infinite cycle, so u = v
implies m ¢ I'y. Consider the case v € dom(f!). If u € dom(f!), then
(u,v) € L'y by the definition of D, . If we include u into the field of f; when
we constructing fi, then (u,c) € I'yr and ¢ is a new element, i.e. ¢ # v. If
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u = e(f)), then (u,c) € I'y,,, CI'y, where cis a new element, i.e. (u,v) & I'y.

If w= s and u # v, then v € dom(fs;1) and By = e(fs11), so f is an
infinite cycle; hence (u,v) € I';.

Lemma 2. I'y2 £y Iy

Proof. Assume that I'p» <, L'y, i.e. there exists a pair of functions
({z}, {p}) that reduces I'y> to I'y. Let us consider a stage s = (z,p). Note

that {2} ((e(f7), 8,)) = {2} ((e(f!), B,))- 1t is clear that e(fY) = e(f1),
ie. {p}({e(f)),Bs)) = I by the construction. If m € Dy, and m € [y,

then m € 'y, since I'yy C I'y. If m € D;, and m ¢ T'yn, then m € D, and
according Lemma 1, we have m ¢ I'y. So therefore Dy, NT'yr = Dy, N Ty, ie.

{237 ((e(£)), Bs)) = {23 4 ((e(£)), Bs))- (1)
By the assumption, Xr,, = {z}'7. There are two possible cases.
Case 1. {z}17((e(f!), Bs)) = 1. The equality (1) implies
{2 ((e(f)), B5)) = 1.

By the construction of fy,, the pairs (e(f!),c) and (c,d) are in the graph
of f, where d is a new element. We obtain that f2(e(f”)) =d # fs,

(e(f),Bs) ¢ U2, e,
0= xr,,((e(£), B:) = {z}"7 ({e(f), Bs)) = 1.

Contradiction.
Case 2. {z}17((e(f!'), Bs)) = 0 handled by analogy with Case 1.

Lemma 2 and Theorem 1 are proved.
Let us consider the arithmetical hierarchy.

Remark. The set

{f | f is a permutation and I'; € ¥0}

is the group of all 0*~1) computable permutations.

We denote dom({i};') by W;L.



Theorem 2. The set
{f| f is a permutation and I'; € II)}

is not closed under composition for any n > 1.

Proof. We shall construct a permutation f with the following properties:
Iy e II? and I'j2 ¢ II). We construct the permutation f in stages in the
following way, we computable enumerate in 01 the complement of I 5 and
meet the requirement R;: complement of I'f2 does not coincide with oy
for any i. Requirement R; will be met on a fixed pair (a;, ¢;). At every stage
s we construct a finite path fy, and a finite set By that contains all pairs of
elements of the field f, which are not in I'y,. The required permutation f will
be the limit of the sequence { f;}scw, and By C By C ... C Uje, Bs = w \Ty.

Stage s = 0. Define I'y, = {(0,1)}, By = {(1,0)}.

Stage s > 0. Let s be in a row 7, i.e. s = (i,7). A number ¢ will be called
a new element if ¢ does not belong to the field of the constructed path. Let p;
and ¢, be distinct new elements. Define I'y, = I'y, U {(ps, b(f5)) , (e(fs), 4s) }-
Let us consider the function {i}.

Case 1. We have not considered the function {7} at the previous stages.
It means that Vs'(s" < s — (s')1 # 7). Let a;,b;,¢; be distinct new elements.
Define Lpp=TpU {(e(fs), ai), @i, bi) , (bi, ci) }-

Case 2. We have considered the function {i} at the previous stages but
we have not met the requirement R; and (¢;, a;) € Wi?énfl). Let n, 0y Mg, My
be distinct new elements. Define

Ty, = (Ff; \ {<f§*1(ai), az‘> (@i bi) , iy i) s (ci, fé(Cz')>}) U

{<fs,_1(a’i)7 ni1> ) <ni1= Ci> ) <Ci= ni2> ) <ni27 ai> )
<a’i7 ni3> ) <ni37 bl> ) <bl= ni4> ) <ni47 f.;(cl»}

We have changed f!:

“f.;_l(az') a; b; C; fs'(cz)

to the path foi:



fit (@) ng Ci N, a; N, bi N, file)

We have obtained f2,,(¢;) = a;, and (¢;, a;) € Wfinfl), i.e. we met the
requirement R;.

In other cases we define f;; = fI.
Then we define

Bs+1 = {<Ca d> | (C € ﬁeldfs+1)&(d S ﬁeldfs+1)&(<ca d> ¢ ]‘—‘fs+1)}'

By the construction, it is clear that there exists the limit of the sequence
{[fs}sew, we denote it as f. It is clear that f is a permutation. Our construc-
tion is computable in 0"V and By C By C ... C Uje, Bs = w \ ['y, hence
w\ Ty is ce. in 0"~V get. We have met all requirements R;.

The theorem is proved.
Let us consider permutations whose graphs are limit-computable.

Definition. A function f is limit-computable if f(x) = limg g(s,x) for some
total computable function g. Let f(z) = limg g(s,x) and ¢ is a total com-
putable function. Define k;, =| {s | g(s+ 1,2) # g(s,z)} | . A function f is
n-c.e. if Voks g (x) < n. A function f is w-c.e. if Vaksy(x) < h(x) for some
total computable function h. A set A is limit computable, n-c.e., w-c.e., if
its characteristic function is limit computable, n-c.e., w-c.e. correspondingly
(we suppose that ya(z) = limg A(s, z) and A(0,z) = 0).

Theorem 3. Let A be an arbitrary limit computable set. There exists a
permutation f such that I'y is 2-c.e. and 2 £,y A.

Proof. We construct the permutation f in stages. It suffices to meet, for
each s (s in a row 1), the following requirement R; : the pair ({(¢);}, {(7)2})
does not reduce I'y> to A. At every stage s we construct a finite path f;.
The required permutation will be the limit of the sequence { f;}sc.-

The requirement R; will be met on a fixed pair (a;, ¢;). We obtain that if

{(i)1}*({as, ¢;)) use in the computation questions to the oracle A only about
elements of Dy, i((as,ey) then {(9)1}4({ai, ;) # Xr 2 ((ai,¢;)). The set A



is limit computable, let A(s,z) be a total computable function such that
Xa = limg A(s, z). Let us denote {z | A(s,z) =1} by As.

Stage s = 0. Define I'y, = {(0,1)}.

Stage s > 0. Let s be in a row 4, i.e. s = (i,7). A number ¢ will be called
a new element if ¢ does not belong to the field of the constructed path. Let p,
and ¢, be distinct new elements. Define I'y, = T'y, U {(ps, b(f5)) , (e(fs), 4s) }-
Let us consider the pair of the functions ({(i);}, {(7)2}).

Case 1. We have not considered the pair ({():}, {(?)2}) at the previous
stages. It means that Vs'(s' < s — (s')1 # i). Let a;,b;,c; be distinct new
elements. Define I'y ., = 'p U {(e(f}), @), (as, bs) , (bi, i) }

Case 2. We have considered the pair ({(i);},{(i)2}) at the previous
stages and {(i)2}((as, ¢;)) converges and {(i); }2 ({a;, ¢;)) = XT ({a;, ¢;)) and
{(4)1}2 ({ai, ¢;)) use in the computation questions to the oracle j45 only about
elements of D{(i)g}((a,;,c,;))'

Let us consider all possible cases for {(i); }*((a;, ¢;)).

Case 2.1. {(i)1}*({a;,c;)) = 1 = pr3(<ai,ci>). Let ns be a new ele-
ment. Then we define I'y,, = (I'p, \ {{a:, fi(a:)), (fi(a:), i), (i, Filea))}) U

{(ai, fi(ci)) » (e(fo), filai)), (filai), ns) , (s, ci) }-
We have changed the path f!:

| .ai felai) Ci fi(ci)

to the path foi:

ai  fila) e(f)) fiai) g Ci
Case 2.2. {(i)1}*((ai, ;) = 0 = pr2((ai,ci>). Let ng,,ns, be distinct

new elements. Then we define 'y, = (Ff; \ {(ai, f1(a:)), (i), i) (i, fé(cl)>}) U
{<a’i7 ns1> ) <n51= Ci> ) <ci7 ns2> ) <n527 f;(a’l» ) <f;71(ci)= f;(cl)>}
We have changed the path f!:



ai  fila) fi'(e) o filei)

to the path foi:

;i Mg, Gi M, filai)  fite)  file)

We have obtained {(i); }**((a;, ¢;)) # X ({as, ¢;)).

Let us demonstrate that there exists the limit of the sequence { fs}scw. It
suffices to test pairs containing a;,c; for some ¢. Let us fix an arbitrary ;. We
changed pairs containing a;,c; only when the condition of Case 2 was true.
The set A is limit computable and the set Dy,}((a;,c;)) 18 finite, hence the set
AsNDy(i),}((as eiy) have not changed after some stage s'. After the stage s’ the
pairs containing a;,c; will be fixed, i.e. fyi1(a;) = f(a;), fai(a;) = f(a;),
foi(c) = fle), furi(ci) = f~1(c;). We have demonstrated that there exists
limit of the sequence { f;}sc,. We have met the requirement R; at the stage
s'. So we obtain that I'j> £,y A. By the construction it is clear that I'y is
2-c.e.. The theorem is proved.

Corollary 1. Let A be an arbitrary set such that A <7 0. There exists a
permutation f such that I'y is 2-c.e. but I'p> £,y A.

Proof. A set A is limit computable iff A <7 0', by Limit Lemma [4].

Definition. Let n be a natural number, we say that A <,,;; B if there exists
computable total function f with the following conditions: for all # the norm
of tt-condition f(x) is less or equal to n, and z € A <> (f(x) is satisfied by
B).

Remark. If a set A is 2-c.e., then A <q V"

Proof. Let us consider the ce. set M = {{(i,x,a) | 3t | {s | s < t&(|
A(s,z) # A(s + L,z)} |= )&A(t,x) = a}. It is clear that A <oy M, since
reA ((1x,1) e M&(2,2,0) ¢ M).

Corollary 2. There exists a permutation f such that I'y <oy 0" and
FfQ ﬁ’wtt @’.



Corollary 3. The set {f | f is a permutation and 'y <; @'} is not closed
under composition.

Corollary 4. The set {f | f is a permutation and I'y <, @'} is not closed
under composition.

Taking into account the result by H.G. Garstens [1] that a set A is w-c.e.
iff A <, @', we obtain that the set

{f | f is a permutation and I'; is w-c.e. }

is not closed under composition.

I would like to acknowledge my thanks to prof. A. S. Morozov for helpful
suggestions and discussions.
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