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Abstract. Good heuristics are essential for successful proof search in first-order
automated theorem proving. As a result, state-of-the-art theorem provers offer a
range of options for tuning the proof search process to specific problems. How-
ever, the vast configuration space makes it exceedingly challenging to construct
effective heuristics. In this paper we present a new approach called HOS-ML,
for automatically discovering new heuristics and mapping problems into opti-
mised local schedules comprising of these heuristics. Our approach is based on
interleaving Bayesian hyper-parameter optimisation for discovering promising
heuristics and dynamic clustering to make optimisation efficient on heteroge-
neous problems. HOS-ML also use constraint programming to devise locally op-
timal schedules and machine learning for mapping unseen problems into such
schedules. We evaluated HOS-ML on the theorem prover iProver and demon-
strated that it can discover new heuristics that considerably improve performance
and can solve problems that have not been solved previously by any other system.

Keywords: Theorem Proving · Machine Learning · Heuristic Optimisation ·
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1 Introduction

Automated Theorem Provers (ATPs) are tools for automatically proving mathematical
theorems, and have a wide range of applications from verification of software and hard-
ware to automating interactive theorem proving in systems such as Sledgehammer [14].
ATPs have also contributed to large mathematical formalisation projects such as the
MML (Mizar Mathematical Library) through the MPTP (Mizar Problems for Theorem
Proving) [20].

State-of-the-art ATPs such as iProver [9], Vampire [10], E [18] and SPASS [22] have
large sets of parameters that can be used to guide the proof search. It is well known that
slight changes in values of these parameters can render problems from being not solved
to being instantly solved and vise versa. Unfortunately, there is no general recipe for
good parameters values or heuristics. While heuristics are essential for success, find-
ing good heuristics is a major challenge due to the vast number of possible parameter
combinations and values. Manually discovering good heuristics is time-consuming and
in most cases not feasible even for system experts. For example, iProver has over 100
parameters with parameter types in the domain of reals, integers, Boolean, categorical
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and lists. These parameters govern a wide range of simplifications, clause and literal se-
lection strategies in a combination of instantiation, resolution and superposition calculi.

In this paper we develop a new approach, called HOS-ML, for automatically dis-
covering new heuristics and mapping problems into optimised local schedules compris-
ing of these heuristics. One of the key ingredients in our approach is Bayesian hyper-
parameter optimisation. Hyper-parameter optimisation works well when applied to a
homogeneous set of problems where it tries to find heuristics that optimise some per-
formance metric over the whole set of problems. However, in practice problem sets
are largely heterogeneous where vastly different heuristics are required to solve dif-
ferent problems. One way of dealing with this issue is to cluster similar problems and
apply hyper-parameter optimisation individually to each cluster. A major challenge is
that there is no obvious way of grouping problems into homogeneous clusters of simi-
lar problems based solely on syntactic properties. This is because even slight syntactic
changes in a problem can result in a completely different problem which requires dif-
ferent heuristics to solve. In this paper, we solve this challenge by interleaving Bayesian
hyper-parameter optimisation with dynamic clustering based on evaluation features. In
this approach hyper-parameter optimisation and clustering incrementally refine each
other: Bayesian hyper-parameter optimisation generates new heuristics that are used
for clustering similar problems and in turn clustering similar problems helps Bayesian
hyper-parameter optimisation to find diverse heuristics with good performance on each
cluster. Other ingredients of HOS-ML include: i) training an embedding model for ex-
panding clusters with similar unsolved problems using machine learning, ii) computing
optimal local schedules for clusters using constraint programming, and iii) mapping
unseen problems into local schedules using machine learning models.

We implemented HOS-ML and applied it to a theorem prover iProver. Experimental
results show that HOS-ML can discover new heuristics that considerably increase the
number of solved problems, including problems that have not been solved so far by any
other system. Finally, we remark that the HOS-ML approach is rather general and can
be applied to other domains for heuristics optimisation over heterogeneous problems.

Related work. Although parameter optimisation for first-order theorem proving re-
ceived considerable attention [6, 7, 16, 21], it is primarily based on the assumption that
problems are homogeneous and optimisation is performed uniformly over the whole
problem set. In other domains, heuristic optimisation for heterougenous instances has
been approached with one-off static feature clustering [8, 12, 17]. One of the major dif-
ferences with our approach is that in HOS-ML hyper-parameter optimisation and clus-
tering are dynamically interleaved which strengthen both optimisation and clustering
during the run of the algorithm.

Heuristic selection is often approached by predicting the optimal heuristic for a
given problem [1, 11, 23]. The main drawback of this approach is that it is unclear how
to proceed when there are multiple good heuristics. A different approach was carried
out in [15], where the internal prover state was used to predict the heuristic to run in the
next time-slice. This is a promising approach but does not utilise predictive power of
Bayesian hyper-parameter optimisation nor clustering. In our approach, we leverage the
power of discovered heuristics by constructing schedules for each homogeneous cluster
and build an embedding model for mapping unseen problems into schedules.
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2 Hyper-Parameter Optimisation

Let A be a target algorithm, Θ a parameter space, CA a performance cost function,
I a set of problem instances. If p is a problem in I , then CA(θ, p) ∈ R defines the
performance cost associated with the run of the algorithmAwith parameters (heuristic)
θ on a problem p. Performance cost can be running time but can be a more sophisticated
function that, e.g., increases cost if the problem was not solved within the given time
limit and reduces cost if the problem was solved with this heuristic but was not solved
by previously found heuristics. In Section 4.2 we discuss this in more detail.

Hyper-parameter optimisation for A over a problem set I is the problem of finding
parameters θmin that minimize the cost function over all problem instances in I:

θImin = argminθ∈ΘΣp∈ICA(θ, p).

Hyper-parameter optimisation [4] is well suited for homogeneous problem collec-
tions where we can assume that θImin is optimal or near optimal for all instances p ∈ I .

However, in our setting we are dealing with large collections of heterogeneous prob-
lems where there is no uniform best heuristic but rather different heuristics perform
better on different classes of problems. Unfortunately, there is no simple criteria for
grouping problems into homogeneous clusters that allow for single (or just few) near
optimal heuristic(s) per cluster. We can observe that the search for optimal heuristics
and clustering are interrelated problems. This observation is at the core of our HOS-ML
approach where we interleave search for optimal heuristics with dynamic clustering
based on the performance of these heuristics on individual problems.

3 Heterogeneous Heuristic Optimisation and Scheduling

Our approach for heterogeneous heuristic optimisation and scheduling (HOS-ML) is
shown in Figure 1. Let us first overview HOS-ML at a high-level and in later sections
we elaborate on each component. HOS-ML consists of three phases described below.

Phase 1: Heuristic optimisation for heterogeneous instances. This phase is applied
to a set of training problems. The goal of this phase is to discover new heuristics that
i) solve problems which could not be solved by heuristics discovered in previous itera-
tions, and ii) improve the performance of problems that were previously solved. These
conditions can be represented by a cost function for hyper-parameter optimisation.

One of the main challenges is that problems in our setting are heterogeneous, this
prevents hyper-parameter optimisation to discover diverse heuristics which solve dif-
ferent types of problems. To address this challenge we cluster problems based on dy-
namic evaluation features. Dynamic evaluation features are problem features based on
the evaluation of all heuristics discovered in previous iterations. These features reflect
problem similarity based on the performance of different heuristics, and they are dy-
namic due to the growing number of discovered heuristics (see, Section 4).

The heterogeneous heuristic optimisation loop outlined by thick arrows in Figure 1,
interleaves re-clustering based on dynamic evaluation features and hyper-parameter op-
timisation over each cluster.



4 Holden & Korovin

Fig. 1: HOS-ML: heuristic optimisation and selection for heterogeneous problems.

Clustering based on dynamic features is suitable for problems that can be solved by
some of the available heuristics but is not applicable to unseen or unsolved problems.
We address this problem by training a machine learning model for embedding static
problem features into dynamic features. This admissible embedding model is re-trained
after each loop iteration.

By combining problem clustering and embedding, we acquire homogeneous prob-
lem clusters. Next, we perform hyper-parameter optimisation over each problem cluster
separately. This results in a set of well-performing heuristics for each cluster which we
evaluate globally on all training problems. The heuristics evaluation is used to update
the dynamic feature representation for each problem. Subsequently, we re-cluster prob-
lems based on the new evaluation features, increasing homogeneity of clusters and re-
train the admissible embedding model. This loop is repeated until the global time limit
or some other termination criterion is reached.

Phase 2: Local schedule computation. After Phase 1 is completed we compute sched-
ules for the final clusters. We use constraint programming to create a schedule for each
problem cluster based on discovered heuristics and their evaluation over the training set
(Section 5).

Phase 3: Schedule selection. The final phase is the deployment of HOS-ML on unseen
problems. This is done by first mapping the problem into a cluster using the admissible
embedding model and then extracting the schedule associated with the corresponding
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cluster computed in Phase 2. This phase is computationally cheap as the model and
schedules have been computed in Phases 1 and 2, respectively.

In the following sections we will detail each part of HOS-ML.

4 Heuristic Optimisation for Heterogeneous Instances

In this section we describe in detail Phase 1, which is heuristic discovery and optimisa-
tion on heterogeneous problems. This phase is applied to a set of training problems.

The heuristic discovery and optimisation loop is detailed in Algorithm 1, it takes
two inputs: initial heuristics and problems. The goal of the algorithm is to discover new
global heuristics which improve the performance over problems in local clusters, with
the initial heuristics serving as starting points. This is achieved through interleaving
homogeneous clustering and heuristic optimisation with the use of the inner and outer
loops.

The algorithm first clusters solved problems based on the current dynamic heuris-
tic evaluation features (detailed in Section 4.1). Then, the algorithm trains a machine
learning model for embedding problems into clusters based on static problem features
(detailed in Section 4.3). In this phase, this admissible embedding model is used to em-
bed unsolved problems into clusters to achieve a balance between solved and unsolved
problems in each cluster.

Next, the algorithm enters the inner loop to perform local heuristic optimisation
over each problem cluster to discover good heuristics for each cluster which are added
to local heuristics. Then, local heuristics are evaluated globally on the whole problem
set to obtain new dynamic evaluation features for each problem. In the next iteration
of the outer loop the problems are re-clustered based on these new dynamic evaluation
features. With each iteration, problem clusters become increasingly more homogeneous
with respect to accumulated heuristics performance. In the initial iterations, when there
are only few heuristics we randomly sub-sample large clusters into smaller clusters.

In the following, we describe the key parts of Algorithm 1 which are: dynamic eval-
uation clustering, local heuristic optimisation, and the admissible embedding model.

4.1 Dynamic Evaluation Clustering

One way of clustering similar problems is using syntactic features such as the number
of formulas, number of equalities, number of Horn or EPR formulas, etc. Such clus-
tering is suitable when problems fall into well-behaved fragments, e.g., Horn or EPR.
However, most problems are mixtures of formulas with different properties and do not
fall into such classes. For such problems syntactic features poorly reflect similarity as
e.g., adding a single non-Horn formula to a Horn problem can drastically change the
behaviour of the problem and similar for other types of formulas.

In this work, we propose to use dynamic evaluation features which are based on
solver performance under different heuristics. Such features directly link problem sim-
ilarity with the solver performance, moreover these features are dynamically extended
during the run of Algorithm 1 due to newly discovered heuristics by local heuristic
optimisation.
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Algorithm 1 Heterogeneous Heuristic Optimisation
Input: initial heuristics, problems
Output: Learnt heuristics (global heuristics)

1: global heuristics ← evaluate heuristics(initial heuristics, problems)
2: repeat
3: evaluation← get evaluation(global heuristics)
4: solved, unsolved← split(problems, evaluation)
5: problem clusters← compute clusters(solved, evaluation)
6: cluster model← train model(problem clusters, solved)
7: problem clusters← problem clusters ∪ embed(cluster model, unsolved)
8: local heuristics← ∅
9: for cluster ∈ problem clusters do

10: incumbent← select best heuristic(cluster, global heuristics)
11: local heuristics← local heuristics ∪ optimise(incumbent, cluster)
12: end for
13: global heuristics← global heuristics ∪ evaluate(local heuristics, problems)
14: until Timeout
15: return global heuristics

Given a problem p, a heuristic θ, and a time limit β, the function timeβ gives the
solving time t of θ executed on p with the time limit β, if a solution is found and ∞
otherwise. Given a set of heuristics H ⊂ Θ, we can obtain the problem’s heuristic eval-
uation vector ep by computing timeβ for each problem-heuristic pair. The evaluation
vector ep represents the relationship between p and H . By computing the evaluation
vector for the set of problems I , we obtain the heuristic evaluation matrix EIxH.

Admissible Features. The evaluation vector represents solving times of the success-
ful solving attempts. However, similar problems can have different solving times, e.g.,
problems may differ by size but not structure. We want to cluster problems so local
heuristic optimisation can transfer learning from simpler problems to more complex
problems of the same type. This is achieved using clustering based on admissible fea-
tures. First, we define when a heuristic is admissible for a problem. Assume we have
problem p and a set of heuristicsH = {θ1, · · · , θn}, where at least one of the heuristics
solves p within the time limit β. Further, t∗H(p) is the fastest solution of p in H . Then,
θ is admissible in H for p if timeβ(θ, p) is approximate to t∗H(p), where the tolerance
is defined by additive and multiplicative constants εk and εp, respectively.

Admissible(H,β)(θ, p) =

{
1 if timeβ(θ, p) 6 t∗H(p) · (1 + εp) + εk,

0 otherwise.

In particular, a heuristic is admissible for a problem, if it yields either the fastest or
close to the fastest known solving time, and is not admissible if its performance is
considerably worse or does not solve the problem at all. We can compute admissible
heuristics based on the problem evaluation vector ep and obtain its admissible heuristic
vector ap.
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Admissible Distance. Admissible heuristic vectors create a performance-based feature
representation based in the known heuristic evaluations. Next, we need a distance func-
tion that can be used to group problems with similar behavioural properties. Let us note
that Euclidean distance is poorly suited for this purpose, instead we considered Jaccard
similarity distance and Sørensen-Dice distance, the latter lead to better clustering in our
experiments. Let | · | be the L1 norm over binary vectors, which is equal to the sum of
all 1s in the vector. The Sørensen-Dice semi-metric distance can be defined as follows.

d(ap,ap′) = 1− 2 ∗ (ap · ap′)

|ap|+ |ap′ |

Fig. 2: Sørensen-Dice distance between two admissible vectors ap and ap′ .

The Sørensen-Dice distance ranges between 0 and 1, 0 if the admissible vectors are
equal and 1 if they have no admissible heuristics in common.

Admissible Clustering. We use the K-medoids algorithm (see, e.g., [13]) to cluster
problems based on their admissible heuristic vectors and Sørensen-Dice similarity dis-
tance. K-medoids clustering partitions the problems into K clusters by minimising the
sum of distances between each data point and the medoid of their cluster. The medoids
act as a cluster centre and must be a data point, making it more robust towards outliers.
K-medoid clustering tries to minimise the K-medoids cost function.

cost =

K∑
i=1

∑
p∈ki

d(ap,mi)

Fig. 3: The K-medoids cost function is the sum over all clusters of dissimilarities be-
tween the medoid of the cluster and members of the cluster.

The optimal number of clusters K can be computed using the elbow method. This
is done by analysing the function representing dependency between cluster distortions
and the number of clusters. The optimal number of clusters is reached at the elbow
point, which is roughly defined as the point of maximum curvature of this function.
This means that at this point, increasing the number of clusters does not result in any
significant increase in cluster quality.

4.2 Local Heuristic Optimisation

After acquiring problem clusters, we iterate local heuristic optimisation over each
homogeneous cluster to discover new heuristics. The heuristic optimisation searches
for heuristics which minimise the following cost function.
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Heuristic cost function. A new heuristic improves the performance of global heuristics,
if either it solves problems that were previously not solved or improves solving times
of previously solved problems.

To accommodate these requirements we define the cost function as follows. Let
H be the set of global heuristics, β the time limit, t∗H(p) the fastest solution of p by
heuristics inH . Consider a problem cluster I . Then we define the heuristic cost function
for cluster I wrt H as:

CIH(θ, p) =

 timeβ(θ, p) if timeβ(θ, p) <∞ and t∗H(p) <∞
−β|I| if timeβ(θ, p) <∞ and t∗H(p) =∞

β if timeβ(θ, p) =∞

Heuristic optimisation. For each cluster, we first compute the incumbent, which acts
as a baseline and a starting point in the heuristic space. The incumbent is computed
as the heuristic in global heuristics with the smallest cost in the cluster. Next, we use
Bayesian hyper-parameter optimisation to discover efficient heuristics for each cluster,
as shown in Figure 4. The Bayesian optimiser builds a statistical model for predicting
the cost of running a heuristic on the problem cluster and uses this model to find promis-
ing heuristics. The most promising heuristics are evaluated on the problem cluster. As-
sociated costs are used to update the model belief, which improves the prediction of
heuristics costs. Continuously updating the model and evaluating the most promising
heuristics is crucial as each evaluation demands considerable computation resources.
In this work, we use the hyper-parameter optimiser SMAC (Sequential Model-based
Algorithm Configuration) [5].

Fig. 4: The Bayesian optimiser creates heuristics which are evaluated over the cluster.
The performance is scored and returned to the optimiser as the cost.

Global evaluation. After performing hyper-parameter optimisation, we select a subset
of locally evaluated heuristics to evaluate globally. For this we greedily compute a set
cover of the solved problems by the most effective heuristics and add them to the set
of local heuristics. Next, the local heuristics are evaluated on the global problem set,
and added to the global heuristics. Evaluations of new heuristics are used to extend
dynamic evaluation features and re-cluster problems as described in Section 4.1. Dis-
covering new heuristics by local heuristics optimisation and re-clustering continues for
each iteration of Algorithm 1 until it reaches the termination condition.
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4.3 Embedding Unsolved Problems

Admissible heuristic vectors are suitable for clustering problems that are solved by at
least one heuristic. However, if a problem has no solutions by global heuristicswithin
the time limit β, admissible heuristics can not be determined. Nevertheless, unsolved
problems should be clustered with similar solved problems, which would help heuristic
optimisation to discover heuristics that can solve these problems. We observe that, in
most cases, for some sufficiently large time limit β∗ each unsolved problem will have at
least one admissible heuristic in global heuristics. This is the case in our application
due to completeness of the underling calculi for first-order logic. Unfortunately, such
time limits could be arbitrary large and infeasible to compute in practice. Instead, we
propose to build a machine learning model to predict admissible heuristic vectors using
static problem features. This admissible embedding model is trained on solved problems
and is applied to unsolved problems to predict admissible heuristic vectors. Using this
model we can assign each unsolved problems to a nearest cluster of solved problems.
As a result, we acquire homogeneous problem clusters consisting of both solved and
unsolved problems, as shown in Figure 5.

Fig. 5: Computing homogeneous clusters consisting of both solved and unsolved prob-
lems.

Static problem features. We consider two types of static features: syntactic features
and solver state features. Syntactic features include properties such as the number of
equational, Horn, EPR formulas, etc. As we noted before, such features do not always
reflect algorithmic properties of formulas. To mitigate this we consider solver state
features. During a run, the solver executes numerous function calls and applies various
simplification techniques. Solver state features include solver statistics on key function
calls, successful simplifications and corresponding timing statistics. We compute the
solver state features by attempting a problem with single heuristic for a low-timelimit
and extracting the solver statistics after termination.

Admissible embedding model. For a problem p, we denote its static feature vector as
sp. Let H be the set of global heuristics. The admissible embedding model E learns
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the mapping between problems static features and their admissible heuristics vectors.
As admissible heuristics vectors are binary vectors, we use a multi-label machine learn-
ing model as the embedding function. We separate the multi-label classification task
into |H| binary classification tasks, where a separate binary classification model Mθ

is trained for each heuristic θ in H . We considered different machine learning meth-
ods for building binary classification models: random forests, tree models and neural
networks. In our experiments the decision tree algorithm XGBoost [2] yielded the best
performance. Once binary models are trained for each heuristic, the admissible embed-
ding model is then defined as E(sp) = (Mθ1(sp), · · · ,Mθ|H|(sp)). The admissible
embedding model can then be used to predict the admissible heuristics vector of any
given problem.

Mapping unsolved problems to clusters. The embedding model is trained on the solved
problems and used to predict the unsolved problems’ admissible heuristics vector. Next,
we need to map problems into discovered homogeneous clusters. This is achieved by
first computing the admissible distance between each predicted admissible vector and
each cluster medoid. Second we add the n closest unsolved problems to each cluster.
This results in homogeneous clusters consisting of both solved and unsolved problems.

5 Local Schedules for Heterogeneous Instances

In this section we describe Phase 2 of HOS-ML, which is the computation of heuristic
schedules for each homogeneous problem clusters.

The scheduled running time t of heuristic θ is described by the pair (θ, t). A heuris-
tic schedule is an ordered set of heuristic-time pairs [(θ1, t1), · · · , (θn, tn)] where the
total running time does not exceed the global time limit

∑n
i=1 ti ≤ β. We describe the

task of creating a schedule as the heuristic scheduling problem. Given the problem set I ,
the heuristic setH ⊂ Θ and the heuristic evaluations EI×H, find the heuristic run-times
[t1, . . . , tn], which maximise the performance on I subject to the global time-limit β.

We solve the heuristic scheduling problem using constraint programming with the
following encoding. Let |H| = n and |I| = m. First we create the run-time variables
t1, . . . , tn which represent the running time of each heuristic inH . Next, we ensure that
the total running time of the schedule does not exceed β with the constraint

∑n
i=1 ti ≤

β. Using known evaluations EI×H we represent that heuristic hi solves problem pj
in allocated time ti as Eji ≤ ti. A problem pj is solved by the schedule if Ej1 ≤
t1 ∨ . . . ∨ Ejn ≤ tn holds. We denote this condition as sj .

The objective is to maximise the number of problems solved by the schedule. Hence,
the task of the constraint solver is to find the heuristic runtimes t1, . . . , tn which max-
imise

∑m
i=1 si.

After acquiring the solution, we discard all heuristics θi for which ti = 0 and order
the remaining heuristics in ascending order according to their run-times. The result is a
heuristic schedule that maximises the number of solved problems over the problem set
based on the known heuristic performance.
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6 Schedule Selection

Phase 2 of HOS-ML computes schedules for each homogeneous problem cluster. This
results in a set of optimal local schedules.

In Phase 3, we create a mapping between unseen problems and local schedules
based on the embedding function, as shown in Figure 6. First, we extract the static
features of the problems and predict their admissible heuristic vectors. Next, we use
the predicted admissible heuristics to map the problems to their appropriate clusters.
Finally, we attempt the problems with the schedule of their assigned cluster.

Fig. 6: Mapping a problem to a local schedule.

This concludes the description of all phases of HOS-ML. In the next section we
discuss implementation and evaluation results.

7 Experimental Evaluation

HOS-ML is implemented in Python 3. Pandas and scikit-learn were used for data han-
dling and processing. The heuristic discovery phase1 uses SMAC [5] as the hyper-
parameter optimiser, while CP-SAT2 is used as the constraint solver for computing
the schedules3. To perform clustering, we use the sklearn extra implementation of K-
medoids. Kneed4 is used to compute the optimal value of K. The binary base predictor
in the embedding function is implemented using XGBoost [2].

The base prover for HOS-ML is iProver [3, 9] a high performance theorem prover
for first-order logic which is based on a combination of instantiation, resolution and
superposition calculi. iProver heuristics are made up of 120 different parameters with
diverse parameter values consisting of boolean, real, ordinal, priority lists and categor-
ical values. The extensive range of values and parameters yield a vast and complex
heuristic space. Our system supports optimisation over all of iProver parameters. How-
ever, in this experimental evaluation, we restrict optimisation to the parameters related
to the newly developed superposition functionality [3]. We also use iProver to compute
the prover state features, which comprise of 170 individual statistics covering both the
problem properties and the prover behaviour. The experiments were run on a cluster of
33 machines, each with 4 Intel(R) Xeon(R) CPU L5410 @ 2.33GHz.

1 Heuristic discovery is available at: https://gitlab.com/korovin/iprover-smac
2 CP-SAT is available at: https://github.com/google/or-tools
3 Schedule computation is available at: https://gitlab.com/edvardholden/scpeduler
4 kneed is available at: https://github.com/arvkevi/kneed

https://gitlab.com/korovin/iprover-smac
https://github.com/google/or-tools
https://gitlab.com/edvardholden/scpeduler
https://github.com/arvkevi/kneed
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7.1 Discovering New Heuristics

Our first experiment evaluated the heterogeneous heuristic optimisation phase on the
TPTP library (v7.4.0) [19]. The library contains problems with varying difficulty from
different domains ranging from verifying authentication protocols to MPTP problems
from the Mizar mathematical library. The training set was created by randomly sam-
pling 4000 of the 17053 FOF and CNF problems.

We ran five iterations of the outer loop of HOS-ML, with iProver’s default heuristic
as the initial heuristic. For each iteration, we optimised iProver’s superposition options
on three sampled problem clusters. The hyper-parameter optimiser evaluated 1000 can-
didate heuristics, each with a time limit of 20 seconds. The algorithm ran for approxi-
mately 61 hours and discovered a total of 53 new heuristics. The discovered heuristics
where evaluated on a testing set consisting of the remaining TPTP problems (13053)
with a time-limit of 20 seconds.

Next, we compared the performance difference between the default iProver heuristic
and the set of heuristics discovered by heterogeneous heuristic optimisation. The results
are shown in Table 1. We can observe that the new heuristics considerably increase
the number of solved problems in both problem sets. The discovered heuristics also
decrease the average solving time of the problems solved in the intersection of both
approaches.

Training Testing Total

Solved Avg Time Solved Avg Time Solved Avg Time

Default 1975 1.81 6774 1.53 8749 1.60
Discovered 2272 0.98 7771 0.66 10043 0.73

Table 1: The performance of the default and the global heuristics (20s).

7.2 Revealing Homogeneity with Admissible Evaluation Clustering

One of the key ideas of HOS-ML is to discover homogeneous problem clusters by clus-
tering on admissible heuristic features. To verify this claim, we compute admissible
clusters and apply the best local heuristic of each cluster to its members. Further, we
compute the intersection between problems solved by the best global heuristic and the
set of problems solved by the best local heuristics. Next, we compute the average solv-
ing time of the problems in the intersection. If the performance of the global and local
approaches is the same, the clusters are equivalent to random sampling. However, if the
local heuristics perform better, the clusters are more homogeneous.

The global heuristics sampled at each iteration of the outer loop forms the five
heuristic sets A, B, C, D and E applied to the 4000 training problems. Next, we compute
the performance of both approaches as shown in Table 2. We can observe that the local
heuristics offer a considerable performance increase. Hence, we acquire homogeneous
problem clusters through admissible clustering.
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Heuristic set A B C D E

Number of heuristics 18 32 41 51 54
Number of clusters 12 18 98 119 124
Solved global 1975 1975 1975 1975 1975
Solved local 2106 2159 2254 2269 2271
Solved intersection 1958 1960 1975 1975 1975
Avg Time Global 1.76 1.76 1.81 1.81 1.81
Avg Time Local 1.45 1.35 1.29 1.22 1.22
Performance Increase 17.32% 22.89% 28.60% 32.47% 32.51%

Table 2: Performance of the best global heuristic versus the best local heuristics.

7.3 Embedding Evaluation Features

HOS-ML embeds problems into admissible heuristic features during heuristic optimi-
sation and selection. To evaluate the embedding performance we create a model for em-
bedding the selected 4000 TPTP problems into the evaluation data from experiment 7.1,
as follows. First, we compute static problem features by collecting prover statistics of
the problems with a 1-second time-limit. The prover statistics are transformed into fea-
tures through log-scaling and standardisation. Next, we remove all problems that were
either solved during processing or failed to parse within the time-limit. Further, we
remove unsolved problems and problems with solutions below five seconds. This re-
sults in a challenging yet solvable problem set which is further divided into training
and validation sets with a 70–30% split. The multi-label model comprises of binary
classification models for each heuristic, trained using XGBoost [2].

In Table 3 we see that a single binary model is able to capture whether a heuristic is
admissible for a problem. In Table 4 we can observe that the embedding model is able
to predict admissible heuristic vectors of problems with good accuracy.

– Admissible Similarity: The Sørensen-Dice similarity between two admissible
vectors a and a′, which is equal to 1− d(a,a′).

– Geometric Accuracy: The sensitivity is the true positive rate, and the specificity is
the true negative rate of the model predictions. The geometric accuracy is defined as√
sensitivity ∗ specificity, and by computing the average of each binary model

geometric accuracy, we obtain the average geometric accuracy.

7.4 Optimal Scheduling of Heuristics

After discovering a set of strong heuristics, we devise a strategy for applying the heuris-
tics to new problems. In this section, we evaluate three different heuristic strategies,
each with a time limit of 20 seconds per problem:

– Best Heuristic: The heuristic which solves the most training problems.
– Global Schedule: The global heuristic schedule computed over the problem set.
– Admissible Schedule: A set of local schedules computed for each problem cluster.
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Predicted

1 0
A

ct
ua

l 1 157 21

0 41 112

Metric Score

Accuracy 0.81
F1-Score 0.78
Geometric 0.80

Table 3: One of the binary XGBoost models.

Heuristic Set Geometric Similarity

A 0.72 0.71
B 0.71 0.68
C 0.72 0.68
D 0.72 0.68
E 0.72 0.67

Table 4: The multi-label model.

We constructed schedules on the training problems and evaluated their performance on
the testing problems. The results of each approach are shown in Table 5, and Figure 7.
The best heuristic and the global schedule perform similarly on the training set in terms
of the number of solved problems. However, on the testing set it becomes apparent that
attempting a problem with multiple heuristics is advantageous. Still, to utilise the full
potential of a heuristic set, it is essential to create schedules for problems with similar
performance. This is illustrated by the admissible schedule solving nearly one thousand
problems more than the global schedule on the test set.

Approach Training Testing Total

Best Heuristic 1975 6774 8749
Global Schedule 1976 6794 8770
Admissible Schedule 2258 7637 9895

Table 5: The number of solved problems of each scheduling approach (20s).

Fig. 7: The performance on the training set (left) and testing set (right).

7.5 Overall Performance Contribution

TPTP problems are rated based on their difficulty on a scale from zero to one. A problem
solved by almost all state-of-the-art ATP systems has a rating of zero, while a problem
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with no recorded solutions has a rating of one. There are 3984 TPTP problems with a
rating of 0.9 or higher, and we characterise these problems as “highly challenging”.

When run with a 20 seconds time limit, the 54 global heuristics discovered by HOS-
ML solved 47 highly challenging problems. Nevertheless, challenging problems are
likely to require more time. While the conventional time limit in ATP is 300 seconds,
this would carry a substantial computational cost for 54 heuristics. Instead, we reduce
the heuristic set by computing the set cover of solved problems and select the ten most
contributing heuristics. Next, we evaluated the selected ten heuristics over all TPTP
problems with a time limit of 300 seconds.

The ten heuristics solved a total of 10696 problems, of which 130 problems have a
rating of 0.9 or above. These include 54 MPTP problems from the Mizar mathematical
library. When combining these results with the 20-second evaluations, the number of
highly challenging solved problems increases to 136 problems. Thirteen of these prob-
lems have the rating one, including four MPTP problems. As a result, the new heuristics
solve MML problems with no previously recorded ATP solutions.

8 Conclusion

In this paper, we presented HOS-ML, a new method for heuristic optimisation and
scheduling over heterogeneous problem sets. HOS-ML interleaves dynamic clustering
with hyper-parameter optimisation and uses machine learning for embedding problems
into clusters and local schedules. We applied HOS-ML to iProver and demonstrated
that HOS-ML can discover new heuristics that can considerably improve prover perfor-
mance over heterogeneous instances. Our evaluation showed that HOS-ML discovered
heuristics that increase the number of solved TPTP problems by 14.8%, including prob-
lems with the rating 1, that have not been previously solved by any other system. These
heuristics also decrease the solving time of previously solved problems by 54.4%. As a
future work we will investigate applications of HOS-ML to different domains.
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