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Abstract. We introduce a family of AC-compatible Knuth-Bendix simplification orders
which are AC-total on ground terms. Our orders preserve attractive features of the
original Knuth-Bendix orders such as existence of a polynomial-time algorithm for
comparing terms; computationally efficient approximations, for instance comparing
weights of terms; and preference of light terms over heavy ones. This makes these
orders especially suited for automated deduction where efficient algorithms on orders
are desirable.

1 Introduction

Simplification orders are used in automated reasoning for pruning the search
space of theorem provers and in rewriting for proving termination of rewrite
rule systems and for finding complete sets of rewrite rules. E-compatible sim-
plification orders for various equational theories E can be used for building-in
equational theories in theorem provers and rewriting modulo equational theories.

Among various equational theories, theories axiomatized by the axioms of
associativity and commutativity, so-called AC-theories, play a special role. Such
theories very often occur in applications and require special treatment in auto-
mated systems, where AC-compatible simplification orders is a crucial ingredi-
ent. Importance of AC-compatible simplification orders triggered a huge amount
of research aimed to design such orders [17-19,16,5,3,8,4,10,9,12,11,2,15].
Usually, E-compatible simplification orders are designed from known simplifi-
cation orders. Recently, a lot of work has been done to modify recursive path
orders to obtain AC-compatible simplification orders total on ground terms [17—
19,10,9,12,11]. Despite the fact that the Knuth-Bendix orders are widely used
in automated deduction, to our knowledge there have been no AC-compatible
simplification variant of the Knuth-Bendix order known. (There was an attempt
to introduce such an order in [20] but this order is lacking the crucial mono-
tonicity property, as we will show later).

In this paper we define a family of AC-compatible Knuth-Bendix orders
= kpBo. These orders enjoy attractive features of the standard Knuth-Bendix
orders, for example

1. a polynomial-time algorithm for term comparison;



2. computationally efficient approximations based on weight comparison, so in
many practical cases we do not need to traverse the whole term each time
to compare it with another term;

3. light terms are smaller than heavier ones.

Our approach share some ideas with the AC-RPO of Rubio [18,19], but a careful
exploitation of some properties of weight functions enable us to avoid complica-
tions leading to an exponential behavior in the AC-RPO case. We had to omit
several proofs about > xpo on non-ground terms due to a lack of space, however,
their proofs are similar to the proofs for the ground case.

2 Preliminaries. Standard Knuth-Bendix Order

In this section we introduce some standard notation and definitions.

2.1 Terms and Orders

A signature is a finite set of function symbols with associated arities. In this paper
we assume an arbitrary but fixed signature Y. Constants are function symbols
of the arity 0. We assume that X contains at least one constant. We denote
variables by z,y,z and terms by r,s,t. If a term ¢ has the form g(t1,...,t,),
where n > 0, then g is called the top symbol of ¢, denoted by top(t), and t1,...,t,
the arguments of t. We define the top symbol of a variable = to be x itself.

We use the standard notion of a position in a term. If 7 is a position in a
term ¢t and s is a term, we denote by t[s], the term obtained from ¢ by replacing
its subterm at the position 7 by s. We will simply write ¢[s] instead of ¢[s], when
7 is fixed.

Finite multisets are defined as usual. We will only use finite multisets in
this paper, so from now on a multiset always means a finite multiset. We use
notation {¢1,...,t,} to denote multisets. For example, {a, a,b} is a multiset with
two occurrences of a and one occurrence of b. The multiset difference of multisets
A and B is denoted by A-B. We write a € A to denote that a is a member
of a multiset A. We use notation {a € A | C}, to denote the submultiset of A
consisting of the elements of A satisfying C.

Let > be a binary relation on a set S. A multiset extension of >, denoted
by >™ is a binary relation on multisets over S defined as follows. Let A and
B be two multisets. Denote A’ = A~B and B’ = B-A. Then A >™* B if A’
is non-empty and for every b € B’ there exists a € A’ such that a > b. The
following fact due to [6] is well-known.

LEMMA 1. If > is an order, then so is >™". If > is a total order, then so is
>mul - If > s a well-founded order, then so is >™. O

Let > be a binary relation on a set S. A lexicographic extension of >, denoted
by >!* is a relation on tuples of elements of S defined as follows. Let a =

(a1,...,am) and b = (by,...,b,) be two tuples. Then @ >* b if one of the
following conditions holds:



1. m > n;
2. m = n and there exists ¢ such that 1 < ¢ < m, a; > b;, and for all j €
{1,...,i—1} we have a; = b;.

The following fact is not hard to check, see, e.g., [1].

LEMMA 2. If > is an order, then so is >'“*. If > is a total order, then so is
>ler  [f > s a well-founded order, then so is >'*. O

A binary relation > is called a simplification order if it is an order and it
satisfies the following two properties:

1. monotonicity: if s > t, then r[s] > r[t].
2. subterm property: if r[s] # s, then r[s] > s.

For every pre-order > we denote by > the corresponding strict order >
defined as follows: s > t if and only if s > ¢t and ¢ 2 s. We will use this notation
for various pre-orders, for example > will denote the strict version of .

Let >1,>2 be pre-orders. We call the lexicographic product of >; and >,
denoted >; ® >9, the relation > defined as follows: s > t if and only if either
s >1t,or s >1tand s >q t. It is not hard to argue that >; ® >5 is a pre-order.
We define lexicographic product >; ® >9 of strict parts of >1, >4 as the strict
part of >1 ® >o.

We will also consider lexicographic products of more than two orders.

LEMMA 3. If >1,>9 are orders, then so is >1 ® >q. If >1,>9 are total orders,
then so is >1 ® >o. If >1, >2 are well-founded orders, then so is >1 ® >o. O

In our proofs below we will often compose the multiset order, the lexico-
graphic extension, and the lexicographic product of various orders and use Lem-
mas 1, 2 and 3 to establish properties of the compositions.

2.2 Knuth-Bendix Order

Denote the set of natural numbers by N. We call a weight function on X any
function w : ¥ — N such that w(a) > 0 for every constant a. A precedence
relation on X is any linear order > on Y. We say that a precedence relation >
is compatible with a weight function w if, whenever f is a unary function symbol
and w(f) = 0, then f is the greatest element of X' w.r.t. >.

The definition of the Knuth-Bendix order on the set of ground terms of
the signature X' is parameterized by (i) a weight function w on X; and (ii) a
precedence relation > on Y compatible with w. The compatibility condition
ensures that the Knuth-Bendix order is a simplification order total on ground
terms, see, e.g., [1]. In this paper, f will always denote a unary function symbol
of the weight 0.

In the sequel we assume a fixed weight function w on X' and a fixed precedence
relation > on Y. We call w(g) the weight of g. The weight of any ground term



t, denoted |t|, is defined as follows: for any constant ¢ we have |¢| = w(c) and for
any function symbol g of a positive arity |g(t1,-..,tn)| = w(g) + [t1] + - .. + |tn].
The Knuth-Bendiz order induced by w and > is the binary relation = gpo

on ground terms defined as follows. For any ground terms ¢t = g(t1,...,¢,) and
s = h(s1,...,s;) we have t = kpo s if one of the following conditions holds:
L |t] > |sl;

2. |t| = |s|] and g > h;
3. [t =1s|, g=hand (t1,...,tn) =555 (51, .., 8n)-

It is known that for every weight function w and precedence relation > com-
patible with w, the Knuth-Bendix order induced by w and > is a simplification
order total on ground terms (see e. g. [1]).

2.3 AC-compatible orders

Let E be an equational theory and > be a partial order on ground terms of a
signature Y. Denote equality with respect to £ by =g. We say that an order >
is E-compatible if it satisfies the following property: if s > ¢, s =g s’ and t =g ',
then s’ > t'. The order > is called E-total, if for all ground terms s, ¢, if s #g t,
then either s >t ort > s.

Let + be a binary function symbol. The AC-theory for + is the equational
theory axiomatized by set of two formulas

VaVyVz((z +y) + 2~z + (y + 2));
VaVy(z +y ~ y + ).

From now on we assume that we are given a fixed signature X with a distin-
guished subset X' 4 of binary function symbols. The members of X4 will be
called AC-symbols. Two terms s, t are called AC-equal, denoted s =4 ¢ t, if they
are equal in the equational theory generated by the union of the AC-theories for
all g € Y 4¢. An order is called AC-compatible if it is E-compatible with respect
to this equational theory.

2.4 Main results

Our main aim is to find an AC-compatible AC-total simplification order which
generalizes the standard Knuth-Bendix order for the case of AC-theories. In the
rest of this paper we define a family of such orders, each order > gpo in this
family is induced by a weight function w and a precedence relation > compatible
with w. We prove the following results.

1. =kpo is an AC-compatible AC-total simplification order,

2. On the terms without AC-symbols, > xpo coincides with the standard Knuth-
Bendix order induced by w and >>.

3. If X contains no unary function symbols of the weight 0, then for every
ground term t there exists a finite number of terms s such that ¢ ~xpo s.

Further, we extend the orders > xpo to non-ground terms in such a way that
for all terms s,t and substitutions 0, if s = ko t, then s = kpo 0.



3 The Ground Case

3.1 Flattened terms

In the sequel the symbol + will range over X' 4. Let us call a term normalized if
it has no subterms of the form (r + s) 4 t. Evidently, every term is AC-equal to a
normalized term. Since we aim at finding AC-compatible simplification orders, it
is enough for us to define these orders only for normalized terms. For normalized
terms, we introduce a special well-known notation, called flattened term.

To this end, we consider all AC-symbols to be varyadic, i.e., having an un-
bounded arity greater than or equal to 2. A term s using the varyadic symbols
is called flattened if for every non-variable subterm ¢ of s, if ¢ has the form
+(t1,...,tn), then the top symbols of 1, ..., t, are distinct from +. We identify
a subterm +(t1,...,¢y) with the normalized term (t1 + (t2 + ... +%5)). We will
sometime write subterms of flattened terms as t; + ...+ ¢,. In the sequel we will
only deal with flattened terms.

Note that we have to be careful with defining substitutions into flattened
terms and the subterm property for them. When we substitute a term s1+. . .+,
for a variable z in z+t, +...+t,, we obtain s1+...+ 8, +t1+...+t,. To prove
the subterm property for an order > on ordinary terms, we also have to prove the
following cancellation property for flattened terms: s14+so4. ..+, > sa+...+Sy.

Similarly, we have to be careful with defining weights of terms with varyadic
symbols. We want the weight to be invariant under =4¢, in particular, the
weight of a term must coincide with the weight of a flattened term equal to it
modulo AC. Therefore, we modify the definition of weight as follows.

DEFINITION 4. (Weight) The weight of a ground term ¢, denoted |¢|, is defined
as follows. Let t = g(t1,...,t,), where n > 0. Then

1. if g & Yac, then |t| =w(g) + |[ta| + ... + |tn]-
2. if g € Xac, then [t| = (n — Dw(g) + |t1] + - .. + |tnl- O

We have the following straightforward result.

LEMMA 5. Let r,s,t be terms. If |s| = |t|, then |r[s]| = |r[t]|. Likewise, if |s| >
[t|, then |r[s]| > |r[t]]- O

3.2 Relation >

All relations introduced below will be AC-compatible. Therefore, in the sequel
we will consider the AC-equality instead of the syntactic equality and consider
relations on the equivalence classes modulo =4¢.

To define an AC-compatible weight-based simplification order, let us first
define, for each AC-symbol +, an auxiliary partial order >, on multisets of
flattened terms.

First we introduce the following pre-order >, on terms: s >4, ¢ if and
only if top(s) > top(t) or top(s) = top(t). Note that this order is also defined



for non-ground terms. Likewise, we introduce the pre-order >,, on ground terms
as follows: s >, t if |s| > |¢|. Naturally, the strict versions of >4,, and >, are
denoted by >¢o, and >, respectively.

DEFINITION 6. (Relation >) Let M, N be two multisets of flattened ground
terms and let

M' = {t & M| top(t) > +};
N' ={t € N | top(t) > +}.

We define M =, N if and only if

O

M/ (Zw ® Ztop)mul N/-
In other words, we can define the order >~ as follows. First, remove from M
and N all elements with top symbols smaller than or equal to +. Then compare
the remaining multisets using the multiset order in which the terms are first
compared by weight and then by their top symbol.

LEMMA 7. For each symbol + € X 4¢ the relation >, is a well-founded order.

PROOF. Follows immediately from the observation that the strict part of (>
® >10p) ™ is a well-founded order (by Lemmas 1 and 3). O

Let us give a characterization of the relation >,. Let M be a multiset of
ground terms and v be a positive integer. Denote by selected(+, v, M) the mul-
tiset of top functors of all terms in M of the weight v whose top symbol is
greater than + w.r.t. >. Then we have M > N if and only if there exists an
integer v such that selected(+, v, M) >§’O”;l selected(+,v, N) and for all v' > v,
selected(+,v', M) =™ selected(+,v', N). Let =, denote the incomparability
relation on multisets of terms w.r.t. . That is, given two multisets M, N, we
have M =, N if and only if neither M >, N nor N >, M. Now it is easy
to check that two multisets of terms M and N are incomparable w.r.t. > if
and only if for each weight v we have selected(+,v, M) = selected(+,v, N) and
therefore =, is indeed an equivalence relation on terms. So >, can be seen as
a total well-founded order on the equivalence classes of multisets modulo = .

3.3 Order =xkpBo

Using the relation >, we can define an AC-compatible simplification order
" KBO-

DEFINITION 8. (Order >=kpo) Let t = h(t1,...,t,) and s = g(s1,...,sk) be
flattened ground terms. Then t =gpo s if and only if one of the following
conditions holds:

1. |t| > |s|; or



2. |t| =|s|] and h > g; or

3. |t| = |s], h = g, and either
(a) h & Xac and (t1,...,tn) =%% 05 (s1,...,85); Or
(b) h € ¥Xsc and

i. {tl,...,tn} ~h {sl,...,sk}; or
il {t1,...,tn} =n {s1,...,8:} and n > k; or
iii. {tl,...,tn} =5 :{51,.---,81@}, n = k and
{tl,...,tn} >%§lo {81,...7Sk}. O

Let us remark that similar to the AC-RPO of Rubio [18,19] we make a spe-
cial treatment of the immediate subterms below + having top symbols greater
than +. To this end, we use the relation >, which allows us to avoid recur-
sive computations deeper into subterms at this stage (we need only to compare
weights and top symbols of the immediate subterms). As a result, we gain some
efficiency. More importantly, using properties of the weight functions we can
avoid the exponential behavior of AC-RPO caused by enumerating embeddings
of certain subterms.

LEMMA 9. >kpo is an AC-compatible AC-total order on ground terms.

PRrROOF. It is easy to see that = gpo is AC-compatible. The AC-totality can be
proved by a routine induction on terms.

Let us prove that >xpo is an order. Let us call the f-height of a term 7,
denoted by height ;(r), the greatest number n such that » = f" (7). The proof is
by induction on the order >" on ground terms defined as follows: ¢t >’ s if |¢| >
|s| or [t| = [s| and height ;(t) > height ;(s). Obviously, >" is the lexicographic
product of two well-founded orders, and so a well-founded order itself.

Note the following property of >’: if t >’ s, then t = xpo s. Therefore, it is
enough to prove that for each pair of natural numbers (k, 1), the relation > xpo
is an order on the set of ground terms

{t [ [t| = k and height ;(t) = [}.

But this follows from the following observation: > o on this set of terms is
defined as a lexicographic product of the following five orders:

t>1 s h>g;

t>055 (t1,...,tn) >l]§%0 ($1,...,8n) and h =g & Yac;
t>3s<{t1,...,tn} =n{s1,...,8. and h =g € Y4¢;
t>1sen>kand h=g € Yyc;

t>5s<:)~.{t1,...,tn].> -l {81,...,sk} and h =g € Yyc.

Note that =%, and =74 used in this definition are orders by the induction
hypothesis and by Lemmas 2 and 1. O



THEOREM 10. The relation = kpo is an AC-compatible AC-total simplification
order on ground terms.

PRrROOF. By Lemma 9, > gpo is an order, so it only remains to prove the subterm
property, cancellation property, and monotonicity. The cancellation property is
obvious, since [sg 4+ $1 4+ ... + S$p| > |s1 + ... + sp|. The subterm property is
checked in the same way as for the standard Knuth-Bendix order.

Let us prove the monotonicity. By Lemma 9, =gpo is an AC-compatible
AC-total order. In particular, > xpo is transitive, so it remains to prove the
following property: if ¢ =gpo s, then for every function symbol g we have
g(r1y oy ris1, i1y oy Tn) = g1, ey Tis1, S, i1y - -+, ). When g € Yac,
the proof is identical to that for the standard Knuth-Bendix order, so we only
consider the case when g is an AC-symbol +.

We have to prove the following statement for all terms s,t,r1,...,7m: let

=t4+nrm+...+rpandv =s54+1r +...+1r,, then t =xpo s implies
u =kgpo v. Let t = h(t1,...,t,) and s = g(s1,...,sk). Consider all possible
cases of Definition 8 of = gpo.

1. |t| > |s|. In this case by Lemma 5 we have |u| > |v|, and so u > gpo v.
Now we can assume |t| = |s|, hence by Lemma 5 |u| = |v|. Denote by U and
V' the multisets of arguments of u and v, respectively. Note that U is not
necessarily equal to {¢,71,...,7n}: indeed, the top symbol of ¢ may be +,
and then we have to flatten ¢ + r; + ... + r;;, to obtain the arguments of
u. Likewise, V' is not necessarily equal to {s,71,...,7n}. Denote by p, q the
number of elements in U, V respectively. Note that

_m 41, if top(t) #
P=V\m+n, ift0p(t)=—|—

[ m+1,if top(s) # +;
=\ m+k, if top(s) = +.

Since |u| = |v| and top(u) = top(v) = +, the comparison of v and v should
be done using clauses (3(b)i)—(3(b)iii) of Definition 8. That is, first we check
U >~ V. Then, if U =, V, we check if p > ¢. Finally, if p = ¢, we compare
U and V using the multiset order >7%,. Consider the remaining cases.

2. h > g. Let us show that if h > + then U —+ %4 and so u =gpo v. If
+ > g then we have U >~ U-— {t} {7‘1,.. rm} 7= {s} =, V.iftg>+
then {t} > {s} and hence U = {t,71,...,7m} -+ {s, 1, rmt = V. If
g = + then s is of the form s; +...+ sg. We have {t} - {31, . .,sk}, since
the weight of each arguments of s is strictly less than the weight of ¢, and
therefore U >~ V.
Now if + > h, then U =, V and p = ¢q. In this case u =gpo v & U >—%‘§ZO
V&t >=kpo s, s0u=gpo v. It remains to consider the case h = +. In this
case we have U =, V-{s} =, V and either U =, V, so u =gpo v, or we
have U =4 V and p > ¢, so u =xkpo v, by (3(b)ii) of Definition 8.

3. h=g.



(a) h # +. Then U =; V and p = ¢. In this case u =xpo v & U =74,
V & t>kBo s.
(b) Now it remains to consider the case h = g = +. In this case U =

{tl,...,tn,rl,...,rm} and V = {51,...,sk,r1,...,7"m}.Sincet»KBo s,
it is enough to consider the following cases.
i {t1,...,tn} =4 {s1,.-., 8k} In this case U >, V, hence u > xpo v.

ii. {tl,...,tn} =4 {31,...,sk} and n > k. In this case U =4 V but
p > q, hence u ~gpo v.

. {t1,...,tn} =4 {s1,...,8:}, n =k, and
{tl,...,tn} >—}’<L}§IO {51,...,3k}. In this case U =4 V, p = ¢q, but
U >-%f§lo Vv, hence u = kpo v.

The proof is complete. O

Suppose that X' does not contains a unary function symbol f of the weight
0. In this case for each weight v there is only a finite number of ground terms of
the weight v. Therefore, we have the following result.

PROPOSITION 11. If X does not contain a unary function symbol f of the weight
0, then for every term t, there exists only a finite number of terms s such that
t >KkBO S- O

Now let us show that if our signature contains only two AC-symbols and
in addition one of them is maximal and another is minimal w.r.t. >, then we
can considerably simplify definition of AC-KBO by avoiding > comparisons. In
particular the following definition will satisfy all required properties.

DEFINITION 12. (Simplified AC-KBO for two AC symbols) Consider a signatu-
re X containing only two AC-symbols, such that one of them is maximal and
another is minimal w.r.t. > in 2.

Let t = h(t1,...,tn) and s = g(s1,-.., sk) be flattened ground terms. Then
t ='xpo s if and only if one of the following conditions holds:

1. |t| > |s|; or
2. |t| = |s|] and h > g; or
3. |t| = |s], h = g, and either
(a) h & Yac and (t1,...,1,) >'}§§O (S$1,.-+,8n); OF
(b) h € ¥4c and
i. n > k and h is maximal in X w.r.t. >; or
ii. K> n and h is minimal in X' w.r.t. >; or
iii. k=mnand {t1,...,t,} =" 2% {s1,..., sk} O

THEOREM 13. The relation =y 5o is an AC-compatible AC-total simplification
order on ground terms.

PRrOOF. We skip the proof which is similar to the general case. ([



4 Non-Ground Order

In this section we will generalize the AC-compatible Knuth-Bendix order = xpo
to non-ground terms. The definition will be very similar to the ground case.
We will have to change the definitions of the weight and slightly change the
definition of > . As before, we will be dealing with flattened terms.

Let us modify the notion of weight to non-ground terms. In fact, we will
introduce two different weights |t| and ||t||. As before, we assume that we are
given a weight function w and a precedence relation > compatible with w. Let
e denote the constant in X' having the least weight among all constants in X. It
is not hard to argue that |e| is also the least weight of a ground term.

DEFINITION 14. (Weight [¢t|) The weight of a term ¢, denoted |¢|, is defined as
follows.

1. If ¢ is a variable, then [t| = w(e).
2. Mft=g(ty,...,tn) and g € X ac, then [t| = w(g) + [t1| + ... + |tnl-
3. Ift =g(t1,...,tn) and g € Xac, then |t| = (n — Dw(g) + |t1] + ... + [tn]- O

It is not hard to argue that the weight of a term ¢ is equal to the weight of the
ground term obtained from ¢ by replacing all variables by e. Therefore, Lemma 5
also holds for non-ground terms.

LEMMA 15. Let r,s,t be terms. If |s| = |t|, then |r[s]| = |r[t]|. Likewise, if
[s| > |t], then |r[s]| > |r[t]|. O

Let ¢ be a term. Denote by vars(t) the multiset of variables of ¢. For example,
vars(g(x, a, h(y, x))) = {z, y, z}.

DEFINITION 16. (Generalized Weight) A generalized weight is a pair (n,V),
where n is a positive integer and V is a multiset of variables. Let us intro-
duce a pre-order > and an order > on generalized weights as follows. We let
(m,M) > (n,N)if m >n and N is a submultiset of M. We let (m, M) > (n,N)
if m > n and N is a submultiset of M. The generalized weight of a term t,
denoted |[t|], is the pair (|t|, vars(t)). We write ¢t >w s if ||| > ||s|| and t >w s
i [[t]] > |Isl]

Note that >y is not a strict version of >y,. However, it is easy to see that >y
is a well-founded order. The following properties of >y and >y are also not
difficult to check.

LEMMA 17. Letr,s,t be terms. If s >w t, thenr[s] >w r[t]. Likewise, if s >w t,
then r[s] >w r[t]. Moreover, if s,t are ground terms, then s >, t if and only if
s>wt, and s >y t if and only if s >w t. O

Note that >y is not a total pre-order. For example, if x,y are two different
variables, then neither x >y y nor y >w « holds.



4.1 Relation >

Let us now generalize the relation >4 to non-ground terms. The definition is
more complex that in the ground case because of one technical problem: the order
>w is not the strict version of >y . Therefore, we cannot compose orders using
>w to obtain new orders as before. In particular, the definition of a multiset
extension of an order does not work any more and should be replaced.

First, instead of the pre-order >,, ® >¢0, used in the definition of >, on
ground terms, we introduce a pre-order >y ;,, defined as >y ® >40,. We also
write s =w,op ¢ if ||8|| = ||| and top(s) = top(t). Then let us define an order
>, top as follows: s >y 40p t if either s >y t or s >w t and top(s) > top(t).

Now, to define an analogue of (>,, ® ztop)m“l used in the definition of = for
ground terms, let us define the following deletion operation on pairs of multisets
M,N:ift € M, s € N, and t =w,¢0p S, then delete one occurrence of ¢ from M
and one occurrence of s from N.

DEFINITION 18. (Relation 1) Let M, N be two multisets of flattened terms
and let

M’ = {t € M | tis a variable or top(t) > +};
N’ ={t € N |t is a variable or top(t) > +}.

Let M"”,N" be obtained by applying the deletion operation to M’, N’ while
possible. Then we define M >, N if M"” contains a non-variable term and for
every s € N” there exists ¢ € M" such that ¢ >w 1., s. We also define M =, N
if either M >, N or N” is empty and M" contains only variables. O

Similarly to the ground case, we have the following lemma.

LEMMA 19. For each symbol + € X 4o the relation > is a well-founded order.
Moreover, on ground terms it coincides with the order =y of Definition 6. [

4.2 Order =kpo

Using the relation >, we can define an AC-compatible simplification order
> kpBo in essentially the same way as for ground terms.

DEFINITION 20. (Order = xpo) Let us define the relation > ko for non-ground
terms as follows. If = is a variable, then for every term s it is not true that
T >kgpo S- If y is a variable then t > gpo ¥ if and only if y occurs in ¢ and is
distinct from ¢. Let ¢t = h(t1,...,t,) and s = g(s1,...,sk) be flattened terms.
Then t = kpo s if and only if one of the following conditions holds:

1. t >w s; or
2. t >w s and h > g; or
3. t>w s, h =g, and either
(a) h¢ Yac and (t1,...,t,) =% (s1,...,8,); or



(b) h € ¥Ysc and

i. {tl,...,tn} >~h {sl,...,sk}; or
il {t1,....tn} =n {s1,...,8c} and n > k; or
iii. {t1,...,tn} =n {51,..., 8k}, n =k and
{tl,...,tn} >—%§lo {81,...,8k}. U

THEOREM 21. The relation =gpo is an AC-compatible simplification order.
Moreover, on ground terms it coincides with the order of Definition 8. (]

THEOREM 22. =kpo is closed under substitutions, that is, if t =xpo s, then
for every substitution 0, t0 = xpo s6. O

5 Related Work

In general, the Knuth-Bendix order and recursive path orders are incomparable
in the sense that there are rewrite (equational) systems that can be oriented by
an instance of the Knuth-Bendix order but cannot be oriented by recursive path
orders, and vice versa. To compare the Knuth-Bendix order with orders based on
polynomial interpretations (or combinations of polynomial interpretations with
recursive path orders) let us note that usually it is difficult to find a suitable
polynomial interpretation which orients a given rewrite (equational) system. For
the Knuth-Bendix order, we can employ some known efficient algorithms [7,13,
14].

An attempt to define an AC-compatible Knuth-Bendix order was undertaken
in [20] for a special case when each AC-symbol + is of the weight 0 and is also a
maximal symbol w.r.t. >>. It is proposed to compare terms with the top symbol
+ first by weight and then by comparing the multisets of their arguments. Let
us give an example demonstrating that the order defined in this way lacks the
monotonicity property.

Consider the weight function w such that w(+) = 0 and w(c) = w(d) =
w(g) = 1 and a precedence relation > such that + > g¢. Let t = ¢ + d and
s = g(c). Then |t| = |s|, and therefore ¢ »xpo s. Take any term r. Then
by monotonicity we must have r + ¢+ d >xpo r + g(c). But in fact we have
T+ g(c) =kpo T+ ¢+ d, since |g(c)| > |c| and |g(c)| > |d|.
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