
A Note on Model Representation and Proof Extraction
in the First-Order Instantiation-based Calculus Inst-Gen

Konstantin Korovin
korovin@cs.man.ac.uk

Christoph Sticksel
sticksel@cs.man.ac.uk

School of Computer Science, The University of Manchester

Abstract: We describe the recent extensions of the instantiation-based theorem prover iProver to generate
models of satisfiable and proofs for unsatisfiable inputs, both features being demanded by applications [1, 2].

1 Introduction

The main idea behind instantiation-based methods for first-
order logic is to combine efficient ground reasoning with
smart first-order instantiations. We have been developing
the Inst-Gen calculus [4] and its equational variant Inst-
Gen-Eq [6], where the ground reasoning is decoupled from
instantiation, thus allowing one to employ efficient off-the-
shelf SAT and SMT solvers for ground reasoning. This is
unlike traditional calculi for first-order logic such as resolu-
tion or superposition, where first-order reasoning is tackled
purely by applying first-order inference rules.

We focus on two aspects important to applications and
users of automated theorem provers, namely the output of
models and proofs. In the Inst-Gen method models can be
extracted from a saturation of the input and we discuss how
to obtain compact model representations for satisfiable in-
put. Since the ground reasoning is delegated to a black-
boxed solver, the extraction of proofs of unsatisfiability re-
lies on the ground solver and we demonstrate how to use
unsatisfiable cores from the ground solver in proof extrac-
tion without a loss of performance during the proof proce-
dure.

2 The Inst-Gen Method

The basic idea of the Inst-Gen method is as follows. The
input set of first-order clauses S is abstracted to a set of
ground clauses S⊥ by mapping all variables to the same
ground term, conventionally named ⊥. If this ground ab-
straction is unsatisfiable, then the set of first-order clauses
is also unsatisfiable. Otherwise, there is a ground model I⊥
for the abstraction that is used to guide an instantiation pro-
cess. The ground satisfiability check and construction of
a ground model is delegated to a solver for satisfiability
modulo theories (SMT) in the presence of equations or to
a propositional (SAT) solver if no equational reasoning is
required.

The ground model I⊥ obtained from the solver is rep-
resented as a set of abstracted literals and an attempt is
made to extend it to a model of the first-order clauses by
reasoning on the first-order literals corresponding to the ab-
stracted literals in the model. When this fails, new (not
necessarily ground) instances of clauses are generated in a
way that forces the ground solver to refine the model in the

next iteration. Inst-Gen is therefore composed of two parts:
ground satisfiability solving on the abstraction of the set of
clauses and first-order reasoning on literals corresponding
to ground literals in the model of the abstraction.

The first-order instantiation process is guided by means
of a selection function based on the ground model I⊥.
The selection function sel assigns to each first-order
clause C in S exactly one literal sel(C) = L from C such
that I⊥ |= L⊥. At least one such literal always exists as the
ground abstraction of the clause is true in the model I⊥.

We also employ a constraint mechanism for redundancy
elimination that becomes crucial in model construction. In-
tuitively, a clause C represents all its ground instances,
hence there are ground instances represented by both the
clause C and an instance Cσ of it. In order to eliminate this
duplication we attach a constraint to each clause, effectively
blocking all ground instances of clause C that are repre-
sented by the instance Cσ. We view such a dismatching
constraint Φ as a set of substitutions {τ1, . . . , τn} and say
that a substitution σ satisfies the dismatching constraint Φ
if it is not more specific than any τi ∈ Φ.

For simplicity we only consider the non-equational cal-
culus Inst-Gen, the results about model construction and
proof extraction apply with some modification also to the
equational calculus Inst-Gen-Eq. The following inference
rule is applied to the input clause set up to saturation.

Inst-Gen inference rule

C ∨ L | Φ D ∨ L′ | Ψ
(C ∨ L)σ

(
D ∨ L′

)
σ

(i) σ = mgu(L,L′),
(ii) sel(C ∨ L) = L,

(iii) sel(D ∨ L′) = L′,
(iv) σ satisfies Φ and Ψ.

Both clause instances (C ∨ L)σ and
(
D ∨ L′

)
σ are

added to the clause set and the dismatching constraints of
the premises are extended to Φ ∪ {σ} and Ψ ∪ {σ}.

The Inst-Gen inference rule is similar to the Resolution
inference rule, but instead of resolving away the comple-
mentary unifiable literals L and L′ and combining the two
premises into the new clause (C ∨D)σ, the clauses are in-
stantiated with the most general unifier σ. We view a lit-
eral L as representing all its ground instances, hence having
both the literal L and a unifiable complement L′ selected
means that there are ground instances Lσ and L′σ repre-
sented that are contradictory. The ground model, that only



contains the abstractions L⊥ and L′⊥, therefore cannot be
extended to a first-order model due to this conflict between
the first-order literals L and L′. After adding the clause in-
stances with the mgu σ the ground solver can witness this
conflict and evolve the model of the ground abstraction ap-
propriately. On the first-order level the dismatching con-
straint on the premises is extended with σ.

The Inst-Gen method is refutationally complete, that is,
from an unsatisfiable input an exhaustive application of
the inference rule will eventually lead to an unsatisfiable
ground abstraction. On the other hand, if the clause set be-
comes saturated under the inference rule, it is satisfiable and
we can extract a model.

3 Model Representation

If the set of clauses is closed under Inst-Gen inferences and
the ground abstraction is satisfiable, then there is no first-
order conflict on selected literals and the set of selected
literals can indeed be interpreted as a model for the input
clause set.

Instantiation-based methods generate a certain class of
models that is commonly described with a disjunction of
implicit generalisation (DIG) [3]. Instead of representing
Inst-Gen models as DIGs we represent them as predicate
definitions over the term algebra.

For each literal (¬)P (t1, . . . , tn) ∈ sel(S) that contains
the variables x̄ = 〈x1, . . . , xm〉 and occurs in a constrained
clause C | Φ with Φ = {τ1, . . . , τk} we define

Λ(¬)P (t1,...,tn)(y1, . . . , yn) ⇀↽

∃x̄[ y1 = t1 ∧ · · · ∧ yn = tn ∧
∀z̄1( x1 6= x1τ1 ∨ · · · ∨ xm 6= xnτn) ∧ · · · ∧
∀z̄k( x1 6= x1τk ∨ · · · ∨ xm 6= xnτk)],

where ȳ = 〈y1, . . . , yn〉 is a tuple of fresh variables and
var(rng(τi)) ⊆ z̄i (here z̄i ∩ x̄ = ∅). The first conjunct
containing the existential quantifier corresponds to a flat-
tening of the atom P (t1, . . . , tn) into P (y1, . . . , yn), the
remaining conjuncts express the dismatching constraints.

Given an Inst-Gen saturated set of clauses S we can ex-
tract several models. For each predicate we can collect ei-
ther all positive occurrences or dually all negative occur-
rences and define the predicate in the model as

(¬)P (y1, . . . , yn) ⇐⇒
∨

(¬)P (t1,...,tn)∈sel(S)

Λ(¬)P (t1,...,tn).

Since the sizes of positive and negative representations can
be vastly different, for each atom we can chose the smallest.
Alternatively we can use implied definitions of the form

(¬)P (y1, . . . , yn)⇐
∨

(¬)P (t1,...,tn∈sel(S)

Λ(¬)P (t1,...,tn),

and allow completing the model arbitrarily if undefined.
All model representations have been implemented in the

iProver system, such that the user can choose the one most
fit for purpose. The implementation keeps both the set of
active literals as well as the dismatching constraints com-
pactly stored in discrimination trees, thus the model can be
efficiently constructed.

4 Proof Extraction

As soon as the ground solver finds the ground abstraction
unsatisfiable, the input clause set has been proved unsatisfi-
able. Since we regard the ground solver as a black box and
proof extraction in SAT solving may cause a considerable
degradation in performance, we content ourselves with un-
satisfiable cores returned from the solver. Then, a proof of
unsatisfiability is a sequence of first-order inferences up to
a set of clauses that is propositionally unsatisfiable.

We record each first-order inference step in iProver and
run two instances of the ground solver in parallel, both con-
taining the ground abstraction of the current clause set. The
first solver instance is frequently called to check satisfiabil-
ity, the second instance is used only a posteriori to obtain an
unsatisfiable core. For this purpose we add a unique literal
to each clause in the second instance and assume the com-
plement of each tracking literal. The falsified assumptions
represent an unsatisfiable core that we can minimise.

After the first instance of the ground solver reports un-
satisfiability of the ground abstraction, the second instance
is invoked for the first time. We map the failed assumptions
to their first-order clauses and recursively trace each infer-
ence back to premises which are input clauses. Since proof
extraction is a separate step, the performance of the proof
search is not affected.

The iProver system makes use of global propositional
subsumption [5], which simplifies a clause with respect to
the some grounding. Since justifying each simplification
step during the proof search would result in a severe per-
formance hit, we postpone this step until the actual proof
extraction. If in tracing the proof tree a clause is encoun-
tered that was obtained by global propositional subsump-
tion, the second instance of the ground solver is invoked
once more to find the justification for the simplification, a
set of clauses younger than the simplified clause. We then
continue the search for input clauses from this set.

We note that for many applications proofs in this form
are sufficient. In particular the Sledgehammer tool of the
Isabelle system [1] uses automated theorem provers essen-
tially to filter an input clause set for a first-order unsatisfi-
able core, hence it requires much less than a detailed proof
and can work with the output generated here.

References
[1] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgeham-

mer with SMT Solvers. In CADE 23, pages 116–130, 2011.

[2] M. Emmer, Z. Khasidashvili, K. Korovin, and A. Voronkov. Encod-
ing Industrial Hardware Verification Problems into Effectively Propo-
sitional Logic. In FMCAD 2010, 2010.

[3] C. G. Fermüller and R. Pichler. Model Representation via Contexts
and Implicit Generalizations. In CADE 20, pages 409–423, 2005.

[4] H. Ganzinger and K. Korovin. New Directions in Instantiation-Based
Theorem Proving. In LICS 2003, pages 55–64, 2003.

[5] K. Korovin. iProver - An Instantiation-Based Theorem Prover for
First-Order Logic (System Description). In IJCAR 2008, pages 292–
298, 2008.

[6] K. Korovin and C. Sticksel. Labelled Unit Superposition Calculi for
Instantiation-Based Reasoning. In LPAR-17, pages 459–473, 2010.


