
EPR-Based Bounded Model Checking at Word Level ?

Moshe Emmer1, Zurab Khasidashvili1, Konstantin Korovin2, Christoph Sticksel2, and
Andrei Voronkov2

1 Intel Israel Design Center, Haifa 31015, Israel
{memmer,zurabk}@iil.intel.com

2 The University of Manchester, School of Computer Science, UK
{korovin|sticksel}@cs.man.ac.uk, andrei@voronkov.com

Abstract. We propose a word level, bounded model checking (BMC) algorithm
based on translation into the effectively propositional fragment (EPR) of first-
order logic. This approach to BMC allows for succinct representation of un-
rolled transition systems and facilitates reasoning at a higher level of abstrac-
tion. We show that the proposed approach can be scaled to industrial hardware
model checking problems involving memories and bit-vectors. Another contribu-
tion of this work is in generating challenging benchmarks for first-order theorem
provers based on the proposed encoding of real-life hardware verification prob-
lems into EPR. We report experimental results for these problems for several
provers known to be strong in EPR problem solving. A number of these bench-
marks have already been released to the TPTP library.

1 Introduction

SAT-based Bounded Model Checking (BMC) [4] is currently the most widespread for-
mal verification method in the hardware industry used for bug finding. Despite the rapid
development of SMT [21] and first-order Theorem Proving (TP) [26] techniques for
model-checking at word level, their positive impact has been mainly seen on software
verification. So far, hardware verification has benefited far less from word-level verifica-
tion, and applying SMT and TP techniques to hardware verification remains a difficult
challenge to the verification community. This is mainly due to the fact that most of the
hardware descriptions are written at very low-level, e.g., without explicit usage of arith-
metic operations. Nevertheless, there are natural word-level components in hardware
designs, in particular memories and bit-vectors, which are challenging for the bit-level
verification due to the size of their bit-level representations. Efficient reasoning, at word
level, with bit-vectors and arrays is an active research area [28, 8, 1, 14, 24, 6, 7].

This paper focuses on an encoding of the BMC problem with memories and bit-
vectors into first-order logic (FOL) and in particular into the Effectively PRopositional
(EPR) fragment. The EPR fragment, also called the Bernays-Schönfinkel-Ramsey frag-
ment, consists of first-order formulas with no occurrences of function symbols other
than constants and which when written in prenex normal form have the quantifier pre-
fix ∃∗∀∗. Skolemization applied to EPR formulas can introduce only constant function

? This work is partially supported by EPSRC, the Royal Society and a grant from Intel.



symbols, this can be used to show decidability of the EPR fragment. There are a number
of efficient solvers [3, 10, 19, 25] for this fragment as demonstrated at the annual CASC
TP competition [27]. Several important verification problems have been encoded into
EPR [23, 17, 13, 2], benefiting from succinct representations possible in this fragment.
Solvers are becoming increasingly scalable to industrial size problems and therefore it
is promising to develop efficient encodings of Model Checking (MC) [9] into EPR.

The first encoding of BMC into EPR was proposed in [23], covering entire linear
temporal logic. The transition relation and the initial and final states are specified there
via Boolean constraints, and when encoding the unrolled transition relation, the state
variables are treated as predicates over states (or over time). This enables a succinct
representation of the unrolled system. The main contribution of that paper is theoretical,
and no experimental results comparing the method with SAT-based BMC were reported.

Another, completely orthogonal, way to encode the MC problem into EPR was
studied in [17, 13]. These works explore encodings of hardware MC problems at word
level into EPR. In particular in the so-called relational encoding approach, bit-vectors
are modeled as unary predicates over bits (or bit-indexes), addresses are modeled as
terms, and memories are modeled as binary predicates over addresses and bits. Appro-
priate axiomatization of bits and bit-ranges allows for a sound and complete encoding of
hardware MC problems with bit-vector and memory operations into EPR. These papers
report initial results of experimental evaluation of EPR-based first-order verification
compared with SMT-based verification on equivalence checking problems at Intel.

In this paper we present an encoding scheme which allows us to retain the strengths
of both previous approaches. An ad-hoc combination of the previous two approaches
would yield an encoding which in most cases will generate problems outside of the
EPR fragment. One of the main issues here is that memory addresses on the one hand
occur as arguments in memory predicates and therefore should be treated as terms, and
on the other hand addresses depend on the state of the transition system and therefore
are functions of state. Presence of non-constant functions in the encoding brings the
resulting specification of the transition system outside EPR. Even very small non-EPR
problems originating from toy model-checking examples are very hard for the strongest
theorem provers. Among the main contributions of this paper are techniques allowing
one to keep the translated verification problems within the EPR fragment. In particular,
i) we introduce address unrolling to eliminate address functions and ii) we use inlin-
ing to eliminate definitions which after Skolemization result in non-EPR formulas. We
evaluate our EPR-based encoding on model checking problems obtained from indus-
trial hardware designs used at Intel. We show that in many cases EPR-based BMC can
reach higher unrolling bounds than traditional SAT-based BMC.

The rest of the paper is structured as follows. In the next section we present a
generic translation scheme that, given a specification of transition relation, initial state
constraints and final state constraints in first-order logic, produces a description of the
unrolled system up to a bound k that faithfully models transition paths of length k from
the initial to the final states. While FOL is closed under the translation, EPR is not. The
encoding that we describe below in Section 3 can be seen as a result of this translation
applied to the specification of hardware at word level in EPR as described in [13].
This encoding brings the specification of unrolled system outside the EPR fragment.



Therefore, in Section 4 we describe basic transformations allowing the resulting un-
rolled system to be formalized within EPR. A number of further optimizations that help
generating CNFs that are much simpler to solve are described in Section 5. We remark
on incremental solving in Section 6. Experimental results are reported in Section 7.
Conclusions appear in Section 8.

2 Translation

Let Σ be a signature consisting of constants, function and predicate symbols. We con-
sider constants as function symbols of arity 0. We assume Σ is partitioned into Σc, Σs

and Σs′ where Σc consists of symbols whose interpretation does not depend on a state,
Σs consists of current-state symbols andΣs′ consists of next-state symbols. We assume
that for every current-state symbol p in Σs there is a corresponding next-state symbol
p′ in Σs′ with the same arity as p and vice versa.

A transition system can be symbolically represented by three closed FOL formu-
las in , trans , and fin , respectively expressing facts about initial states, encoding the
transition relation and expressing facts about final states. We assume that in and fin
are formulas in Σc ∪ Σs and trans is a formula in Σ. In order to adapt such a rep-
resentation for bounded model checking in the EPR fragment we define the following
transformation on formulas. First, we replace each current-state and next-state function
or predicate symbol p of arity n in Σs and Σs′ , respectively, with a transient symbol of
arity n+1, which has an extra argument for representing transitions over states. Let Σt

be the signature consisting of all transient symbols corresponding to symbols in Σs and
by Σ the signature Σc ∪Σt.

Let S,S’ be two fresh variables. Let us define a translation T of Σ terms to Σ
terms and Σ formulas to Σ formulas by induction as follows. Let r1, . . . , rn denote
terms, let ti = T (ri) for all i = 1, . . . , n, and let r, t denote the sequences r1, . . . , rn
and t1, . . . , tn, respectively. Then:

– For any n-ary function or predicate symbol p define:

T (p(r)) def
=

p(t), if p ∈ Σc;
pt(S, t), if p ∈ Σs;
pt(S’, t), if p ∈ Σs′ .

– T (F1 ∧ F2)
def
= T (F1) ∧ T (F2), and similarly for other connectives in place of ∧.

– T (∀xF ) def
= ∀x T (F ) and similarly for ∃ in place of ∀. Recall, we assume that the

variables S,S’ are fresh, this implies that S,S’ are distinct from x.

For every closed formula F , the only free variables of T (F ) are S and S’. More-
over, if F uses no next-state symbols, as it is the case for the formulas in and fin , then
T (F ) does not contain S’. Let us denote the formulas T (in), T (trans) and T (fin)
respectively as In(S), Trans(S,S’) and Fin(S), parametrized by their free variables.

Let n be a non-negative integer. We define the n-step unrolling of the transition
system as follows. Take new constants s0, . . . , sn and a new binary predicate next . The
n-step unrolling of the transition system is defined as the set of formulas



In(s0);Fin(sn);∀S,S’(next(S,S’)→ Trans(S,S’));
next(s0, s1);next(s1, s2); . . .next(sn−1, sn).

Theorem 1. There exists an n-step computation of the transition system leading from
a state satisfying in to a state satisfying fin if and only if the n-step unrolling of the
transition system is satisfiable.

Note that the n-step unrolling of the system contains only one copy of the transition
relation Trans . This explains the name we have chosen for our encoding of BMC into
FOL: BMC1. It stands for BMC with one copy of the transition relation. Unlike in SAT-
based BMC [4], there is no need to create a new copy of the transition relation for each
unrolling bound.

Unfortunately, this translation is not EPR preserving if the original system con-
tains constants, which become transient functions of states after the translation. Such
transient functions are essential in memory specifications representing, e.g., addresses
which change during transitions. In later sections we show how to restore the EPR rep-
resentation.

3 Encoding Hardware Specifications into FOL

Let us show how to encode a hardware verification problem into EPR, using a simple
yet realistic word-level hardware design shown in Fig. 1. This example contains typical
word-level components: a memory, bit-vectors and addresses.

The memory mem has 32 rows and 64 columns, each cell containing one bit. When
both the write enable signal wren and the clock signal clock are true, bits 0 to 63
(written as [63 : 0] in hardware notation) of the bit-vector wrdata[63 : 0] are written
into mem at the address given in the bit-vector wraddr[5 : 0]. In order to prevent read
and write from happening simultaneously, only if clock is false and the read enable
signal rden is true, the value of the memory at address rdaddr[5 : 0] is read into the
bit-vector rddata[63 : 0].

The circuit also contains a cache line in the 64 bit bit-vector cacheline[63 : 0],
the component sel that compares two bit-vectors bit-wise and a multiplexing device
mux which selects one of its inputs depending on the output value of sel. The fi-
nal output of the circuit is either the bit-wise negated bit-vector rddata[63 : 0] if
wraddr[63 : 0] and rdaddr[63 : 0] are equal, or the bit-vector cacheline[63 : 0]
otherwise.

3.1 Encoding of Bit-Vectors and Memories

With any bit-vector we associate a binary predicate. For example, atom wrdata(S,B)
denotes the Boolean value of bit B in the write data vector wrdata in state S. Similarly,
with a memory mem we associate a ternary predicate mem, where an atom mem(S,A,B)
denotes the Boolean value of mem in row A and column B, in state S.

In our encoding, there are bit-vectors that in addition to this predicate representation
also require a functional representation, we call them functional bit-vectors. There are



==wraddr[5:0]

rdaddr[5:0]

cacheline[63:0]

memory

m
u
x

wrdata[63:0]

circuit

rden

wren
clock

sel

outp[63:0]

rddata[63:0]

Fig. 1. Running example: a word-level hardware design

two main sources of such bit-vectors. The first consists of bit-vectors representing ad-
dresses which are used as arguments in memory predicates. The second consists of bit-
vectors that are used in comparisons such as in the sel component in our running ex-
ample in Fig. 1. With a functional bit-vector, in addition to associating a binary predicate
over states and bit-indexes, we associate a function over states. We represent the value
of an address addr in state S by the term addrFunc(S). Thus the value of mem at ad-
dress addr and bit (column) B is represented by the atom mem(S,addrFunc(S),B).
We use similar notation for functional bit-vectors which are not addresses.

We often need to refer to particular bits of a bit-vector. We use the constant bitIndi

to denote the i-th bit. Similarly, we use the constant sj to denote the j-th state. Thus,
the atom mem(s0,addrFunc(s0),bitInd5) represents the value of bit 5 at row
addrFunc(s0) in memory mem in state s0.

The reader may have noticed that bit-vector width and memory dimension informa-
tion is not directly encoded. For example, a predicate representing a bit-vector of width
64 does not carry the width information. This loss of information is recovered, if neces-
sary, when specifying bit-vector operations, which will be explained below. Similarly,
the functions associated with addresses and other functional bit-vectors do not carry the
width information of the corresponding bit-vector.

For addresses, the only information we need is whether they are equal. For two
addresses wraddr and rdaddr, we can axiomatize this using:

wraddrFunc(S) = rdaddrFunc(S)↔
(wraddr(S,bitInd5)↔ rdaddr(S,bitInd5) ∧ . . .∧
wraddr(S,bitInd0)↔ rdaddr(S,bitInd0)).

(1)

We assume that free variables are implicitly universally quantified.
By using the predicate lessk, which defines bit-indexes in the range of [0, k − 1],

the above formulas can be written more concisely, without referring explicitly to all of
the bits 5 to 0, as follows:

wraddrFunc(S) = rdaddrFunc(S)↔
∀B(less6(B)→ (wraddr(S,B)↔ rdaddr(S,B))).

(2)

We axiomatize the lessk predicates explicitly as in [13]:

lessk(x)↔ (x = bitInd0 ∨ . . . ∨ x = bitIndk−1). (3)



In addition we need axioms stating that all bit-indexes are different:

bitIndi 6= bitIndj for 1 ≤ i < j ≤ n,where n is the size of the bit-index domain. (4)

In practical hardware examples the domain size of bit-indexes is in order of thousands
and therefore adding such axioms can be a bottleneck. Fortunately, the number of dif-
ferent lessk predicates is usually not very big compared to the number of bit-indexes.
Since equality over bit-indexes occurs only in formulas such as (3) we can replace ax-
ioms (4) by axioms:

lessk(bitIndj) // if j < k
¬lessk(bitIndj) // otherwise,

(5)

where lessk occurs in the problem instance.
In our encoding we also frequently use predicates of the form range[m,k] which

defines bit-indexes in the range [m, k]. The range predicates can be defined either using
less predicates (lessk(B) ∧ ¬lessm(B))↔ range[m,k−1](B) or explicitly:

range[m,k](x)↔ (x = bitIndm ∨ . . . ∨ x = bitIndk). (6)

Explicit representation of range predicates has several advantages: i) we can replace
lessk predicates using range[0,k−1] predicates, ii) in our encoding, after such re-
placement all non-ground occurrences of the range predicates will be negative, iii) based
on ii), instead of having both positive and negative axioms for range[0,k−1] as we have
for lessk in (5), it is sufficient to introduce positive axioms: range[m,k](bitIndj)
form ≤ j ≤ k. Wlog we can assume that range predicates do not overlap: we can factor
out intersections by introducing corresponding range predicates. This can enable further
higher level reasoning at the interval level. Another way of representing ranges is using
integer arithmetic. Experiments with these representations are presented in Section 7.1.

In general, we may need to refer to constant addresses as well, say row 0 specified as
bit-vector b000000 (using 6 bits). This constant address is represented in our encoding
using a term, denoted by t000000. Note that since a constant address does not depend
on the state of the hardware, we do not need to treat it as a function on states – it is a
constant. We can define when wraddrFunc(S) and t000000 refer to the same row by

wraddrFunc(S) = t000000↔
(wraddr(S,bitInd5)↔ false ∧ . . . ∧ wraddr(S,bitInd0)↔ false).

(7)

Thus, by mem(s0, t000000,bitInd5), we can refer to the value of bit 5 in row 0 of
mem, in state s0. In Section 4.1 we consider different approaches for defining equality
over functional address.

3.2 Encoding of Bit-Vector Operations

In our running example bit-vectors wraddr and rdaddr are compared by sel, and
therefore we treat them as functional bit-vectors. We define sel as follows:

sel(S)↔ wraddrFunc(S) = rdaddrFunc(S), (8)

which in predicate representation can be rewritten as:

sel(S)↔ ∀B(less6(B)→ (wraddr(S,B)↔ rdaddr(S,B))). (9)



Similarly, the logic of outp can then be defined as follows:

sel(S)→ ∀B(less64(B)→ (outp(S,B)↔ ¬rddata(S,B)))
¬sel(S)→ ∀B(less64(B)→ (outp(S,B)↔ cacheline(S,B))).

(10)

3.3 Encoding of the Transition Relation

To express the next state functions, we use S to denote the current state and S’ to
denote the next state. The predicate next(S,S’) denotes the transition relation, and
its axiomatization is described next on our running example (Fig. 1). Recall that in
our design, write is enabled when wren ∧ clock holds, and read is enabled when
rden ∧ ¬clock holds. The transition relation for the write and read operations are
therefore written as follows:

∀S,S’(next(S,S’)→ // write is enabled
∀A((clock(S’) ∧ wren(S’) ∧ A = wraddrFunc(S’))→
∀B(range[0,63](B)→ (mem(S’,A,B)↔ wrdata(S’,B)))));

∀S,S’(next(S,S’)→ // write is disabled
∀A(¬(clock(S’) ∧ wren(S’) ∧ A = wraddrFunc(S’))→
∀B(range[0,63](B)→ (mem(S’,A,B)↔ mem(S,A,B)))));

∀S,S’(next(S,S’)→ // read is enabled
∀A((¬clock(S’) ∧ rden(S’) ∧ A = rdaddrFunc(S’))→
∀B(range[0,63](B)→ (rddata(S’,B)↔ mem(S’,A,B)))));

∀S,S’(next(S,S’)→ // read is disabled
(¬(¬clock(S’) ∧ rden(S’))→
∀B(range[0,63](B)→ (rddata(S’,B)↔ rddata(S,B))))).

(11)

Note that in the formulas above, we have assumed that the cells in the memory mem and
the read data rddata are modeled as latches rather than flip-flops. We assume that the
next-state value of a latch is updated by the next-state value of its input if the next-state
value of its enable logic is true. For flip-flops, the next-state value is updated by the
current-state value of the input data, when the current-state value of the enable logic is
true.

3.4 Encoding of Initial and Final State Constraints

If in the initial state s0 the memory mem is reset (with 0 in each cell), we write this
condition as follows:

∀A,B(less64(B)→ ¬mem(s0,A,B)). (12)

If memory cells are initialized with different values, we write the initial state constraints
for it bit-wise. For example, the next formula states that the value of mem in row 0 and
column 5 is 0.

¬mem(s0, t000000,bitInd5). (13)

Initial state values for bit-vectors are specified similarly.



Suppose an assertion prop that we want to verify states that the values of outp
and cacheline coincide. We write prop as:

prop(S)↔ ∀B(less64(B)→ (outp(S,B)↔ cacheline(S,B))). (14)

and in order to show correctness of the design we try to refute the negated conjecture

∃S ¬prop(S). (15)

3.5 Encoding the BMC Problem

Finally, having the encoding for transition relation, initial and final state constraints, we
encode the BMC problem as it is presented in Section 2. The issue we are left with is
restoring the EPR encoding which we consider in the next section.

To summarize our word-level encoding, note that, unlike the word-level encoding
scheme to EPR in [13], and similar to the bit-level encoding in [23], the unrolling bound
is explicitly represented. There is no need for unrolling in the sense of BMC [4] in order
to refer to a bit-vector or a memory at a desired bound. For this reason, our encoding
has a higher potential for abstraction (i.e., removing irrelevant parts of the assertion
formula before passing it to a solver engine), and we can use both the initial and final
state constraints to simplify the assertion formula with constant propagation and other
advanced pre- or in-processing techniques. Sequential ATPG [16] also avoids unrolling
via backward time-frame expansion, however, it cannot efficiently use the initial state
constraints to simplify the assertion formula. Thus we can combine the strengths of
forward and backward reachability analysis in one algorithm. Another advantage of our
approach is that, thanks to explicit treatment of time, we can infer invariant properties
of the system by pure first-order reasoning without using any form of induction, in the
spirit of [20]. A new approach that avoids explicit unrolling for incremental SAT-based
MC is proposed in [5]; it is unclear at present how this approach relates to ours.

4 Back to EPR

There are two important problems to be solved in order to obtain an EPR encoding
of BMC1: one is with functional bit-vectors which in BMC1 are functions of states,
and the other is with naming of subformulas that result in non-EPR after clausification.
The two subsections describe a way out – back to EPR: We solve the first problem
during the encoding, by proposing a smart way to deal with addresses; functional bit-
vectors occurring in bit-vector comparison can be treated similarly. We solve the second
problem as part of the pre-processing of the entire problem instance and by improving
the clausification (this requires the global view of the entire problem instance).

4.1 Unrolling Addresses

Since non-constant addresses become unary functions in our encoding, the BMC1 prob-
lem instances for hardware designs with bit-vectors and memories are outside of the
EPR fragment. In order to recover an EPR encoding we apply the following trans-
formation. Consider a non-constant address addr, which is transformed into a unary



function addrFunc(S), denoting the value of addr in state S. We introduce new
constants addr0, . . . ,addrn where n is the unrolling bound, and a binary predicate
Assocaddr(x, y). We add axioms

Assocaddr(s0,addr0) ∧ . . . ∧ Assocaddr(sn,addrn),

which associate each constant addri with the state si for 0 ≤ i ≤ n. We also transform
each formula φ[addr(x)] into a formula

∀y(Assocaddr(x, y)→ φ[y]).

Consider bit-vectors of a fixed length, say k > 0. We introduce a binary predicate
Val(x, y) which defines values of functional bit-vectors, e.g., the value of Val(b, i) rep-
resents the value of the bit-vector b at the index i. We use a unary predicate Ak(x) to
represent the set of all functional bit-vectors of length k used in the hardware model.
We define equality between two functional bit-vectors of length k as follows.

∀x, y [Ak(x) ∧ Ak(y)→
(x = y ↔ ∀B(range[0,k−1](B)→ (Val(x,B)↔ Val(y,B))))].

(16)

We thus replace address equality axioms like (1) and (7) discussed earlier by (16). After
Skolemizing (16) and some simplifications we obtain:

∀x, y [Ak(x) ∧ Ak(y)→
(x = y ∨ (range[0,k−1](df k(x, y)) ∧ (Val(x, df k(x, y))↔ ¬Val(y, df k(x, y)))))].

(17)

Informally, this formula states that if two bit-vectors are different then the Skolem func-
tion df k(x, y) gives an index, within the range [0, k−1], witnessing the difference. Un-
fortunately, (17) is outside of the EPR class. In order to get back to an EPR encoding,
we represent the function df k using a new predicate Df k as follows.

∀x, y [Df k(x, y, 0) ∨ . . . ∨Df k(x, y, k − 1)]. (18)

∀x, y,B [Ak(x) ∧ Ak(y) ∧Df k(x, y,B)→
(x = y ∨ (Val(x,B)↔ ¬Val(y,B))))]. (19)

In addition, for each constant c of length k representing an address, such as addresses
addri discussed above, or Skolem constants representing addresses, we need an axiom
Ak(c). In the many-sorted setting the formulas can be simplified assuming we have a
sort for all bit-vectors of length k.

Another approach to eliminating the function df k is to introduce for each pair of
address constants ai, aj , an index constant di,j which witnesses the difference of ai
and aj if they are different in the interpretation. We axiomatize this as follows. Let
a0, . . . , am be the list of all address constants of length k occurring in our problem,
including the Skolem constants. Then define the following set of axioms, where 0 ≤
i < j ≤ m:

ai = aj ∨ (range[0,k−1](dij) ∧ (Val(ai, dij)↔ ¬Val(aj , dij))). (20)

This alternative encoding can be used when we have a relatively small number of bit-
vector constants but of a large bit-vector size.



As an example, the next-state axiom for the write operation (11) will be:

∀S,S’(next(S,S’)→ // write is enabled
(∀y(Assocwraddr(S’, y)→
(∀A((clock(S’) ∧ wren(S’) ∧ A = y)→
(∀B(range[0,63](B)→ (mem(S’,A,B)↔ wrdata(S’,B))))))))).

(21)

Constant addresses which are non-transient, are represented as constants rather than
functions of states, thus associated address constants for them are not introduced.

4.2 Pre-processing and Clausification

Consider the defining axiom (14) for the property prop. If we apply the standard clausi-
fication algorithm to (14) then we obtain a non-EPR formula due to the negative occur-
rence of the universal quantifier in the ‘←’ direction of the outer equivalence. Our first
observation comes from a well-known idea used in the optimized CNF transformation:
if the defined predicate occurs only positively in the rest of the formula then we can re-
place the outer equivalence in the definition with ‘→’ implication. The new simplified
axiom can now be safely transformed into an EPR formula. Unfortunately, this is not
always the case in the verification examples we have tried. On the other hand such nega-
tive occurrences are usually limited. For example, assume that prop occurs negatively
only in a negated conjecture (15). Our next idea is to inline the definition of prop into
such negative occurrences of prop, i.e., replace prop by its definition. After inlining
(14) into (15) we obtain:

∃S(∃B(less64(B) ∧ ¬(outp(S,B)↔ cacheline(S,B)))). (22)

Let us note that after inlining we have i) obtained an equivalent formula and ii) elimi-
nated one negative occurrence of the defined predicate. In this way we can remove all
negative occurrences of the defined predicate. We can see that Skolemization applied
to the new formula (22) produces an EPR formula. Likewise, since we removed all
negative occurrences of prop we can now simplify the definition of prop as above,
which after Skolemization also becomes an EPR formula. It is still possible (albeit in-
frequent in practice) that inlining fails to restore EPR clausification or results in a large
increase in the formula size. In these cases we can apply techniques as in Section 4.1
to the Skolem functions, restoring EPR. For further EPR-restoring pre-processing and
clausification techniques we refer to [15]. Inlining and EPR-restoring pre-processing is
implemented in Vampire’s clausifier. 3

5 Other Optimizations in the Encoding

Writing Next-state Formulas for All States. Hardware is driven into its initial state (or
states) after applying a reset sequence. Therefore the initial state is such that, for each
latch, if its enable is true, its input and output have the same value. We use this assump-
tion to simplify the next-state functions for latches in this case (i.e., when the latch is

3 Available at http://www.vprover.org/



updated). For example, instead of the next-state axioms (21) for the write operation
(which is a latch vector) we write

∀S(∀y(Assocwraddr(S, y)→ // write is enabled
(∀A((clock(S) ∧ wren(S) ∧ A = y)→
(∀B(range[0,63](B)→ (mem(S,A,B)↔ wrdata(S,B)))))))).

The latter formula is much easier for theorem provers: it can be applied to any state
constant, no need to (constructively) derive that it is a next-state for some other state.

When a latch retains its previous value, we still need to refer to both current and next
states in the next-state function. A similar optimization is made for memories whose
cells are implemented as latches. However, this optimization does not apply to flip-flops
and memories whose cells are implemented as flip-flops.

Abstracting Bit-Vector Widths. Consider a subformula quantified over a bit-index vari-
able within a range, say

∀B(range[0,63](B)→ (bv1(S,B)↔ ¬bv2(S,B))). (23)

Let us call such a subformula a range subformula, of range [63 : 0]. Such subformulas
might also contain free occurrences of address variables.

If a range subformula occurs positively and the full ranges of all involved bit-vectors
coincide with the range of the formula, then we transform the subformula into a simpler
one, by omitting the relevant range of B. For example, positive occurrences of subfor-
mula (23) will be transformed into:

∀B(bv1(S,B)↔ ¬bv2(S,B)). (24)

The latter formula is easier for theorem provers, since in order to use it in the inference
one does not need to know the range of B.

Adding Sorts. Sorts (types) are now supported in the TPTP standard for FOL prob-
lems. We work with three sorts: addresses, states, and bit-indexes. This simplifies the
encoding, makes solving faster, and improves the representation of models (counter-
examples) since constants of different sorts are not mixed any more in the models.

6 Incremental Bounds

Given the BMC1 encoding of a transition system it is desirable to search for falsifying
paths incrementally, bound after bound, avoiding repeated computations. We have im-
plemented such an incremental algorithm in our instantiation-based automated reason-
ing system iProver [19]. In a nutshell, iProver generates instances of the first-order input
clauses in a smart way in an attempt to approximate a ground model. The ground rea-
soning is delegated to a solver for propositional satisfiability, currently MiniSAT [11].

iProver supports incrementality based on propositional unit assumptions as follows.
We can add and retract propositional unit assumptions without repeating calculations
which were not based on these assumptions. For each bound k we introduce a proposi-
tional variable pk and use unit assumptions to activate and deactivate bound dependent



axioms. For example, consider a bound k and bound dependent axioms for reachable
states:

RState(s0) ∧ · · · ∧ RState(sk). (25)

pk → ∀x(RState(x)→ x = s0 ∨ . . . ∨ x = sk). (26)

Then we can add the unit assumption pk which activates the state axiom (26) above.
Optionally, we can also add axioms ¬p0, . . . ,¬pk−1 which would be used by the SAT
solver to ignore all state axioms for the previous bounds 1, . . . , k − 1. The only other
bound dependent axioms are those defining the next predicate (see Section 2) and un-
rolling of addresses (see Section 4.1). Let us note that specifications of the transition
relation and initial/final state constraints are independent from the unrolling bounds and
remain unchanged.

7 Benchmarks and Experimental Results

To evaluate our encoding we have generated two sets of benchmarks in TPTP format,
where the first is already available as part of the TPTP library and the second is about
to be released. We use iProver and Z3 in our experiments since these solvers performed
best on the first set of examples (the results of other solvers are available as part of the
TPTP library). Z3 has a dedicated EPR algorithm [25] and is also among the best on
quantified SMT problems with arithmetic, while iProver has won the EPR division in
several recent CASC competitions [27].

The first set of benchmarks was generated from a simple finite-state machine model
called “Robot” and has been released as part of the TPTP library v5.3.0. The unrolling
bounds were chosen so that the problem instances fit the required level of complexity
for the competition, that is, each problem can be solved by at least one prover within the
timeout. In the TPTP library the problems have been named HWV039 to HWV047 and
are available in up to four variants in four forms each: as first-order formulas (FOF),
in clausal normal form (CNF), as typed first-order formulas (TFF) and as typed first-
order formulas with interpreted arithmetic symbols (TFA). In the last form, we treated
bit-indexes as integers and modeled less and range predicates with the < predicate.

The second set of benchmarks originate from real-life hardware verification prob-
lems on Intel designs containing memories. We are in the process of releasing scrambled
versions of these benchmarks into the TPTP library. For the evaluation in this paper we
focus on the real-life benchmark problems which are challenging due to a large number
of word-level components.

7.1 Comparison of Encodings of Bit-ranges

We evaluated three different encodings of bit-ranges on the second set of industrial
BMC problems. In the first two encodings ranges are modeled with the range[m,k]

and lessk predicates as described in Section 3.1. In the third encoding ranges are
straightforwardly modeled using integer arithmetic.

We ran Z3 and iProver on problems unrolled to several bounds, on Intel Xeon Quad
Core machines with 12 GB of memory with 20000s timeout. iProver accepts only CNF



Table 1. Different encodings of bit-indexes and bit-ranges

Problem (bound)
Z3 iProver

lessk range[m,k] arithmetic lessk range[m,k]

BPB (bound 2) — — — 42s 41s
BPB (bound 4) — — — 634s 669s
DCC (bound 2) 78s 56s 29s 55s 79s
DCC (bound 4) 1204s 636s 157s 266s 238s
DCC (bound 6) 8540s 3396s 3512s — 1407s
PMS (bound 2) 44s 1266s 9s 161s 163s
PMS (bound 4) 638s 149s 188s 1295s 1298s
PMS (bound 6) 2898s 5730s 4564s — —
PMS (bound 8) 12303s 3062s — — —
ROB (bound 2) — — — 250s 282s
SCD (bound 2) 167s 119s 178s 15s 15s
SCD (bound 4) 434s 316s 346s 276s 277s
SCD (bound 6) 886s 548s 699s 635s 635s
SCD (bound 8) 2037s 1017s 1497s — —

format with sorts and therefore for iProver the problems were clausified by Vampire;
for Z3 we used problems in the original non-clausified sorted TFF and TFA formats.

Let us discuss experimental results shown in Table 1. The first and fourth problems
can be solved by iProver and not by Z3; on the third and fifth problems, while iProver
succeeded on some bounds, Z3 can reach higher bounds. We can observe that on higher
unrolling bounds i) the performance of Z3 on the range[m,k] encoding is considerably
better than on the lessk encoding, ii) the range encoding is on a par with the arith-
metic encoding. The arithmetic encoding is better on smaller bounds. iProver performs
similarly on range[m,k] and lessk encodings, with range[m,k] encoding reaching
higher bounds on one problem. To conclude, the results suggest that the range encoding
is a reasonable alternative to the arithmetic encoding and for future work we investigate
ways of combining iProver and SMT solvers for better reasoning with ranges.

7.2 Comparison with SAT-Based BMC

In Table 2, we compare incremental SAT-based BMC [12] (column incBMC) with EPR-
based incremental BMC1 (column incBMC1), on the second set of Intel benchmarks.
The column #memories reports the number of memories in the cone of the property
and their collective size in terms of number of memory cells (bits). Similarly, columns
#BVs give the number of transient and constant bit-vectors, respectively (including bit-
vectors of size 1), and their collective size in terms of bits. These two columns show how
“word-level” the cone of the property really is, and the cone size. Columns incBMC and
incBMC1 report the maximal bound reached by the respective algorithms within 10000
seconds time limit and unrolling bound limit 50.

We used Intel’s SAT-based model checker to perform experiments with incremental
BMC [18]. It has a state-of-the-art implementation of incremental BMC, and its SAT
solver is especially tuned on problem instances originating from formal verification



Table 2. Comparing SAT-based incremental BMC with EPR-based BMC1

Problem # Memories # Transient BVs # Const. BVs incBMC incBMC1
PMS1 8 (46080 bits) 1486 (6109 bits) 3 (47 bits) 2 10
SCD1 2 (16384 bits) 556 (1923 bits) 5 (45 bits) 4 12
SCD2 2 (16384 bits) 80 (756 bits) 3 (10 bits) 4 14
BPB2 4 (10240 bits) 550 (4955 bits) 6 (42 bits) 50 11
DCI1 32 (9216 bits) 3625 (6496 bits) 3 (9 bits) 6 4
DCC2 4 (8960 bits) 426 (1844 bits) 2 (2 bits) 8 11
DCC1 4 (8960 bits) 1827 (5294 bits) 5 (106 bits) 7 8
ROB2 2 (4704 bits) 255 (3479 bits) 26 (129 bits) 50 8

problems on Intel designs. In [18], it is shown that Intel SAT-based BMC tool is on a
par with a leading academic model checking tool ABC [22].

Experimental results show that although on smaller memories SAT-based BMC is
faster, when memory sizes increase, the advantage of EPR-based BMC1 becomes evi-
dent (rows in Table 2 are ordered in decreasing memory size). These results show that
EPR-based model checking is a promising alternative to SAT-based model checking at
word-level, scalable to industrial hardware designs. We refer to [13] for a comparison
with SMT solvers supporting bit-vectors and arrays on unrolled BMC instances.

8 Conclusions and Future Work

In this paper we presented an encoding of bounded model checking at word level into
the EPR fragment of first-order logic. The EPR-based encoding allows us to i) represent
memories and bit-vectors at word-level and ii) succinctly specify the transition relation
and state constraints, independently from the unrolling bound. Due to the presence of
memories and bit-vectors, a naive encoding of the BMC problem into first-order logic
would result in problems outside of the EPR fragment. We show how to restore the EPR
encoding by introducing two methods: i) address unrolling and ii) definition inlining.

Another contribution of this work is in generating challenging benchmarks for first-
order theorem provers based on real-life hardware designs used at Intel. We hope this
will encourage further research into EPR-based model checking and EPR decision pro-
cedures. We have evaluated our encoding on these benchmarks using general purpose
theorem provers iProver and Z3 which are not optimized for such problems. Our ex-
perimental results show that already at this stage our approach is scalable to industrial
verification problems and on large memories can reach higher unrolling bounds com-
pared to optimized SAT-based BMC.

There are many directions for future work, and we mention only few of them here.
First, we intend to develop an abstraction-refinement approach to EPR-based model
checking by providing the EPR solver with some bit-vector related information (e,g.,
the bit-vector width) via attributes. Second, we intend to investigate further incremen-
tal solving in the EPR-based BMC1 and how derived information on lower bounds
can be exploited for reasoning on higher bounds. Finally, we believe that EPR-based
BMC1 can be extended to efficiently work with arithmetic operations at word level, by
building-in efficient arithmetic reasoning in the EPR decision procedures.



References
1. Abu-Haimed, H., D.L. Dill, S. Berezin. A refinement method for validity checking of quan-

tified first-order formulas in hardware verification, FMCAD 2006.
2. Alberti F., Armando A., Ranise S. ASASP: Automated Symbolic Analysis of Security Poli-

cies, CADE 2011, LNCS 6803, 26-33, Springer.
3. Baumgartner P., A. Fuchs, C. Tinelli. Implementing the Model Evolution Calculus. Inter. J.

on Artificial Intelligence Tools 15(1): 21-52, 2006.
4. Biere A., A. Cimatti, E. Clarke, Y. Zhu. Symbolic model checking without BDDs, TACAS

1999.
5. Bradley, A.R. SAT-based model checking without unrolling, VMCAI 2011.
6. Bradley, A.R., Manna Z., Sipma H.B. What’s decidable about arrays? VMCAI 2006.
7. Brummayer R. D., Biere A. Boolector: An efficient SMT solver for bit-vectors and arrays,

TACAS 2009.
8. Bryant R. E., Lahiri S. K., Seshia S. A.. Modeling and verifying systems using a logic of

counter arithmetic with lambda expressions and uninterpreted functions. CAV 2002.
9. Clarke, E.M., O. Grumberg, D.A. Peled. Model Checking, MIT Press, 1999.

10. Claessen K., N. Sörensson. New techniques that improve MACE-style model finding. Work-
shop on Model Computation (MODEL), 2003.

11. Eén N., N. Sörensson. An extensible SAT-solver. SAT 2003: 502-518.
12. Eén N., Sörensson N. Temporal induction by incremental SAT solving, ENTCS 89(4), 2003.
13. Emmer M., Khasidashvili Z., Korovin K., Voronkov A. Encoding Industrial Hardware Veri-

fication Problems into Effectively Propositional Logic FMCAD’10, 2010.
14. Ghilardi S., Nicolini E. , Ranise S., Zucchelli D. Decision procedures for extensions of the

theory of arrays. Annals of Mathematics and Artificial Intelligence (AMAI), 2006.
15. Hoder K., Khasidashvili Z., Korovin K., Voronkov A. Preprocessing techniques for first-

order clausification. In preparation.
16. Huang, S.-Y., K.-T., Cheng. Formal Equivalence Checking and Design Debugging, Kluwer,

1998.
17. Khasidashvili Z., Kinanah M., Voronkov A. Verifying Equivalence of Memories Using a

First Order Logic Theorem Prover FMCAD’09, 2009.
18. Khasidashvili Z., Nadel A. Implicative simultaneous satisfiability and applications, HVC

2011.
19. Korovin, K. iProver–an instantiation-based theorem prover for first-order logic (system de-

scription), IJCAR, 2008.
20. Kovács, L., Voronkov, A. Finding Loop Invariants for Programs over Arrays Using a Theo-

rem Prover, FASE 2009, 470-485, LNCS 5503, Springer, 2009.
21. Kroening D., Strichman O. Decision Procedures, Springer EATCS, 2008.
22. Mishchenko A., S. Chatterjee, R. Brayton, N. Een. Improvements to combinational equiva-

lence checking, ICCAD 2006.
23. Navarro-Perez, J.A., Voronkov A. Encodings of Bounded LTL Model Checking in Effec-

tively Propositional Logic, CADE 2007, 346-361, LNCS 4603, Springer.
24. Manolios P., S.K. Srinivasan, D. Vroon. Automatic memory reductions for RTL model veri-

fication, ICCAD 2006.
25. R. Piskac, L. de Moura, N. Bjørner: Deciding Effectively Propositional Logic Using DPLL

and Substitution Sets. J. Autom. Reasoning, 2010.
26. Robinson A., Voronkov A. (editors). Handbook of Automated Reasoning, Elsevier and MIT

Press 2001.
27. Sutcliffe G. The 5th IJCAR automated theorem proving system competition CASC-J5, AI

Communications, vol. Volume 24(1), pp. 75-89, 2011.
28. Velev M. N., Bryant R. E. Verification of pipelined microprocessors by comparing memory

execution sequences in symbolic simulation, ASIAN 1997.


